Heat Capacity, Thermal Expansion Coefficient, and Grüneisen Parameter of CH₄, CO₂, and C₂H₆ Hydrates and Ice I_h via Density Functional Theory and Phonon Calculations

Samuel L. Mathews, Phillip D. Servio, Alejandro D. Rey*

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada

Calculated Quantities

Table 1. Definitions and symbols for calculated quantities				
Symbol	Name	Equation	Definition	
C _V	Constant volume heat capacity	$T\left(\frac{\partial S}{\partial T}\right)_{V}$ $\left(\frac{\partial U}{\partial T}\right)_{V}$	The amount of heat to be supplied to a material to produce a unit change in the temperature of the material undergoing an isochoric process.	
C _P	Constant pressure heat capacity	$T\left(\frac{\partial S}{\partial T}\right)_{P}$ $\left(\frac{\partial H}{\partial T}\right)_{P}$	The amount of heat to be supplied to a material to produce a unit change in the temperature of the material undergoing an isobaric process.	
β	Isobaric volumetric thermal	$\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$	A measure of the change in volume of the material per unit temperature change at constant pressure.	

	expansion coefficient		
γ	Grüneisen parameter	$V\left(\frac{\partial P}{\partial E}\right)_{V}$ $\frac{\beta K_{T}}{C_{V}\rho}$ $\frac{\beta K_{S}}{C_{P}\rho}$ $\frac{\beta v_{S}^{2}}{C_{P}}$ $-\left(\frac{\partial \ln T}{\partial \ln V}\right)_{S}$	A measure of the effect of a volume change on vibrational properties, and therefore of the effect of temperature on vibrational properties. Using the quasi-harmonic approximation for atomic vibrations, it is a measure of the temperature effects on dynamic properties of the lattice.

 V_s is the speed of sound in the particular medium, K_T is the isothermal bulk modulus, K_S is the isothermal bulk modulus.

Calculation Processes and Parameters

- The values in parentheses in each bubble represent values used for this work.
- This process is repeated at each volume above and below the ground state volume for the QHA related properties.

