Supporting Information

NMR Relaxometry and Diffusometry Analysis of Dynamics in Ionic Liquids and Ionogels for Use in Lithium Ion Batteries

Nishani Kanchana Jayakody^a, Carla C. Fraenza^a, Steven G. Greenbaum^a, David Ashby^b and Bruce S. Dunn^b

^aDepartment of Physics and Astronomy, Hunter College of CUNY, New York, NY 10065 USA

^bDepartment of Materials Science and Engineering, University of California, Los Angeles, CA 90024 USA

Ionogel characterization

Figure S1. N₂ adsorption isotherm obtained using the Micromeritics Tarazona DFT model for cylindrical-pore oxides.

Figure S2: ¹H diffusion for IG with 0.5M LiTFSI at 40^oC. Black symbols are experimental data, blue curve is best single-value fit, red curve is two-value fit.

Temperature	Samples (0M LiTFSI)	$D_{F1}(m^2s^{-1})$	$D_{H1}(m^2 s^{-1})$	$D_{H2}(m^2 s^{-1})$	<i>D_{HAvg}</i> (m ² s ⁻¹)
20º C	IL	1.45 x 10 ⁻¹¹	2.16 x 10 ⁻¹¹ (93%)	4.53 x 10 ⁻¹² (7%)	2.04 x 10 ⁻¹¹
	IG	9.25 x 10 ⁻¹²	1.41 x 10 ⁻¹¹ (90%)	2.11 x 10 ⁻¹² (10%)	
60º C	IL	8.23 x 10 ⁻¹¹	1.05 x 10 ⁻¹⁰	-	-
	IG	5.16 x 10 ⁻¹¹	6.79 x 10 ⁻¹¹	-	-
100º C	IL	2.27 x 10 ⁻¹⁰	2.85 x 10 ⁻¹⁰	-	-
	IG	1.54 x 10 ⁻¹⁰	1.89 x 10 ⁻¹⁰	-	-

Self-diffusion coefficients

Table S1. Self-diffusion coefficients (*D*) of TFSI⁻ (F) and BMIM⁺ (H) in ionic liquids (ILs) and ionogels (IGs) with 0M LiTFSI, at different temperatures. For ILs, the percentage values within parenthesis are the weighting factors *A* and *B* and they represent different aggregates; D_{HAvg} is the weighted average of D_{H1} and D_{H2} . For IGs, these weighting factors correspond to W_{bulk} (larger value) and W_{surf} (smaller value) (see Eq. (20) in the main manuscript for more details) and D_{H2} is D_{surf} for BMIM⁺.

Temperature	Samples (0.5M LiTFSI)	$D_{Li1}(m^2s^{-1})$	$D_{F1}(m^2s^{-1})$	$D_{F2}(m^2s^{-1})$	D _{FAvg} (m ² s ⁻¹)	$D_{H1}(m^2s^{-1})$	$D_{H2}(m^2s^{-1})$	D _{HAvg} (m ² s ⁻¹)
20º C	IL	6.09 x 10 ⁻¹²	8.93 x 10 ⁻¹² (79%)	2.84 x 10 ⁻¹² (21%)	7.65 x 10 ⁻¹²	1.78 x 10 ⁻¹¹ (62%)	4.82 x 10 ⁻¹² (38%)	1.29 x 10 ⁻¹¹
	IG	2.75 x 10 ⁻¹²	4.52 x 10 ⁻¹² (75%)	1.31 x 10 ⁻¹² (25%)	-	7.96 x 10 ⁻¹² (73%)	5.75 x 10 ⁻¹³ (27%)	-
	IL	1.72 x 10 ⁻¹¹	2.56 x 10 ⁻¹¹	-	-	4.02 x 10 ⁻¹¹	-	-
40º C	IG	6.72 x 10 ⁻¹²	9.88 x 10 ⁻¹²	-	-	2.06 x 10 ⁻¹¹ (84%)	2.75 x 10 ⁻¹² (16%)	-
	IL	3.62 x 10 ⁻¹¹	5.42 x 10 ⁻¹¹	-	-	8.19 x 10 ⁻¹¹	-	-
60º C	IG	1.63 x 10 ⁻¹¹	2.46 x 10 ⁻¹¹	-	-	5.18 x 10 ⁻¹¹ (78%)	1.36 x 10 ⁻¹¹ (22%)	-
	IL	7.15 x 10 ⁻¹¹	1.00 x 10 ⁻¹⁰	-	-	1.52 x 10 ⁻¹⁰	-	-
80º C	IG	3.23 x 10 ⁻¹¹	4.81 x 10 ⁻¹¹	-	-	8.24 x 10 ⁻¹¹ (92%)	9.65 x 10 ⁻¹² (8%)	-
	IL	1.17 x 10 ⁻¹⁰	1.64 x 10 ⁻¹⁰	-	-	2.42 x 10 ⁻¹⁰	-	-
100º C	IG	5.60 x 10 ⁻¹¹	8.27 x 10 ⁻¹¹	-	-	1.37 x 10 ⁻¹⁰ (93%)	2.75 x 10 ⁻¹¹ (7%)	-

Table S2. Self-diffusion coefficients (*D*) of Li⁺, TFSI⁻ (F) and BMIM⁺ (H) in ionic liquids (ILs) and ionogels (IGs) with 0.5M LiTFSI, at different temperatures. For ILs, the percentage values within parenthesis are the weighting factors *A* and *B* that represent different aggregates; D_{iAvg} is the weighted average of D_{i1} and D_{i2} , where *i* stands for F or H. For IGs, these weighting factors correspond to W_{bulk} (larger value) and W_{surf} (smaller value) (see Eq. (20) in the main manuscript for more details) and D_{i2} is D_{surf} , where *i* stands for F or H.

Temperature	Samples (1M LiTFSI)	$\begin{array}{c} D_{Li1} \\ (m^2 s^{-1}) \end{array}$	$\begin{array}{c} D_{Li2} \\ (m^2 s^{-1}) \end{array}$	D_{F1} (m^2s^{-1})	D_{F2} (m^2s^{-1})	$\begin{array}{c} \mathbf{D}_{FAvg}\\ (\mathbf{m}^2\mathbf{s}^{-1}) \end{array}$	$\begin{array}{c} D_{H1} \\ (m^2 s^{-1}) \end{array}$	$\begin{array}{c} D_{H2} \\ (m^2 s^{-1}) \end{array}$	D_{HAvg} (m^2s^{-1})
	IL	1.62 x 10 ⁻¹²	-	2.46 x 10 ⁻¹² (90%)	6.53 x 10 ⁻¹³ (10%)	2.28 x 10 ⁻¹²	6.28 x 10 ⁻¹² (64%)	2.96 x 10 ⁻¹² (36%)	5.08 x 10 ⁻¹²

20º C	IG	1.03 x 10 ⁻¹² (76%)	2.65 x 10 ⁻¹³ (22%)	1.04 x 10 ⁻¹² (85%)	2.90 x 10 ⁻¹⁴ (15%)	-	3.24 x 10 ⁻¹² (69%)	3.39 x 10 ⁻¹³ (31%)	-
25º C	IL	2.24 x 10 ⁻¹²	-	3.36 x 10 ⁻¹² (90%)	1.15 x 10 ⁻¹² (10%)	3.14 x 10 ⁻¹²	7.78 x 10 ⁻¹² (82%)	2.69 x 10 ⁻¹² (18%)	6.86 x 10 ⁻¹²
	IG	1.26 x 10 ⁻¹² (85%)	3.45 x 10 ⁻¹³ (15%)	1.41 x 10 ⁻¹² (89%)	1.57 x 10 ⁻¹⁴ (11%)	-	4.63 x 10 ⁻¹² (69%)	4.55 x 10 ⁻¹³ (31%)	-
40° C	IL	5.84 x 10 ⁻¹²	-	8.65 x 10 ⁻¹² (90%)	2.78 x 10 ⁻¹² (10%)	8.06 x 10 ⁻¹²	1.74 x 10 ⁻¹¹ (93%)	3.50 x 10 ⁻¹² (7%)	1.64 x 10 ⁻¹¹
	IG	3.47 x 10 ⁻¹² (89%)	5.81 x 10 ⁻¹³ (11%)	3.83 x 10 ⁻¹² (92%)	1.00 x 10 ⁻¹³ (8%)	-	9.27 x 10 ⁻¹² (85%)	5.38 x 10 ⁻¹³ (15%)	-
60º C	IL	1.85 x 10 ⁻¹¹	-	2.93 x 10 ⁻¹¹	-	-	4.45 x 10 ⁻¹¹ (95%)	7.22 x 10 ⁻¹² (5%)	4.26 x 10 ⁻¹¹
	IG	9.75 x 10 ⁻¹² (91%)	1.23 x 10 ⁻¹² (9%)	1.07 x 10 ⁻¹¹ (94%)	5.91 x 10 ⁻¹³ (6%)	-	2.31 x 10 ⁻¹¹ (92%)	5.46 x 10 ⁻¹³ (8%)	-

Table S3. Self-diffusion coefficients (*D*) of Li⁺, TFSI⁻ (F) and BMIM⁺ (H) in ionic liquids (IL) and ionogels (IG) with 1M LiTFSI, at different temperatures. For ILs, the percentage values within parenthesis are the weighting factors *A* and *B* that represent different aggregates; D_{iAvg} is the weighted average of D_{i1} and D_{i2} , where *i* stands for F or H. For IGs, these weighting factors correspond to W_{bulk} (larger value) and W_{surf} (smaller value) (see Eq. (20) in the main manuscript for more details) and D_{i2} is D_{surf} , where *i* stands for Li, F or H.

Sample		Transference number									
		20°C	25°C	40°C	60°C	80°C	100°C				
0.5M LITFSI	IL	0.034	-	0.039	0.039	0.042	0.043				
	IG	0.033	-	0.033	0.032	0.037	0.038				
1M LITFSI	IL	0.059	0.063	0.070	0.076	-	-				
	IG	0.12	0.067	0.082	0.088	-	-				

Table S4. Effective Li-transference numbers at different concentrations of LiTFSI and temperatures.

Dispersions of the spin-lattice relaxation rate

a) Analysis of hydrogen and fluorine relaxation profiles

Figure S3. ¹H relaxation rate dispersion for [BMIM] TFSI ionic liquid with 0M LiTFSI and its corresponding fitting using the model given by Eq. (7), recorded at 60°C.

Figure S4. ¹⁹F relaxation rate dispersion for [BMIM] TFSI ionic liquid with 0M LiTFSI and its corresponding fitting using the model given by Eq. (7), recorded at 60°C.

	[E	[BMIM] TFSI + 0M LiTFSI									
Parameters	IL_ ¹ H	$IL_{1}H$	IL_ ¹⁹ F	IL_ ¹⁹ F							
	30 °C	60 °C	30 °C	60 °C							
<i>d_{HH}</i> [m] x10 ⁻¹⁰	2.9±0.1	2.7±0.2									
<i>d_{FF}</i> [m] x10 ⁻¹⁰			2.5±0.2	2.3±0.2							
<i>d_{HF}</i> [m] x10 ⁻¹⁰	2.4±0.2	2.3±0.2	2.4±0.1	2.4±0.2							
$D_H [{ m m}^2/{ m s}] { m x}10^{-11}$	3.3±0.3	10±1	3.3±0.2	10.4±0.5							
$D_F [{ m m}^2/{ m s}] { m x}10^{-11}$	2.3±0.1	8.2±0.2	2.3±0.2	8.2±0.3							
$A_R [1/s^2] \ge 10^8$	1.7±0.2	1.4±0.2	0.11±0.01	0.28±0.2							
$ au_R$ [s] x10 ⁻⁹	1.8±0.2	1.0±0.1	11±1	2.5±0.2							

Table S5. Parameters obtained using the model given by Eq. (7) to describe the measured ¹H and ¹⁹F spin–lattice relaxation rate profiles of ionic liquids (IL) with 0M LiTFSI, at different temperatures.

Figure S5. ¹H relaxation rate dispersions for (a) IL and (b) IG with 1M LiTFSI and their corresponding fittings using the models given by Eq. (7) and (8), recorded at 40°C.

Figure S6. ¹⁹F relaxation rate dispersions for (a) IL and (b) IG with 1M LiTFSI and their corresponding fittings using the models given by Eq. (7) and (8), recorded at 40°C.

		[BMIM] TFSI + 1M LiTFSI												
Parameters	IL_ ¹ H	IL_ ¹ H	IL_ ¹ H	IG_ ¹ H	IG_1H	IG_1H	IL_19F	IL_ ¹⁹ F	IL_19F	IG_19F	IG_19F	IG_19F		
	30 °C	40 °C	60 °C	30 °C	40 °C	60 °C	30 °C	40 °C	60 °C	30 °C	40 °C	60 °C		
<i>d_{HH}</i> [m] x10 ⁻¹⁰	2.8±0.2	2.7±0.1	2.7±0.2	2.7±0.1	3.0±0.2	2.8±0.2								
<i>d_{FF}</i> [m] x10 ⁻¹⁰							2.4±0.3	2.2±0.2	2.3±0.2	3.1±0.1	3.0±0.2	3.0±0.1		
<i>d_{HF}</i> [m] x10 ⁻¹⁰	2.3±0.1	2.3±0.2	2.3±0.1	2.4±0.2	2.4±0.1	2.3±0.2	2.2±0.1	2.0±0.2	2.6±0.2	2.7±0.2	2.8±0.3	2.7±0.1		
$D_H [{ m m}^2/{ m s}] { m x}10^{-12}$	7.7±0.6	16±2	43±3	5.6±0.3	10.0±0.6	23±2	7.6±0.5	14±1	40±4	5.8±0.3	11.2±0.7	25±3		
$D_F [{ m m}^2/{ m s}] { m x}10^{-12}$	4.6±0.2	8.7±0.5	29±2	2.1±0.2	4.0±0.3	11±1	4.5±0.2	8.5±0.4	29±3	2.4±0.3	4.1±0.4	12±2		
D_{surf} [m ² /s] x10 ⁻¹³				4.9±0.3	5.5±0.2	5.6±0.3				0.29±0.01	0.96±0.05	6.3±0.5		
A_{RMTD} [s ^{-3/2}] x10 ⁴				1.0±0.1	1.7±0.2	2.3±0.2				1.5±0.2	1.4±0.1	1.1±0.1		
<i>l_{min}</i> [m] x10 ⁻¹⁰				1.6±0.1	2.1±0.2	2.1±0.2				1.5±0.1	1.7±0.2	4.0±0.3		
<i>l_{max}</i> [m] x10 ⁻⁹				30±2	55±3	71±5				5±1	25±2	57±4		
$A_R [1/s^2] \ge 10^8$	2.5±0.2	1.8±0.1	1.7±0.1	1.5±0.1	1.4±0.1	1.9±0.2	1.4±0.2	1.3±0.1	1.5±0.2	0.11±0.02	0.11±0.01	0.18±0.02		
τ_{R} [s] x10-9	4.2±0.2	3.1±0.1	1.1±0.1	4.3±0.3	3.1±0.2	1.3±0.1	14±1	7.8±0.5	2.8±0.2	51±2	17±1	8.4±0.4		

Table S6. Parameters obtained using the models given by Eq. (7) and (8) to describe the measured ¹H and ¹⁹F spin–lattice relaxation rate profiles of ionic liquids (IL) and ionogels (IG) with 1M LiTFSI, at different temperatures.

b) Analysis of lithium relaxation profiles

Figure S7. ⁷Li relaxation rate dispersion for IL with 1M LiTFSI and its corresponding fitting using the models given by Eq. (14) and (16), recorded 60°C.

	[BMIM] TFSI + 1M LITFSI								
Parameters	IL_7Li	IL_7Li	IL_7Li	IG_7Li	IG_7Li				
	30 °C	40 °C	60 °C	30 °C	40 °C				
A _Q [1/s ²] x10 ⁹	3.1±0.2	2.3±0.3	1.1±0.2	1.0±0.1	0.70±0.08				
$ au_{jump}[s] ext{ x10}^{-9}$	3.3±0.2	2.5±0.1	2.0±0.2	4.7±0.2	2.7±0.2				
A _{RMTD_power} [1/s ^{-(p+1)}] x10 ⁷				2.0±0.2	1.9±0.3				
р				0.70±0.05	0.7±0.1				

Table S7. Parameters obtained using the models given by Eq. (14) and (16) to describe the measured ⁷Li spin-lattice relaxation rate profiles of ionic liquids (IL) and ionogels (IG) with 1M LiTFSI, at different temperatures.