Supporting Information

Ni-Catalyzed Intermolecular Carboacylation of Internal Alkynes via Amide C-N Bond Activation

Mason T. Koeritz, Russell W. Burgett, Abhishek A. Kadam, Levi M. Stanley

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

E-mail: lstanley@iastate.edu

Table of Contents

General Experimental Details	S-2
Materials	S-3
GC General Method 1	S-3
Table S1. Ligand Screen for Ni-Catalyzed Alkyne Carboacylation	S-4
Procedure for Ligand Screen for Ni-Catalyzed Alkyne Carboacylation	S-4
Table S2. Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid	S-5
Procedure for Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid	S-5
Design of Experiment (DoE) Factor Screen	S-6
Procedure for Design of Experiment Factor Screen	S-7
Table S3. Experiments and Data for Design of Experiment Factor Screen	S-8
Table S4. Ligand Screen for NiCl ₂ ·glyme-Catalyzed Alkyne Carboacylation	S-10
Procedure for Ligand Screen for NiCl ₂ .glyme-Catalyzed Alkyne Carboacylation	S-10
Table S5. Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation	S-11
Procedure for Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation	S-11
Table S6. Product Inhibition in Ni-Catalyzed Alkyne Carboacylation	S-12
Procedure for Product Inhibition in Ni-Catalyzed Alkyne Carboacylation	S-12
Table S7. Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation	S-13
Procedure for Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation	S-13
Table S8. Screen of Al(O ^t Bu) ₃ Loading in Ni-Catalyzed Alkyne Carboacylation	S-14
Procedure for Screen of Al(O ^t Bu) ₃ Loading in Ni-Catalyzed Alkyne Carboacylation	S-14
Table S9. Solvent Mixture Design of Experiment (DoE)	S-15

Procedure for Solvent Mixture Design of Experiment (DoE)	S-16
Verification of Mixture DoE Results	S-16
Table S10. Optimization Design of Experiment (DoE)	S-16
Procedure for Optimization Design of Experiment	S-18
Verification of Optimization DoE Results	S-18
Figure S1. Surface Plots of Base Equivalents and Al(O ^t Bu) ₃ mol % with Percent Yield	
and d.r. from Optimization Design of Experiment	S-20
General Procedure A: Synthesis of Carboacylation Products 4a-4y	S-21
Procedure for Ni-catalyzed Alkyne Carboacylation – 1 mmol Scale	S-22
Characterization of tris(3-methylphenyl)boroxine 3j	S-23
Characterization of Alkyne Carboacylation Products 4a-4y	S-23
References	S-43
¹ H, ¹³ C, and ¹⁹ F Spectra for Boroxine 3j and Alkyne Carboacylation Products 4a-4y	S-44

General Experimental Details

All air-sensitive procedures were conducted under inert atmosphere in a nitrogen-filled dry box or by standard Schlenk techniques. All reactions were performed under nitrogen unless otherwise stated. Benzene, toluene, dichloromethane (DCM), and tetrahydrofuran (THF) were degassed by purging with argon for 45 minutes and dried with a solvent purification system by passing through a one-meter column of activated alumina. Anhydrous 1,4-dioxane was purchased from Sigma-Aldrich and used as received. Flash column chromatography was performed on SiliFlash® P60 silica gel (40-63µm, 60Å) or using a Teledyne Isco Combiflash® Rf system with RediSep GoldTM columns using hexane/ethyl acetate. Reaction products were visualized on TLC under UV light. Prep-HPLC was performed on a Waters HPLC System. Detection was acquired on a 2998 Photodiode Array Detector and a SunFire C18 column 5 µm. HPLC solvents contained water with 0.1% TFA and acetonitrile with 0.1% TFA. Gas Chromatography was performed on a Hewlett Packard 6890 GC System with a J&W DB-5ms GC Column, 30 m length, 0.25 mm diameter, 0.25 µm film.

HRMS (ESI) analysis was performed at the Iowa State University Chemical Instrumentation Facility on an Agilent 6540 QTOF spectrometer. Elemental analysis was performed at the Iowa State University Chemical Instrumentation Facility on the Perkin Elmer 2100 Series II CHN/S Analyzer. NMR spectra were acquired on Varian MR-400, Bruker Avance NEO 400, and Bruker Avance III 600 spectrometers at the Iowa State University Chemical Instrumentation Facility. Chemical shifts are reported in ppm relative to a residual solvent peak (CDCl₃ = 7.26 ppm for ¹H and 77.16 ppm for ¹³C). ¹⁹F NMR shifts are reported based on indirect reference to CDCl₃. Coupling constants are reported in hertz.

Materials

Sodium tetraphenylborate, 4-octyne, 3-hexyne, 1-phenyl-1-propyne, and 4chlorophenylboronic acid were purchased from Sigma Aldrich. Triphenylborane and aluminum *tert*-butoxide were purchased from Alfa Aesar. Phenylboronic acid pinacol ester, 4methoxyphenylboronic acid, and 3-methoxyphenylboronic acid were purchased from AK Scientific. Potassium carbonate was purchased from Fischer Scientific. Ni(cod)₂ and NiCl₂glyme were purchased from Strem Chemical. 4-methylphenylboronic acid and 2-methylphenylboronic acid were purchased from Combi-Blocks. 3-methylphenylboronic acid was purchased from Ark Pharm. Amides **1a-1i** were synthesized according to literature procedure.¹ Triarylboroxines **3e-3i**, and **3k** were prepared according to literature procedures.^{2,3}

GC General Method 1

Oven temperature: 150 °C. Inlet temperature: 250 °C. Front Detector temperature: 250 °C.

S-3

Method: 150 °C for 1 min. Ramp at 10 °C/min up to 250 °C. Hold for 8 min.

Table S1. Ligand Screen for Ni-Catalyzed Alkyne Carboacylation^a

entry	ligand	yield (%) ^b	d.r. (Z/E) ^b
1	None	51	0.8:1
2	PPh ₃	8	1:1
3	PCy ₃	28	1.4:1
4	$P(^{t}Bu)_{3}$	17	1.2:1
5	SIPr	65	0.8:1
6	IPr	75	1.1:1
7	IMes·HCl ^c	50	0.6:1
8	ICy·HCl ^c	50	0.6:1
9	$P(o-tol)_3$	63	1.2:1
10	(^t Bu) ₂ Xantphos	66	0.6:1
11	BrettPhos	62	0.7:1
12	XPhos	56	0.9:1
13	JohnPhos	40	1.6:1

^aReaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1mmol), 4-octyne 2a (0.500 mmol), triphenylborane 3b (0.200 mmol), Ni(cod)₂ (0.010 mmol), benzene (1 mL) at 95°C for 18 h.
^bDetermined by GC with tridecane as internal standard. ^cReaction run in the presence of 10 mol % NaO^tBu.

Procedure for Ligand Screen for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with Ni(cod)₂ (2.8 mg, 0.010 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, ligand (0.010 mmol), triphenylborane **3b** (48.4 mg, 0.200 mmol), and benzene (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S2. Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid^a

entry	base	solvent	yield (%) ^b	d.r. (Z/E) ^b
1	K ₂ CO ₃	Benzene	24	3.8:1
2	K ₃ PO ₄	Benzene	6	4.9:1
3	LiO ^t Bu	Benzene	9	9.9:1
4	Cs_2CO_3	Benzene	24	3.0:1
5	Na ₂ CO ₃	Benzene	4	3.0:1
6	KF	Benzene	5	4.0:1
7	K_2CO_3	THF	25	2.1:1
8	K_2CO_3	Dioxane	41	1.9:1

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.200 mmol), base (0.200 mmol), Ni(cod)₂ (0.010 mmol), BrettPhos (0.010 mmol), solvent (1 mL) at 95°C for 18 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid

In a glovebox atmosphere, an oven dried 1-dram vial was charged with Ni(cod)₂ (2.8 mg, 0.010 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, BrettPhos (5.4 mg, 0.010 mmol), phenylboronic acid **3c** (24.4 mg, 0.200 mmol), base (0.200 mmol), and an appropriate solvent (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by **GC method 1.**

Design of Experiment (DoE) Factor Screen (Table S3)^a

-Responses: Percent Yield, Conversion, Diastereomeric Ratio, and Suzuki Product

-Factors: Ligand Identity, Ligand mol %, Solvent, Concentration, Base Identity, Nucleophile Identity, Nucleophile Equivalents, Temperature, Water Equivalents

-JMP Pro 14[®] software was used to generate and analyze the 42 reactions of the D-optimal design.

Procedure for Design of Experiment Factor Screen

In a glovebox atmosphere, an oven dried 1-dram vial was charged with Ni(cod)₂ (2.8 mg, 0.010 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol), ligand (0.0050-0.015 mmol), boron nucleophile **3** (0.100-0.300 mmol), base (0.200 mmol), water (0-0.200 mmol) and solvent (0.200-1.00 mL, 0.100-0.500 M). The resulting solution was stirred at an appropriate temperature in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Entry	Ligand Identity	Ligand mol %	Solvent	Concentration (M)	Base Identity	Nucleophile Identity (Equiv)	Water Equiv	Temp (°C)	Yield (%) ^b	d.r. (Z/E) ^b	Conversion (%) ^b	Suzuki (%) ^b
1	IPr	10	CPME	0.5	KF	PhB(OH) ₂ (3)	2	95	3	3.9:1	39	2
2	BrettPhos	10	Toluene	0.5	K_2CO_3	BPh₃(2)	0	60	47	1.9:1	82	2
3	BrettPhos	5	Toluene	0.5	Cs_2CO_3	PhB(OH)₂(1)	1	95	13	2.2:1	99	0
4	IPr	5	CF ₃ -Toluene	0.25	CsF	PhB(OH) ₂ (1)	1	95	6	5.0:1	95	1
5	BrettPhos	10	CPME	0.5	CsF	PhB(OH) ₂ (2)	1	60	16	1.7:1	74	1
6	BrettPhos	10	Benzene	0.1	CsF	PhBpin (3)	2	95	0	0	63	0
7	IPr	15	CPME	0.5	Cs_2CO_3	PhBpin (3)	0	80	1	0	99	10
8	BrettPhos	15	THF	0.5	Na ^t BuO	PhBF₃K (3)	2	95	0	0	99	0
9	BrettPhos	5	Dioxane	0.1	KF	PhB(OH) ₂ (2)	0	80	4	3.0:1	40	1
10	BrettPhos	10	CF ₃ -Toluene	0.5	Li ^t BuO	PhBF₃K (3)	0	95	0	0	99	1
11	BrettPhos	10	Toluene	0.25	K_3PO_4	PhBpin (3)	1	60	0	0	68	0
12	BrettPhos	15	CF ₃ -Toluene	0.1	K_2CO_3	PhB(OH) ₂ (3)	2	60	2	3.6:1	27	0
13	BrettPhos	5	Benzene	0.1	Na ^t BuO	PhBpin (3)	0	60	0	0	98	4
14	IPr	5	Benzene	0.5	Li ^t BuO	BPh₃ (3)	1	80	8	0.6:1	99	5
15	IPr	5	THF	0.1	K_3PO_4	PhBpin (2)	2	95	1	0	99	15
16	IPr	10	Benzene	0.25	KF	PhBF₃K (1)	2	80	1	0	37	1
17	BrettPhos	5	CF ₃ -Toluene	0.25	KF	PhBF₃K (3)	1	60	0	0	26	0
18	BrettPhos	15	Dioxane	0.1	Li ^t BuO	PhBpin (1)	1	95	1	0	99	6
19	IPr	5	Toluene	0.25	Li ^t BuO	PhBpin (2)	2	60	0	0	99	0
20	BrettPhos	5	CF ₃ -Toluene	0.5	K_3PO_4	BPh₃ (1)	2	80	18	2.6:1	99	1
21	IPr	15	Toluene	0.1	CsF	PhBF₃K (3)	0	80	5	1.5:1	52	0
22	IPr	10	Toluene	0.1	Na ^t BuO	PhB(OH) ₂ (1)	2	80	0	0	99	0
23	IPr	15	Dioxane	0.25	K_3PO_4	PhB(OH) ₂ (3)	0	95	6	2.0:1	71	1
24	IPr	5	CPME	0.25	K_2CO_3	PhBpin (1)	0	95	2	1.0:1	96	3
25	IPr	10	Dioxane	0.25	Na ^t BuO	BPh₃ (3)	1	60	2	1.0:1	99	15
26	BrettPhos	10	CPME	0.1	K_3PO_4	PhBF₃K (2)	1	80	0	0	92	0
27	IPr	10	THF	0.1	Cs_2CO_3	PhBF₃K (1)	1	60	0	0	69	0

Table S3. Experiments and Data for Design of Experiment Factor Screen

Entry	Ligand Identity	Ligand mol %	Solvent	Concentration (M)	Base Identity	Nucleophile Identity (Equiv)	Water Equiv	Temp (°C)	Yield (%) ^b	d.r. (Z/E) ^b	Conversion (%) ^b	Suzuki (%) ^b
28	BrettPhos	5	Dioxane	0.25	Cs_2CO_3	BPh₃ (3)	2	80	26	3.3:1	98	10
29	BrettPhos	10	Dioxane	0.5	K_2CO_3	PhBpin (1)	2	80	0	0	55	0
30	IPr	15	Benzene	0.25	K_2CO_3	PhBF₃K (2)	1	95	1	0	61	2
31	BrettPhos	5	CPME	0.25	Na ^t BuO	PhBF₃K (1)	0	95	0	0	65	0
32	IPr	15	THF	0.5	KF	PhBpin (1)	0	60	1	0	40	0
33	IPr	5	THF	0.1	K_2CO_3	PhB(OH) ₂ (3)	1	80	6	3.2:1	36	0
34	BrettPhos	10	THF	0.25	Li ^t BuO	PhB(OH) ₂ (2)	0	80	0	0	99	0
35	BrettPhos	15	Benzene	0.25	Cs_2CO_3	PhB(OH) ₂ (2)	2	60	12	3.0:1	80	1
36	IPr	15	CPME	0.1	Li ^t BuO	BPh₃ (1)	2	60	0	0	99	1
37	IPr	15	CF ₃ -Toluene	0.5	Na ^t BuO	PhBpin (2)	1	80	0	0	99	0
38	BrettPhos	15	Toluene	0.1	KF	BPh₃ (2)	1	95	44	1.6:1	96	8
39	IPr	15	Benzene	0.5	K_3PO_4	PhB(OH) ₂ (1)	0	60	1	1.9:1	33	1
40	IPr	5	Dioxane	0.5	CsF	PhBF₃K (2)	2	60	1	0	51	0
41	lPr	10	CF ₃ -Toluene	0.1	Cs_2CO_3	BPh₃ (2)	0	95	19	1.4:1	90	3
42	BrettPhos	15	THF	0.25	CsF	BPh₃ (1)	0	80	10	2.3:1	84	0

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1mmol), 4-octyne **2a** (0.500 mmol), base (0.200 mmol), Ni(cod)₂ (0.010

mmol), Ligand (0.010 mmol), 18 h. ^bDetermined by GC with tridecane as internal standard.

Ph N Ph $+$ O Ph $1a$	Pr Pr Pr Ligand (10 m 2a Pr PhB(OH) ₂ (2 K ₂ CO ₃ (2 eq Dioxane (0.1 95 °C, 18 h	(10 mol %) nol %) Ph´ ? equiv) uiv) F I M)	$\begin{array}{ccc} 0 & 0 \\ Pr + Ph & Pr \\ ph & Pr & Pr & Ph \\ 4a & 4a' \end{array}$
entry	ligand	yield (%) ^b	d.r. (Z/E) ^b
1	None	39	1.6:1
2	PPh ₃	<1	n.d. ^c
3	PCy ₃	20	1.5:1
4	$P(^{t}Bu)_{3}$	13	2.2:1
5	SIPr	8	2.7:1
6	IPr	17	2.3:1
7	2,2'-bipyridine	4	>10:1
8	Pyridine	5	4.0:1
9	Xantphos	10	2.2:1
10	$P(o-tol)_3$	33	2.0:1
11	P(OMe) ₃	30	1.5:1

Table S4. Ligand Screen for NiCl2glyme-Catalyzed Alkyne Carboacylation^a

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.200 mmol), potassium carbonate (0.200 mmol), NiCl₂glyme (0.010 mmol), ligand (0.010 mmol), Dioxane (1 mL) at 95°C for 18 h. ^bDetermined by GC with tridecane as internal standard. ^cd.r. not determined.

Procedure for Ligand Screen for NiCl₂·glyme-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (2.2 mg, 0.010 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, ligand (0.010 mmol), phenylboronic acid **3c** (24.4 mg, 0.200 mmol), potassium carbonate (27.6 mg, 0.200 mmol), and dioxane (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and

tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S5. Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation^a

entry	NiCl ₂ glyme mol %	yield (%) ^b	d.r. (Z/E) ^b
1	5	28	2.4:1
2	10	20	1.9:1
3	20	46	1.5:1
4	50	29	2.2:1
5	100	28	1.8:1

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.200 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at 95°C for 18 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂glyme (0.0050-0.100 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (24.4 mg, 0.200 mmol), potassium carbonate (27.6 mg, 0.200 mmol), and dioxane (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S6. Product Inhibition in Ni-Catalyzed Alkyne Carboacylation^a

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.300 mmol), NiCl₂·glyme (0.020 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at 95°C for 18 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Product Inhibition in Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (0.020 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (36.6 mg, 0.300 mmol), potassium carbonate (27.6 mg, 0.200 mmol), product **4a** (0-0.030 mmol) and dioxane (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S7. Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation^a

$Ph \xrightarrow{O} Ph$ $O \xrightarrow{Ph} Ph$ $1a$ $Pr \xrightarrow{+} Ph$ $2a$	NiCl ₂ glyme (20 mol %) PhB(OH) ₂ (5 equiv) K ₂ CO ₃ (2 equiv) Lewis Acid (20 mol %), Dioxane (0.1 M) 95 °C, 3 h	$\rightarrow Ph + Pr + Ph + Pr + 4a$	Ph Pr Pr 4a '
entry	Lewis acid	yield (%) ^b	d.r. (Z/E) ^b
1	None	61	0.67:1
2	$Al(O^tBu)_3$	65	1.8:1
3	AlCl ₃	<5	n.d. ^c
4	Al(OH)(C ₂ H ₃ O ₂) ₂	40	1.2:1
5	BPh ₃	39	1.5:1
6	Ti(O ⁱ Pr) ₄	47	1.6:1
	()+		

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.500 mmol), NiCl₂·glyme (0.020 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at 95°C for 18 h. ^bDetermined by GC with tridecane as internal standard. ^cd.r. not determined.

Procedure for Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (4.4 mg, 0.020 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (61.0 mg, 0.500 mmol), potassium carbonate (27.6 mg, 0.200 mmol), Lewis acid (0.020 mmol), and dioxane (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 18 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed

and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S8. Screen of Al(O^tBu)₃ Loading in Ni-Catalyzed Alkyne Carboacylation^a

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.500 mmol), NiCl₂·glyme (0.020 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at 95°C for 6 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Screen of Al(O^tBu)₃ Loading in Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (4.4 mg, 0.020 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (61.0 mg, 0.500 mmol), potassium carbonate (27.6 mg, 0.200 mmol), aluminum tert-butoxide (0-0.050 mmol), and dioxane (1.00 mL, 0.100 M). The resulting solution was stirred at 95 °C in an oil bath for 6 h. The reaction was cooled to room temperature and tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L

aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S9. Solvent Mixture Design of Experiment (DoE)^a

-Responses: Percent Yield, Conversion, Diastereomeric Ratio, Suzuki Product

-Factors: Dioxane, Toluene, and THF in mixtures adding up to 200 µL

-JMP Pro 14[®] software was used to generate and analyze the 11 reactions of the mixture design.

Ph	O N Pr O Pr 1a	NiCl ₂ ·glyme (20 mol %) PhB(OH) ₂ (5 equiv)	$\rightarrow Ph + Pr +$	Ph Pr
Pr-	+ P 2a	K ₂ CO ₃ (2 equiv) Al(O ^t Bu) ₃ (20 mol %) Solvent, (0.5 M) 80 °C, 18 h	Ph Pr 4a	Pr ^{//} Ph 4a '

entry	Dioxane	THF	Toluene	yield (%) ^b	d.r. (Z/E) ^b	Conversion	Suzuki
	(µL)	(µL)	(µL)			(%) ^b	(%) ^b
1	0	150	50	41	4.5:1	49	2
2	50	0	150	17	9.0:1	31	1
3	50	150	0	47	6.1:1	50	2
4	66	66	66	21	8.7:1	33	1
5	0	50	150	54	2.9:1	88	4
6	0	0	200	15	11.1:1	33	1
7	150	50	0	68	4.4:1	70	3
8	0	200	0	1	1.0:1	21	0
9	150	0	50	19	9.0:1	24	1
10	200	0	0	66	3.5:1	80	2
11	100	100	0	69	4.2:1	72	3

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.500 mmol), NiCl₂·glyme (0.020 mmol), potassium carbonate (0.200 mmol), aluminum *tert*-butoxide (0.020 mmol), Solvent (0.2 mL) at 80 °C for 18 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Solvent Mixture Design of Experiment (DoE)

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (4.4 mg, 0.020 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (61.0 mg, 0.500 mmol), potassium carbonate (27.6 mg, 0.200 mmol), aluminum *tert*-butoxide (4.9 mg, 0.020 mmol), and solvent (0.200 mL, 0.500 M). The resulting solution was stirred at 80 °C in an oil bath for 18 h. The reaction was cooled to room temperature and diluted with 0.800 mL EtOAc. Tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Verification of Mixture DoE Results

From the mixture DoE, the predicted optimal solvent condition was a 1:1 mixture of dioxane and toluene. The reaction was run according to the DoE procedure using 100 μ L dioxane and 100 μ L toluene as the solvent. The predicted results were 64% yield with 6.1:1 d.r. (Z/E). The actual yield was 69% with 4.2:1 d.r.

Table S10. Optimization Design of Experiment (DoE)^a

-Responses: Percent Yield, Conversion, Diastereomeric Ratio

-Factors: Temperature, Base Identity, Base Equivalents, $Al(O^tBu)_3 \mod \%$, and Solvent Mixture -JMP Pro 14[®] software was used to generate and analyze the 38 reactions of the D-optimal design.

		0 b						
		Ph			0	0		
		0 Ph	NiCl ₂ -glyme	e (20 mol %)	Ŭ _Pr	Ŭ _Pr		
		1a	PhB(OH) ₂ ((5 equiv)	► Ph´ ↓ + Ph			
		+ D= D=	Al(O ^t Bu) ₃ (2	20 mol %)	Ph	Pr Ph		
		2a	Solvent, (0. 80 °C, 18 h	.5 M)	4a	4a′		
Entry	Temperatu	re Base	Base	$Al(O^tBu)_3$	Solvent	yield	d.r.	Conversion
	(°C)	Identity	Equiv	(mol %)		(%) ^b	(Z/E) ^b	(%) ^b
1	77.5	K_2CO_3	1.375	30	Dioxane	28	7.7:1	38
2	95	K_3PO_4	0.5	10	Dioxane	11	8.9:1	22
3	95	Cs_2CO_3	2.25	10	Dioxane	0	0	97
4	77.5	Cs_2CO_3	2.25	50	Dioxane	0	0	65
5	60	Cs_2CO_3	2.25	30	Dioxane/Toluene	0	0	27
6	60	K_2CO_3	1.375	50	Dioxane/Toluene	53	6.8:1	55
7	95	K_2CO_3	2.25	50	Dioxane/Toluene	26	5.2:1	63
8	95	Cs_2CO_3	0.5	30	Dioxane	24	2.5:1	70
9	77.5	K_2CO_3	2.25	10	Dioxane/Toluene	55	4.2:1	63
10	95	K ₃ PO ₄	0.5	50	Dioxane/Toluene	33	5.3:1	46
11	95	KF	0.5	10	Dioxane/Toluene	17	5.6:1	26
12	95	K_2CO_3	0.5	50	Dioxane	56	3.4:1	74
13	95	K_2CO_3	0.5	30	Dioxane/Toluene	52	3.3:1	77
14	77.5	KF	0.5	50	Dioxane/Toluene	12	9.1:1	91
15	60	KF	2.25	50	Dioxane	0	0	13
16	77.5	K ₃ PO ₄	1.375	30	Dioxane	23	7.4:1	25
17	77.5	K ₃ PO ₄	1.375	30	Dioxane/Toluene	31	10.7:1	28
18	95	Cs_2CO_3	1.375	50	Dioxane/Toluene	3	0	52
19	89.4	KF	2.25	30	Dioxane/Toluene	24	5.0:1	44
20	60	K ₃ PO ₄	2.25	10	Dioxane	22	10.7:1	29
21	60	K ₃ PO ₄	0.5	50	Dioxane	18	15.7:1	20
22	95	KF	1.375	50	Dioxane	28	5.0:1	40
23	77.5	KF	2.25	10	Dioxane	24	6.0:1	31
24	95	K ₃ PO ₄	2.25	10	Dioxane/Toluene	21	6.6:1	34
25	60	Cs_2CO_3	1.375	10	Dioxane	0	0	0
26	60	Cs_2CO_3	0.5	50	Dioxane/Toluene	0	0	44
27	95	K_2CO_3	2.25	10	Dioxane	56	1:1	99
28	60	K ₂ CO ₃	0.5	10	Dioxane	21	10.2:1	28
29	60	KF	1.375	10	Dioxane/Toluene	0	0	22
30	60	KF	0.5	30	Dioxane	0	0	10
31	60	K ₃ PO ₄	0.5	10	Dioxane/Toluene	5	0	18
32	77.5	Cs_2CO_3	0.5	10	Dioxane/Toluene	31	4.4:1	53
33	60	K ₂ CO ₃	2.25	30	Dioxane	45	8.0:1	51
34	60	K ₃ PO ₄	2.25	50	Dioxane/Toluene	40	9.3:1	51

Entry	Temperature	Base	Base	Al(O ^t Bu) ₃	Solvent	yield	d.r.	Conversion
	(°C)	Identity	Equiv	(mol %)		(%) ^b	$(Z/E)^b$	(%) ^b
35	95	K ₃ PO ₄	2.25	50	Dioxane	45	3.8:1	72
36	75	K_2CO_3	0.5	50	Dioxane/Toluene	45	6.6:1	61
37	75	K_2CO_3	0.5	50	Dioxane	35	7.2:1	45
38	80	K ₂ CO ₃	2	20	Dioxane	69	2.4:1	97

^aReaction conditions: N-benzoyl-N-phenylbenzamide **1a** (0.1 mmol), 4-octyne **2a** (0.500 mmol), phenylboronic acid **3c** (0.500 mmol), NiCl₂·glyme (0.020 mmol), base (0.050-0.225 mmol), aluminum *tert*-butoxide (0.010-0.050 mmol), Solvent (0.200 mL, 0.500 M) at 60-95 °C in an oil bath for 18 h. ^bDetermined by GC with tridecane as internal standard.

Procedure for Optimization Design of Experiment

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂·glyme (4.4 mg, 0.020 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol, phenylboronic acid **3c** (61.0 mg, 0.500 mmol), base (0.050-0.225 mmol), aluminum *tert*-butoxide (0.010-0.050 mmol), and solvent (0.200 mL, 0.500 M). The resulting solution was stirred at an appropriate temperature in an oil bath for 18 h. The reaction was cooled to room temperature and diluted with 0.800 mL EtOAc. Tridecane (24.4 μ L, 0.100 mmol) was added as internal standard. A 100 μ L aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with 900 μ L of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Verification of Optimization DoE Results

The reaction using the predicted optimized conditions was run according to the DoE procedure using potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and a 50:50 mixture of dioxane and toluene as the solvent (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The predicted results were 60% yield with 6.0:1 d.r. (Z/E). The actual yield was 62% with 5.3:1 d.r.

Figure S1. Surface Plots of Base Equivalents and Al(O^tBu)₃ mol % with Percent Yield and

d.r. from Optimization Design of Experiment

General Procedure A: Synthesis of Carboacylation Products 4a-4y:

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl₂glyme (4.4 mg, 0.020 mmol), amide **1a-1i** (0.100 mmol), alkyne **2a-2c** (0.500 mmol), triarylboroxine **3e-3k** (0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum *tert*-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M). The resulting solution was stirred at 75 °C in an oil bath for 18 h. The reaction was cooled to room temperature, filtered through a short plug of silica gel eluting with 50:50 hexanes:EtOAc, and concentrated under reduced pressure. The crude product was purified by flash column chromatography to give carboacylation products **4a-4y**.

Procedure for Ni-catalyzed Alkyne Carboacylation – 1 mmol Scale

In a glovebox atmosphere, an oven dried scintillation vial was charged with NiCl₂glyme (43.9 mg, 0.200 mmol), *N*-benzoyl-*N*-phenylbenzamide **1a** (301.34 mg, 1.000 mmol), 4-octyne (0.500 mmol), triphenylboroxine (0.312 g, 1.000 mmol), potassium carbonate (0.311 g, 0.225 mmol), aluminum *tert*-butoxide (24.6 mg, 0.100 mmol), and 1:1 dioxane/toluene (2.00 mL, 0.500 M). The resulting solution was stirred at 75 °C in an oil bath for 18 h. The reaction was cooled to room temperature, filtered through a short plug of silica gel eluting with 50:50 hexanes:EtOAc, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (90:10 hexanes:EtOAc) to give carboacylation products **4a** and **4a'** in 23% yield (67.3 mg) and 6.0:1 d.r.

Characterization of tris(3-methylphenyl)boroxine 3j:

Tris(3-methylphenyl)boroxine (3j)^{4,5,6}: Prepared by heating 3methylphenylboronic acid in a Kugelrohr apparatus at 80 °C for 8 hr under vacuum. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09 – 8.03 (m, 6H), 7.43 – 7.40 (m, 6H), 2.48 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 137.4, 136.2, 133.5, 132.8, 127.9, 21.5. (C-B not

observed).

Characterization of Alkyne Carboacylation Products 4a-4y:

(Z)-1,3-diphenyl-2-propylhex-2-ene-1-one (4a): Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a (30.1 mg, 0.100 mmol), 4-octyne 2a (73.4 μL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-

butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4a** and **4a'** in 62% yield and 5.3:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 7.6, 2H), 7.29 (t, J = 7.9, 1H), 7.18 (dd, J = 7.6, 7.9 Hz, 2H), 7.04 – 6.92 (m, 5H), 2.62 – 2.52 (m, 4H), 1.54 – 1.45 (m, 2H), 1.41 – 1.31 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.6, 143.0, 141.4, 138.2, 137.9, 132.1, 129.1, 128.8, 127.8, 127.7, 127.0,

35.6, 33.6, 22.2, 21.5, 14.4, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₅O⁺ 293.1900; Found 293.1902.

(Z)-1-(4-methoxyphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4b):

Prepared according to general procedure A from 4-methoxy-*N*-(4methoxybenzoyl)-*N*-phenylbenzamide **1b** (36.1 mg, 0.100 mmol), 4octyne **2a** (73.4 µL, 0.500 mmol), triphenylboroxine **3e** (31.2 mg, 0.100

mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4b** and **4b'** in 42% yield and 7.0:1 d.r. The isomers were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.62 (ddd, J = 9.6, 2.8, 2.0, 2H), 7.08 – 6.94 (m, 5H), 6.72 – 6.65 (ddd, J = 9.6, 2.8, 2.0, 2H), 3.76 (s, 3H), 2.61 – 2.48 (m, 4H), 1.52 – 1.40 (m, 2H), 1.40 – 1.30 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.1, 162.8, 141.6, 141.5, 138.2, 131.6, 130.6, 128.7, 127.7, 126.9, 113.1, 55.3, 35.5, 33.8, 22.1, 21.5, 14.4, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O₂⁺ 323.2006; Found 323.2040.

(Z)- 1-(4-methylphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4c):
Prepared according to general procedure A from 4-methyl-*N*-(4-methylbenzoyl)-*N*-phenylbenzamide 1c (32.9 mg, 0.100 mmol), 4-octyne
2a (73.4 μL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4c** and **4c'** in 43% yield and 2.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.54 (m, 2H), 7.05 – 6.95 (m, 7H), 2.61 – 2.49 (m, 4H), 2.27 (s, 3H), 1.52 – 1.42 (m, 2H), 1.40 – 1.31 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H), 0.91 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.2, 142.9, 142.0, 141.5, 138.2, 135.1, 129.4, 128.8, 128.6, 127.7, 126.9, 35.6, 33.7, 22.1, 21.6, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O⁺ 307.2056; Found 307.2077.

F Ph 4d (Z)-1-(4-fluorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4d):

Prepared according to general procedure A from 4-fluoro-*N*-(4fluorobenzoyl)-*N*-phenylbenzamide **1d** (33.7 mg, 0.100 mmol), 4-octyne **2a**

(73.4 µL, 0.500 mmol), triphenylboroxine **3e** (31.2 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4d** and **4d'** in 32% yield and 4.3:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 – 7.62 (m, 2H), 7.07 – 6.98 (m, 5H), 6.89 – 6.82 (m, 2H), 2.63 – 2.53 (m, 4H), 1.56 – 1.44 (m, 2H), 1.44 – 1.32 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 200.1, 166.2, 163.7, 143.2, 141.3, 137.9, 134.2, 131.7, 131.6, 128.8, 127.8, 127.2, 115.0, 114.7, 35.6, 33.6, 22.2, 21.5, 14.3, 14.0. ¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -75.75. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₄FO⁺ 311.1806; Found 311.1808.

(Z)-1-(4-chlorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4e):
Prepared according to general procedure A from 4-chloro-*N*-(4-chlorobenzoyl)-*N*-phenylbenzamide 1e (37.0 mg, 0.100 mmol), 4-octyne 2a (73.4 μL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction

mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4e** and **4e'** in 25% yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (ddd, *J* = 9.0, 2.3, 2.0, 2H), 7.13 (ddd, *J* = 9.0, 2.3, 2.0, 2H), 7.06 – 6.96 (m, 5H), 2.61 – 2.50 (m, 4H), 1.52 – 1.41 (m, 2H), 1.41 – 1.30 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.4, 143.5, 141.2, 138.3, 137.8, 136.3, 130.5, 128.8, 128.1, 127.9, 127.3, 35.6, 33.6, 22.2, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₄ClO⁺ 327.1510; Found 327.1512.

MeO Ph 4f (**Z**)-1-(3-methoxyphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4f): Prepared according to general procedure A from 3-methoxy-*N*-(3methoxybenzoyl)-*N*-phenylbenzamide **1f** (36.1 mg, 0.100 mmol), 4-

octyne **2a** (73.4 µL, 0.500 mmol), triphenylboroxine **3e** (31.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4f** and **4f'** in 31% yield and 1.6:1 d.r. The products were able to be separated under the column chromatography conditions. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 (ddd, *J* = 7.9, 1.4, 1.0 Hz, 1H), 7.16 (dd, *J* = 2.6, 1.4 Hz, 1H), 7.09 (t, *J* = 7.9 Hz, 1H), 7.06 – 6.93 (m, 5H), 6.85 (ddd, *J* = 7.9, 2.6, 1.0 Hz, 1H), 3.74 (s, 3H), 2.61 – 2.51 (m, 4H), 1.48 (m, 2H), 1.36 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.1, 142.9, 141.5, 139.2, 138.3, 128.8, 128.8, 127.8, 127.0, 122.2, 118.8, 113.1, 55.3, 35.6,

33.6, 22.2, 21.5, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O₂⁺ 323.2006; Found 323.2007.

(Z)-1-(3-methylphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4g):
Prepared according to general procedure A from 3-methyl-*N*-(3-methylbenzoyl)-*N*-phenylbenzamide 1g (32.9 mg, 0.100 mmol), 4-octyne
2a (73.4 μL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4g** and **4g'** in 41% yield and 3.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (m, 2H), 7.14 – 7.04 (m, 2H), 7.01 (m, 4H), 6.96 (m, 1H), 2.62 – 2.50 (m, 4H), 2.25 (s, 3H), 1.48 (m, 2H), 1.36 (m, 2H), 0.97 (t, 7.4 Hz, 3H), 0.92 (t, 7.4 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.6, 142.7, 141.6, 138.3, 137.7, 137.4, 132.9, 129.7, 128.8, 127.7, 127.7, 126.9, 126.6, 35.7, 22.2, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O⁺ 307.2056; Found 307.2055.

S-28

138.5, 137.3, 137.2, 134.1, 129.6, 128.5, 128.3, 128.2, 126.9, 38.1, 34.0, 22.0, 21.4, 21.1, 14.0, 13.8.

(Z)-1-(3-fluorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4h): Prepared according to general procedure A from 3-fluoro-*N*-(3fluorobenzoyl)-*N*-phenylbenzamide 1h (33.7 mg, 0.100 mmol), 4-octyne 2a (73.4 μ L, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give 4h and 4h' in 25% yield and >20:1 d.r. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.36 (m, 1H), 7.28 – 7.23 (m, 1H), 7.13 (td, *J* = 8.0, 5.5 Hz, 1H), 7.05 – 6.93 (m, 6H), 2.61 – 2.53 (m, 4H), 1.54 – 1.42 (m, 2H), 1.42 – 1.30 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.3, 163.4, 160.9, 144.1, 141.3, 140.3, 140.2, 137.9, 129.4, 129.3, 128.8, 127.9, 127.3, 124.8, 119.0, 118.8, 115.7, 115.5, 35.7, 33.6, 22.2, 21.5, 14.3, 14.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.38. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₄FO⁺ 311.1806; Found 311.1811.

(Z)-1-(3-chlorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4i): Prepared according to general procedure A from 3-chloro-*N*-(3chlorobenzoyl)-*N*-phenylbenzamide 1e (37.0 mg, 0.100 mmol), 4-octyne

2a (73.4 µL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol), potassium carbonate

(31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4i** and **4i'** in 20% yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (t, *J* = 1.8 Hz, 1H), 7.37 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.14 (ddd, *J* = 7.8, 2.1, 1.0 Hz, 1H), 7.01 (t, *J* = 7.8 Hz, 1H), 6.98 – 6.87 (m, 5H), 2.54 – 2.45 (m, 4H), 1.46 – 1.35 (m, 3H), 1.33 – 1.22 (m, 3H), 0.90 (t, *J* = 7.3 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 200.2, 144.4, 141.3, 139.7, 137.8, 133.8, 131.8, 129.1, 129.1, 128.8, 127.9, 127.3, 127.0, 35.8, 33.5, 22.2, 21.5, 14.3, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₄ClO⁺ 327.1510; Found 327.1505.

(**Z**)-**3**-(**4**-methoxyphenyl)-**1**-phenyl-**2**-propylhex-**2**-ene-**1**-one (**4**j): Prepared according to general procedure A from *N*-benzoyl-*N*phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μL, 0.500 mmol), tris(4-methoxyphenyl)boroxine **3f** (40.2 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4j** and **4j'** in 50% yield and 3.2:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz,) δ 7.62 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.29 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.18 (dd, *J* = 8.0, 7.3 Hz, 2H), 6.93 (dd, *J* = 6.7, 2.1 Hz, 2H), 6.54 (dd, *J* = 6.7, 2.1 Hz, 2H), 3.64 (s, 3H), 2.60 – 2.50 (m, 4H), 1.53 – 1.43 (m, 3H), 1.40 – 1.32 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 3H)

S-30

3H). ¹³C NMR (101 MHz,) δ 201.8, 158.5, 142.7, 138.0, 137.7, 133.9, 132.0, 130.0, 129.1, 127.8, 113.2, 55.1, 35.6, 33.7, 22.2, 21.6, 14.4, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O₂⁺ 323.2006; Found 323.2010.

Ph Me 4k

(Z)-3-(4-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4k):
Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a (30.1 mg, 0.100 mmol), 4-octyne 2a (73.4 μL, 0.500

mmol), tris(4-methylphenyl)boroxine **3g** (35.4 mg, 0.100 mmol), potassium

carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4k** and **4k'** in 57% yield and 3.4:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H NMR** (400 MHz, Chloroformd) δ 7.64 (dd, J = 8.0, 1.3 Hz, 2H), 7.30 (tt, J = 8.0, 1.3 Hz, 1H), 7.19 (t, J = 8.0 Hz, 2H), 6.90 (d, J = 7.9 Hz, 2H), 6.81 (d, J = 7.9 Hz, 2H), 2.58 – 2.50 (m, 4H), 2.12 (s, 3H), 1.54 – 1.42 (m, 2H), 1.41 – 1.30 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 201.7, 143.0, 138.5, 137.9, 137.8, 136.6, 132.0, 129.2, 128.7, 128.4, 127.8, 35.6, 33.6, 22.2, 21.5, 21.0, 14.3, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O⁺ 307.2056; Found 307.2057.

(Z)-3-(4-chlorophenyl)-1-phenyl-2-propylhex-2-ene-1-one (4l): Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a
(30.1 mg, 0.100 mmol), 4-octyne 2a (73.4 μL, 0.500 mmol), tris(4-

41 chlorophenyl)boroxine **3h** (41.4 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4l** and **4l'** in 23% yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.65 (dt, *J* = 8.0, 1.6 Hz, 2H), 7.37 (tt, 7.4, 1.6 Hz, 1H), 7.25 (dd, *J* = 8.0, 7.4 Hz, 2H), 7.02 (dt, *J* = 8.5, 2.0 Hz, 2H), 6.97 (dt, *J* = 8.5, 2.0 Hz, 2H), 2.59 – 2.52 (m, 4H), 1.56 – 1.44 (m, 2H), 1.44 – 1.31 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 201.2, 141.4, 139.9, 138.9, 137.6, 132.8, 132.4, 130.1, 129.1, 128.0, 128.0, 35.5, 33.6, 22.1, 21.4, 14.3, 13.9. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₄ClO⁺ 327.1510; Found 327.1513.

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4m** and **4m'** in 20% yield and 4.0:1 d.r. The products were able to be

separated under the column chromatography conditions. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (dd, *J* = 7.8, 1.3 Hz, 2H), 7.30 (tt, *J* = 6.8, 1.3 Hz, 1H), 7.19 (dd, *J* = 7.8, 6.8 Hz, 2H), 6.92 (t, *J* = 7.9 Hz, 1H), 6.62 (dt, *J* = 7.9, 1.0 Hz, 1H), 6.55 (dd, *J* = 2.6, 1.0 Hz, 1H), 6.50 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 3.62 (s, 3H), 2.60 – 2.51 (m, 4H), 1.54 – 1.43 (m, 2H), 1.42 – 1.32 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 201.5, 158.9, 142.8, 142.8, 138.2, 137.8, 132.1, 129.1, 128.8, 127.8, 121.4, 114.3, 113.0, 55.1, 35.5, 33.6, 22.2, 21.6, 14.4, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O₂⁺ 323.2006; Found 323.2011.

(**Z**)-**3**-(**3**-methylphenyl)-**1**-phenyl-**2**-propylhex-**2**-ene-**1**-one (**4**n): Prepared according to general procedure A from *N*-benzoyl-*N*-

phenylbenzamide **1a** (30.1 mg, 0.100 mmol), 4-octyne **2a** (73.4 μ L, 0.500 mmol), tris(3-methylphenyl)boroxine **3j** (35.4 mg, 0.100 mmol), potassium

carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4n** and **4n'** in 56% yield and 5.0:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H** NMR (400 MHz, Chloroformd) δ 7.62 (dd, J = 8.2, 1.2 Hz, 2H), 7.30 (tt, J = 7.2, 1.2 Hz, 1H), 7.19 (dd, J = 8.2, 7.2, Hz, 2H), 6.95 – 6.88 (m, 1H), 6.87 – 6.75 (m, 3H), 2.64 – 2.54 (m, 4H), 2.14 (s, 3H), 1.58 – 1.46 (m, 2H), 1.44 – 1.34 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.7, 143.5, 144.4, 138.1, 138.0, 137.1, 131.9, 129.7, 129.0, 127.7, 127.7, 127.6, 125.8, 35.6, 33.6, 22.2, 21.6, 21.1, 14.4, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O⁺ 307.2056; Found 307.2055.

 $\begin{array}{l} \textbf{(E)-3-(3-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4n'): ^{1}H} \\ \textbf{NMR} (400 \text{ MHz, Chloroform-}d) \delta 8.01 (dd, J = 7.8, 1.5 \text{ Hz, 2H}), 7.57 (tt, J = 7.3, 1.5 \text{ Hz, 1H}), 7.48 (dd, J = 7.8, 7.3 \text{ Hz, 2H}), 7.25 (m, 1H), 7.09 (d, J = 7.7 \text{ Hz, 1H}), 7.03 - 7.00 (m, 2H), 2.38 (s, 3H), 2.16 - 2.07 (m, 4H), 1.31 \end{array}$

- 1.21 (m, 2H), 1.20 - 1.11 (m, 2H), 0.71 (t, 3H), 0.63 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.1, 141.5, 140.7, 137.8, 137.2, 137.0, 133.2, 129.4, 128.9, 128.7, 128.0, 127.6, 125.4, 38.2, 34.0, 22.0, 21.6, 21.1, 14.0, 13.9.

(Z)-3-(2-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (40): Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a (30.1 mg, 0.100 mmol), 4-octyne 2a (73.4 μ L, 0.500 mmol), 2-methylphenylboronic acid (68.0 mg, 0.500 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give 40 and 40' in 43% yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.32 (tt, *J* = 6.7, 1.4 Hz, 1H), 7.22 (dd, *J* = 8.0, 6.7 Hz, 2H), 6.93 – 6.85 (m, 2H), 6.83 – 6.75 (m, 2H), 2.64 – 2.46 (m, 3H), 2.32 – 2.23 (m, 1H), 2.18 (s, 3H), 1.60 – 1.47 (m, 2H), 1.47 – 1.30 (m, 2H), 1.01 (t, *J* = 7.3 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 201.0, 142.5, 140.4, 139.0, 138.4, 135.5, 132.0, 129.8, 129.8, 128.5, 127.7, 127.0, 124.7, 36.7, 32.7, 22.2, 21.3, 19.9, 14.4, 14.3. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₇O⁺ 307.2056; Found 307.2060.

(Z)-1-(4-methoxyphenyl)-3-(4-methylphenyl)-2-propylhex-2-ene-1one (4p): Prepared according to general procedure A from 4-methoxy-*N*-(4-methoxybenzoyl)-*N*-phenylbenzamide 1b (36.1 mg, 0.100 mmol),
4-octyne 2a (73.4 μL, 0.500 mmol), tris(4-methylphenyl)boroxine 3g
(35.4 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol),

aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4p** and **4p'** in 28% yield and 4.3:1 d.r. The products were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (dt, *J* = 9.7, 2.7 Hz, 2H), 6.87 (d, *J* = 8.1 Hz, 2H), 6.77 (d, *J* = 8.1 Hz, 2H), 6.63 (dt, *J* = 9.7, 2.7 Hz, 2H), 3.71 (s, 3H), 2.51 – 2.39 (m, 4H), 2.08 (s, 3H), 1.44 – 1.34 (m, 2H), 1.33 – 1.24 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.83 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.3, 162.8, 141.5, 138.6, 137.8, 136.4, 131.6, 130.7, 128.6, 128.5, 113.1, 55.3, 35.5, 33.8, 22.1, 21.6, 21.0, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₉O₂⁺ 337.2162; Found 337.2169.

(Z)-1,3-bis(4-methylphenyl)-2-propylhex-2-ene-1-one (4q): Prepared according to general procedure A from 4-methyl-*N*-(4-methylbenzoyl)-*N*-phenylbenzamide 1c (32.9 mg, 0.100 mmol), 4-octyne 2a (73.4 μL, 0.500 mmol), tris(4-methylphenyl)boroxine 3g (35.4 mg, 0.100 mmol),

potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide

(2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4q** and **4q'** in 55% yield and 3.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.0 Hz, 2H), 2.57 – 2.47 (m, 4H), 2.28 (s, 3H), 2.14 (s, 3H), 1.49 – 1.39 (m, 2H), 1.39 – 1.30 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.2, 142.8, 141.9, 138.5, 137.9, 136.5, 135.1, 129.4, 128.6, 128.5, 35.6, 33.7, 22.1, 21.6, 21.5, 21.0, 14.3, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₉O⁺ 321.2213; Found 321.2214.

(Z)-1-(4-fluorophenyl)-3-(4-methylphenyl)-2-propylhex-2-ene-1-one
(4r): Prepared according to general procedure A from 4-fluoro-*N*-(4-fluorobenzoyl)-*N*-phenylbenzamide 1d (33.7 mg, 0.100 mmol), 4-octyne
2a (73.4 μL, 0.500 mmol), tris(4-methylphenyl)boroxine 3g (35.4 mg,

0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-

butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0
hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4r** and **4r'** in 49% yield and 7.5:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.53 (m, 2H), 6.84 – 6.72 (m, 6H), 2.51 – 2.41 (m, 4H), 2.06 (s, 3H), 1.44 – 1.33 (m, 2H), 1.32 – 1.21 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.2, 166.2, 163.7, 143.2, 138.3, 137.5, 136.9, 134.3, 131.7, 131.6, 128.6, 128.5, 114.9, 114.7, 35.6, 33.6, 22.2, 21.6, 21.0, 14.3, 14.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -75.70. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FO⁺ 325.1962; Found 325.1964.

(**Z**)-**1**-(**4**-chlorophenyl)-**3**-(**4**-methylphenyl)-**2**-propylhex-**2**-ene-**1**-one (**4**s): Prepared according to general procedure A from 4-chloro-*N*-(4chlorobenzoyl)-*N*-phenylbenzamide **1e** (37.0 mg, 0.100 mmol, 1.00 equiv), 4-octyne **2a** (73.4 μL, 0.500 mmol, 5.00 equiv), tris(4-

methylphenyl)boroxine **3g** (35.4 mg, 0.100 mmol 1.00 equiv), potassium

carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4s** and **4s'** in 56% yield and 5.1:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 9.0, 2.4 Hz, 2H), 7.07 (dd, *J* = 9.0, 2.4 Hz, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 8.1 Hz, 2H), 2.51 – 2.40 (m, 4H), 2.07 (s, 3H), 1.43 – 1.32 (m, 2H), 1.31 – 1.22 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.5,

143.5, 138.3, 138.2, 137.4, 137.0, 136.3, 130.5, 128.7, 128.6, 128.1, 35.6, 33.6, 22.2, 21.5, 21.0, 14.3, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₆ClO⁺ 341.1667; Found 341.1668.

Prepared according to general procedure A from 4-methoxy-*N*-(4-methoxybenzoyl)-*N*-phenylbenzamide **1b** (36.1 mg, 0.100 mmol), 4octyne **2a** (73.4 μ L, 0.500 mmol), tris(4-methoxyphenyl)boroxine **3f** (40.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol),

(Z)-1,3-bis(4-methoxyphenyl)-2-propylhex-2-ene-1-one (4t):

aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4t** and **4t'** in 37% yield and 2.4:1 d.r. The products were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 9.6, 2.8 Hz, 2H), 6.90 (dd, *J* = 9.6, 2.8 Hz, 2H), 6.62 (dd, *J* = 9.6, 2.8 Hz, 2H), 6.60 (dd, *J* = 9.6, 2.8 Hz, 2H), 3.70 (s, 3H), 3.58 (s, 3H), 2.50 – 2.39 (m, 4H), 1.43 – 1.33 (m, 2H), 1.33 – 1.23 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.83 (d, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.4, 162.8, 158.4, 141.2, 137.6, 134.0, 131.6, 130.7, 129.8, 113.2, 113.1, 55.3, 55.0, 35.5, 33.8, 22.2, 21.6, 14.4, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₉O₃⁺ 353.2111; Found 353.2112.

(Z)-3-(4-methoxyphenyl)-1-(4-methylphenyl)-2-propylhex-2-ene-1one (4u): Prepared according to general procedure A from 4-methyl-*N*-(4-methylbenzoyl)-*N*-phenylbenzamide 1c (32.9 mg, 0.100 mmol), 4octyne 2a (73.4 μL, 0.500 mmol), tris(4-methoxyphenyl)boroxine 3f

(40.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol),

aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4u** and **4u'** in 46% yield and 2.8:1 d.r. The products were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.89 (dd, *J* = 8.5, 3.0 Hz, 2H), 6.49 (dd, *J* = 8.5, 3.0 Hz, 2H), 3.58 (s, 3H), 2.49 – 2.41 (m, 4H), 2.20 (s, 3H), 1.43 – 1.33 (m, 2H), 1.33 – 1.23 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.4, 158.4, 142.8, 141.7, 137.7, 135.2, 133.9, 129.9, 129.4, 128.6, 113.2, 55.1, 35.6, 33.8, 22.2, 21.6, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₉O₂⁺ 337.2162; Found 337.2167.

(Z)-1-(4-fluorophenyl)-3-(4-methoxyphenyl)-2-propylhex-2-ene-1-one
(4v): Prepared according to general procedure A from 4-fluoro-*N*-(4-fluorobenzoyl)-*N*-phenylbenzamide 1d (33.7 mg, 0.100 mmol), 4-octyne
2a (73.4 μL, 0.500 mmol), tris(4-methoxyphenyl)boroxine 3f (40.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-

butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0

hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4v** and **4v'** in 57% yield and 7.1:1 d.r. The products were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.54 (m, 2H), 6.88 – 6.83 (m, 2H), 6.80 – 6.74 (m, 2H), 6.51 – 6.46 (m, 2H), 3.58 (s, 3H), 2.51 – 2.43 (m, 4H), 1.45 – 1.34 (m, 2H), 1.32 – 1.22 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.3, 166.2, 163.7, 158.7, 142.9, 137.4, 134.4, 133.7, 131.7, 131.6, 130.0, 115.0, 114.7, 113.3, 55.1, 35.6, 33.7, 22.2, 21.6, 14.4, 14.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.89. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₆FO₂⁺ 341.1911; Found 341.1917.

(Z)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)-2-propylhex-2-ene-1one (4w): Prepared according to general procedure A from 4-chloro-*N*-(4-chlorobenzoyl)-*N*-phenylbenzamide 1e (37.0 mg, 0.100 mmol), 4octyne 2a (73.4 μL, 0.500 mmol), tris(4-methoxyphenyl)boroxine 3f (40.2 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol),

aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4w** and **4w'** in 55% yield and 4.3:1 d.r. The products were able to be separated under the column chromatography conditions. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 8.7, 2.3 Hz, 2H), 7.07 (dd, *J* = 8.7, 2.3 Hz, 2H), 6.85 (dd, *J* = 8.8, 3.0 Hz, 2H), 6.49 (dd, *J* = 8.8, 3.0 Hz, 2H), 3.59 (s, 3H), 2.51 – 2.42 (m, 4H), 1.44 – 1.33 (m, 2H), 1.32 – 1.22 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.6, 158.7, 143.3, 138.2, 137.3, 136.4, 133.6,

130.4, 130.0, 128.1, 113.3, 55.1, 35.6, 33.7, 22.2, 21.6, 14.4, 14.0. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₆ClO₂⁺ 357.1616; Found 357.1618.

(Z)-2-ethyl-1,3-diphenylpent-2-ene-1-one (4x): Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a (30.1 mg, 0.100 mmol), 3-hexyne 2b (56.8 µL, 0.500 mmol), triphenylboroxine 3e (31.2 mg, 0.100 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give 4x and 4x' in 35% yield and 4.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.31 (tt, *J* = 7.4, 1.5 Hz, 1H), 7.20 (dd, *J* = 8.0, 7.4 Hz, 2H), 7.05 – 6.96 (m, 5H), 2.67 – 2.59 (m, 4H), 1.13 (t, *J* = 7.6 Hz, 3H), 1.02 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.7, 144.0, 141.2, 138.6, 138.0, 132.1, 129.1, 128.9, 127.8, 127.7, 127.0, 26.8, 24.5, 13.4, 13.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₁₉O⁺ 265.1587; Found 265.1586.

2-methyl-1,3,3-triphenylprop-2-ene-1-one (4y): Prepared according to general procedure A from *N*-benzoyl-*N*-phenylbenzamide 1a (30.1 mg, 0.100 Ph Ph mmol), 1-phenyl-1-propyne 2c (62.6 μL, 0.500 mmol), triphenylboroxine 3e (31.1 mg, 0.100 mmol), potassium carbonate (31.1 mg, 0.225 mmol), aluminum tert-butoxide (2.5 mg, 0.010 mmol), and 1:1 dioxane/toluene (0.200 mL, 0.500 M) at 75 °C in an oil bath for 18 h. The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give **4y** in 27% yield as a single regioisomer. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.77 (m, 2H), 7.43 – 7.22 (m, 8H), 7.03 – 6.97 (m, 5H), 2.15 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 201.3, 143.8, 141.3, 140.9, 136.8, 134.8, 132.6, 129.9, 129.9, 129.2, 128.3, 128.1, 127.8, 127.6, 127.5, 19.9. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₉O⁺ 299.1430; Found 299.1431.

References:

- Kadam, A. A.; Metz, T. L.; Qian, Y.; Stanley, L. M. Ni-Catalyzed Three-Component Alkene Carboacylation Initiated by Amide C–N Bond Activation. *ACS Catal.* 2019, *9*, 5651-5656.
- Crampton, R.; Woodward, S.; Fox, M. Bis-Sulfamyl Imines: Potent Substrates for Asymmetric Additions of Arylboroxines under Rhodium Catalysis. *Adv. Synth. Catal.* 2011, 353, 903-906.
- Antoft-Finch, A.; Blackburn, T.; Snieckus, V. N,N-Diethyl O-Carbamate: Directed Metalation Group and Orthogonal Suzuki–Miyaura Cross-Coupling Partner. J. Am. Chem. Soc. 2009, 131, 17750-17752.
- So, C. M.; Kume, S.; Hayashi, T. Rhodium-Catalyzed Asymmetric Hydroarylation of 3-Pyrrolines Giving 3-Arylpyrrolidines: Protonation as a Key Step. *J. Am. Chem. Soc.* 2013, *135*, 10990-10993.
- Huang, Y.; Hayashi, T. Asymmetric Synthesis of Triarylmethanes by Rhodium-Catalyzed Enantioselective Arylation of Diarylmethylamines with Arylboroxines. *J. Am. Chem. Soc.* 2015, *137*, 7556-7559.
- Moon, S.; Kato, M.; Nishii, Y.; Miura, M. Synthesis of Benzo[b]thiophenes through Rhodium-Catalyzed Three-Component Reaction using Elemental Sulfur. *Adv. Synth. Catal.* 2020, *362*, 1669.

S-52

