Supporting Information

Ni-Catalyzed Intermolecular Carboacylation of Internal Alkynes via Amide C-N Bond Activation

Mason T. Koeritz, Russell W. Burgett, Abhishek A. Kadam, Levi M. Stanley
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
E-mail: 1stanley@iastate.edu

Table of Contents
General Experimental Details S-2
Materials S-3
GC General Method 1 S-3
Table S1. Ligand Screen for Ni-Catalyzed Alkyne Carboacylation S-4
Procedure for Ligand Screen for Ni-Catalyzed Alkyne Carboacylation S-4
Table S2. Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid S-5
Procedure for Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid S-5
Design of Experiment (DoE) Factor Screen S-6
Procedure for Design of Experiment Factor Screen S-7
Table S3. Experiments and Data for Design of Experiment Factor Screen S-8
Table S4. Ligand Screen for NiCl_{2}-glyme-Catalyzed Alkyne Carboacylation S-10
Procedure for Ligand Screen for NiCl_{2}-glyme-Catalyzed Alkyne Carboacylation S-10
Table S5. Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation S-11
Procedure for Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation S-11
Table S6. Product Inhibition in Ni-Catalyzed Alkyne Carboacylation S-12
Procedure for Product Inhibition in Ni-Catalyzed Alkyne Carboacylation S-12
Table S7. Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation S-13
Procedure for Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation S-13
Table S8. Screen of $\mathrm{Al}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ Loading in Ni-Catalyzed Alkyne Carboacylation S-14
Procedure for Screen of $\mathrm{Al}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ Loading in Ni-Catalyzed Alkyne Carboacylation S-14
Table S9. Solvent Mixture Design of Experiment (DoE) S-15
Procedure for Solvent Mixture Design of Experiment (DoE) S-16
Verification of Mixture DoE Results S-16
Table S10. Optimization Design of Experiment (DoE) S-16
Procedure for Optimization Design of Experiment S-18
Verification of Optimization DoE Results S-18
Figure S1. Surface Plots of Base Equivalents and $\mathrm{Al}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3} \mathrm{~mol} \%$ with Percent Yield and d.r. from Optimization Design of Experiment S-20
General Procedure A: Synthesis of Carboacylation Products 4a-4y S-21
Procedure for Ni-catalyzed Alkyne Carboacylation - 1 mmol Scale S-22
Characterization of tris(3-methylphenyl)boroxine 3j S-23
Characterization of Alkyne Carboacylation Products 4a-4y S-23
References S-43
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ Spectra for Boroxine $\mathbf{3 j}$ and Alkyne Carboacylation Products $\mathbf{4 a - 4 y}$ S-44

General Experimental Details

All air-sensitive procedures were conducted under inert atmosphere in a nitrogen-filled dry box or by standard Schlenk techniques. All reactions were performed under nitrogen unless otherwise stated. Benzene, toluene, dichloromethane (DCM), and tetrahydrofuran (THF) were degassed by purging with argon for 45 minutes and dried with a solvent purification system by passing through a one-meter column of activated alumina. Anhydrous 1,4-dioxane was purchased from Sigma-Aldrich and used as received. Flash column chromatography was performed on SiliFlash ${ }^{\circledR}$ P60 silica gel $\left(40-63 \mu \mathrm{~m}, 60 \AA\right.$) or using a Teledyne Isco Combiflash ${ }^{\circledR}$ Rf system with RediSep GoldTM columns using hexane/ethyl acetate. Reaction products were visualized on TLC under UV light. Prep-HPLC was performed on a Waters HPLC System. Detection was acquired on a 2998 Photodiode Array Detector and a SunFire C18 column $5 \mu \mathrm{~m}$. HPLC solvents contained water with 0.1% TFA and acetonitrile with 0.1% TFA. Gas

Chromatography was performed on a Hewlett Packard 6890 GC System with a J\&W DB-5ms GC Column, 30 m length, 0.25 mm diameter, $0.25 \mu \mathrm{~m}$ film.

HRMS (ESI) analysis was performed at the Iowa State University Chemical Instrumentation Facility on an Agilent 6540 QTOF spectrometer. Elemental analysis was performed at the Iowa State University Chemical Instrumentation Facility on the Perkin Elmer 2100 Series II CHN/S Analyzer. NMR spectra were acquired on Varian MR-400, Bruker Avance NEO 400, and Bruker Avance III 600 spectrometers at the Iowa State University Chemical Instrumentation Facility. Chemical shifts are reported in ppm relative to a residual solvent peak $\left(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.16 ppm for $\left.{ }^{13} \mathrm{C}\right) .{ }^{19} \mathrm{~F}$ NMR shifts are reported based on indirect reference to CDCl_{3}. Coupling constants are reported in hertz.

Materials

Sodium tetraphenylborate, 4-octyne, 3-hexyne, 1-phenyl-1-propyne, and 4chlorophenylboronic acid were purchased from Sigma Aldrich. Triphenylborane and aluminum tert-butoxide were purchased from Alfa Aesar. Phenylboronic acid pinacol ester, 4methoxyphenylboronic acid, and 3-methoxyphenylboronic acid were purchased from AK Scientific. Potassium carbonate was purchased from Fischer Scientific. $\mathrm{Ni}(\operatorname{cod})_{2}$ and NiCl_{2} glyme were purchased from Strem Chemical. 4-methylphenylboronic acid and 2-methylphenylboronic acid were purchased from Combi-Blocks. 3-methylphenylboronic acid was purchased from Ark Pharm. Amides $\mathbf{1 a - 1 i}$ were synthesized according to literature procedure. ${ }^{1}$ Triarylboroxines $\mathbf{3 e}$ $\mathbf{3 i}$, and $\mathbf{3 k}$ were prepared according to literature procedures. ${ }^{2,3}$

GC General Method 1

Oven temperature: $150^{\circ} \mathrm{C}$. Inlet temperature: $250^{\circ} \mathrm{C}$. Front Detector temperature: $250{ }^{\circ} \mathrm{C}$.

Method: $150{ }^{\circ} \mathrm{C}$ for 1 min . Ramp at $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $250^{\circ} \mathrm{C}$. Hold for 8 min .

Table S1. Ligand Screen for Ni-Catalyzed Alkyne Carboacylation ${ }^{\text {a }}$

Procedure for Ligand Screen for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(2.8 \mathrm{mg}, 0.010$ mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500$ mmol , ligand (0.010 mmol), triphenylborane 3b(48.4 mg, 0.200 mmol), and benzene (1.00 mL , 0.100 M). The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane $(24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol})$ was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1 .

Table S2. Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid ${ }^{\text {a }}$

Procedure for Base Screen for Ni-Catalyzed Alkyne Carboacylation with Phenylboronic Acid

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(2.8 \mathrm{mg}, 0.010$ mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500$ mmol, BrettPhos ($5.4 \mathrm{mg}, 0.010 \mathrm{mmol}$), phenylboronic acid 3c ($24.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), base $(0.200 \mathrm{mmol})$, and an appropriate solvent $(1.00 \mathrm{~mL}, 0.100 \mathrm{M})$. The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane (24.4 $\mu \mathrm{L}, 0.100 \mathrm{mmol}$) was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Design of Experiment (DoE) Factor Screen (Table S3) ${ }^{\text {a }}$

-Responses: Percent Yield, Conversion, Diastereomeric Ratio, and Suzuki Product
-Factors: Ligand Identity, Ligand mol \%, Solvent, Concentration, Base Identity, Nucleophile Identity, Nucleophile Equivalents, Temperature, Water Equivalents
-JMP Pro 14^{\circledR} software was used to generate and analyze the 42 reactions of the D-optimal design.

Procedure for Design of Experiment Factor Screen

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(2.8 \mathrm{mg}, 0.010$ mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500$ mmol), ligand ($0.0050-0.015 \mathrm{mmol}$), boron nucleophile $\mathbf{3}$ ($0.100-0.300 \mathrm{mmol}$), base (0.200 $\mathrm{mmol})$, water $(0-0.200 \mathrm{mmol})$ and solvent $(0.200-1.00 \mathrm{~mL}, 0.100-0.500 \mathrm{M})$. The resulting solution was stirred at an appropriate temperature in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane ($24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added as internal standard. A 100 $\mu \mathrm{L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S3. Experiments and Data for Design of Experiment Factor Screen

Entry	Ligand Identity	$\begin{aligned} & \text { Ligand } \\ & \text { mol } \% \end{aligned}$	Solvent	Concentration (M)	Base Identity	Nucleophile Identity (Equiv)	Water Equiv	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Yield } \\ (\%)^{b} \end{array} \end{aligned}$	$\begin{gathered} \text { d.r. } \\ (\mathrm{Z} / \mathrm{E})^{b} \end{gathered}$	Conversion $(\%)^{\mathrm{b}}$	$\begin{aligned} & \text { Suzuki } \\ & (\%)^{b} \end{aligned}$
1	1 Pr	10	CPME	0.5	KF	$\mathrm{PhB}(\mathrm{OH})_{2}(3)$	2	95	3	3.9:1	39	2
2	BrettPhos	10	Toluene	0.5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{BPh}_{3}(2)$	0	60	47	1.9:1	82	2
3	BrettPhos	5	Toluene	0.5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{PhB}(\mathrm{OH})_{2}(1)$	1	95	13	2.2:1	99	0
4	1 Pr	5	CF_{3}-Toluene	0.25	CsF	$\mathrm{PhB}(\mathrm{OH})_{2}(1)$	1	95	6	5.0:1	95	1
5	BrettPhos	10	CPME	0.5	CsF	$\mathrm{PhB}(\mathrm{OH})_{2}(2)$	1	60	16	1.7:1	74	1
6	BrettPhos	10	Benzene	0.1	CsF	PhBpin (3)	2	95	0	0	63	0
7	1 Pr	15	CPME	0.5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	PhBpin (3)	0	80	1	0	99	10
8	BrettPhos	15	THF	0.5	$\mathrm{Na}^{\text {t }}$ BuO	$\mathrm{PhBF}_{3} \mathrm{~K}$ (3)	2	95	0	0	99	0
9	BrettPhos	5	Dioxane	0.1	KF	$\mathrm{PhB}(\mathrm{OH})_{2}(2)$	0	80	4	3.0:1	40	1
10	BrettPhos	10	CF_{3}-Toluene	0.5	LitBuO	$\mathrm{PhBF}_{3} \mathrm{~K}$ (3)	0	95	0	0	99	1
11	BrettPhos	10	Toluene	0.25	$\mathrm{K}_{3} \mathrm{PO}_{4}$	PhBpin (3)	1	60	0	0	68	0
12	BrettPhos	15	CF_{3}-Toluene	0.1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{PhB}(\mathrm{OH})_{2}(3)$	2	60	2	3.6:1	27	0
13	BrettPhos	5	Benzene	0.1	$\mathrm{Na}^{\text {t }} \mathrm{BuO}$	PhBpin (3)	0	60	0	0	98	4
14	1 Pr	5	Benzene	0.5	LitBuO	$\mathrm{BPh}_{3}(3)$	1	80	8	0.6:1	99	5
15	IPr	5	THF	0.1	$\mathrm{K}_{3} \mathrm{PO}_{4}$	PhBpin (2)	2	95	1	0	99	15
16	1 Pr	10	Benzene	0.25	KF	$\mathrm{PhBF}_{3} \mathrm{~K}$ (1)	2	80	1	0	37	1
17	BrettPhos	5	CF_{3}-Toluene	0.25	KF	$\mathrm{PhBF}_{3} \mathrm{~K}$ (3)	1	60	0	0	26	0
18	BrettPhos	15	Dioxane	0.1	LitBuO	PhBpin (1)	1	95	1	0	99	6
19	1 Pr	5	Toluene	0.25	LitBuO	PhBpin (2)	2	60	0	0	99	0
20	BrettPhos	5	CF_{3}-Toluene	0.5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	$\mathrm{BPh}_{3}(1)$	2	80	18	2.6:1	99	1
21	1 Pr	15	Toluene	0.1	CsF	$\mathrm{PhBF}_{3} \mathrm{~K}$ (3)	0	80	5	1.5:1	52	0
22	IPr	10	Toluene	0.1	$\mathrm{Na}^{\text {t }}$ BuO	$\mathrm{PhB}(\mathrm{OH})_{2}(1)$	2	80	0	0	99	0
23	1 Pr	15	Dioxane	0.25	$\mathrm{K}_{3} \mathrm{PO}_{4}$	$\mathrm{PhB}(\mathrm{OH})_{2}(3)$	0	95	6	2.0:1	71	1
24	IPr	5	CPME	0.25	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhBpin (1)	0	95	2	1.0:1	96	3
25	1 Pr	10	Dioxane	0.25	$\mathrm{Na}^{\text {tBuO }}$	$\mathrm{BPh}_{3}(3)$	1	60	2	1.0:1	99	15
26	BrettPhos	10	CPME	0.1	$\mathrm{K}_{3} \mathrm{PO}_{4}$	$\mathrm{PhBF}_{3} \mathrm{~K}$ (2)	1	80	0	0	92	0
27	1 Pr	10	THF	0.1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{PhBF}_{3} \mathrm{~K}$ (1)	1	60	0	0	69	0

Entry	Ligand Identity	Ligand mol \%	Solvent	Concentration (M)	Base Identity	Nucleophile Identity (Equiv)	Water Equiv	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Yield } \\ & (\%)^{b} \end{aligned}$	$\begin{aligned} & \text { d.r. } \\ & (\mathrm{Z} / \mathrm{E})^{\mathrm{b}} \end{aligned}$	Conversion $(\%)^{\mathrm{b}}$	Suzuki $(\%)^{b}$
28	BrettPhos	5	Dioxane	0.25	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{BPh}_{3}(3)$	2	80	26	3.3:1	98	10
29	BrettPhos	10	Dioxane	0.5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	PhBpin (1)	2	80	0	0	55	0
30	1 Pr	15	Benzene	0.25	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{PhBF}_{3} \mathrm{~K}$ (2)	1	95	1	0	61	2
31	BrettPhos	5	CPME	0.25	$\mathrm{Na}^{\text {t }} \mathrm{BuO}$	$\mathrm{PhBF}_{3} \mathrm{~K}$ (1)	0	95	0	0	65	0
32	1 Pr	15	THF	0.5	KF	PhBpin (1)	0	60	1	0	40	0
33	IPr	5	THF	0.1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{PhB}(\mathrm{OH})_{2}(3)$	1	80	6	3.2:1	36	0
34	BrettPhos	10	THF	0.25	$\mathrm{LitBuO}^{\text {l }}$	$\mathrm{PhB}(\mathrm{OH})_{2}(2)$	0	80	0	0	99	0
35	BrettPhos	15	Benzene	0.25	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{PhB}(\mathrm{OH})_{2}(2)$	2	60	12	3.0:1	80	1
36	1 Pr	15	CPME	0.1	LitBuO	$\mathrm{BPh}_{3}(1)$	2	60	0	0	99	1
37	1 Pr	15	CF_{3}-Toluene	0.5	$\mathrm{Na}^{\text {t }} \mathrm{BuO}$	PhBpin (2)	1	80	0	0	99	0
38	BrettPhos	15	Toluene	0.1	KF	$\mathrm{BPh}_{3}(2)$	1	95	44	1.6:1	96	8
39	1 Pr	15	Benzene	0.5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	$\mathrm{PhB}(\mathrm{OH})_{2}(1)$	0	60	1	1.9:1	33	1
40	IPr	5	Dioxane	0.5	CsF	$\mathrm{PhBF}_{3} \mathrm{~K}$ (2)	2	60	1	0	51	0
41	IPr	10	CF_{3}-Toluene	0.1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{BPh}_{3}(2)$	0	95	19	1.4:1	90	3
42	BrettPhos	15	THF	0.25	CsF	$\mathrm{BPh}_{3}(1)$	0	80	10	2.3:1	84	0

${ }^{\text {a }}$ Reaction conditions: N -benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), base (0.200 mmol), $\mathrm{Ni}(\mathrm{cod})_{2}(0.010$ mmol), Ligand (0.010 mmol), $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard.

Table S4. Ligand Screen for $\mathbf{N i C l}_{2}$ glyme-Catalyzed Alkyne Carboacylation ${ }^{\text {a }}$

${ }^{\text {a }}$ Reaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid $\mathbf{3 c}(0.200 \mathrm{mmol})$, potassium carbonate $(0.200 \mathrm{mmol}), \mathrm{NiCl}_{2}$ glyme $(0.010$ $\mathrm{mmol})$, ligand (0.010 mmol), Dioxane $(1 \mathrm{~mL})$ at $95^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard. ${ }^{\mathrm{c}}$ d.r. not determined.

Procedure for Ligand Screen for $\mathbf{N i C l}_{2}$-glyme-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{NiCl}_{2} \cdot$ glyme (2.2 mg , 0.010 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}$ ($73.4 \mu \mathrm{~L}$, 0.500 mmol , ligand (0.010 mmol), phenylboronic acid $\mathbf{3 c}(24.4 \mathrm{mg}, 0.200 \mathrm{mmol})$, potassium carbonate ($27.6 \mathrm{mg}, 0.200 \mathrm{mmol}$), and dioxane ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$). The resulting solution was stirred at $95{ }^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and
tridecane ($24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1 .

Table S5. Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation ${ }^{\text {a }}$

entry	NiCl_{2} glyme mol \%	yield (\%) $^{\mathrm{b}}$	d.r. $(\mathrm{Z} / \mathrm{E})^{\mathrm{b}}$
1	5	28	$2.4: 1$
2	10	20	$1.9: 1$
3	20	46	$1.5: 1$
4	50	29	$2.2: 1$
5	100	28	$1.8: 1$

${ }^{\text {a }}$ Reaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid 3c (0.200 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at $95^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{\text {b }}$ Determined by GC with tridecane as internal standard.

Procedure for Screen of Catalyst Loading for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl_{2} glyme (0.00500.100 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}$, 0.500 mmol , phenylboronic acid $\mathbf{3 c}(24.4 \mathrm{mg}, 0.200 \mathrm{mmol})$, potassium carbonate (27.6 mg , $0.200 \mathrm{mmol})$, and dioxane ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$). The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane ($24.4 \mu \mathrm{~L}, 0.100$ mmol) was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2
cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1 .

Table S6. Product Inhibition in Ni-Catalyzed Alkyne Carboacylation ${ }^{\text {a }}$

entry	3a Added $(\mathrm{mol} \%)$	${\text { yield }(\%)^{\mathbf{b}}}^{\text {d.r. }(\mathrm{Z} / \mathrm{E})^{\mathbf{b}}}$	
1	0	30	$2.3: 1$
2	10	20	$2.0: 1$
3	20	14	$2.9: 1$
4	30	13	$2.5: 1$

${ }^{\text {a }}$ Reaction conditions: N -benzoyl-N-phenylbenzamide $\mathbf{1 a}$ (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid $\mathbf{3 c}$ (0.300 mmol), $\mathrm{NiCl}_{2} \cdot$ glyme (0.020 mmol), potassium carbonate (0.200 mmol), Dioxane (1 mL) at $95^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard.

Procedure for Product Inhibition in Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl_{2}.glyme (0.020 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500$ mmol, phenylboronic acid 3c ($36.6 \mathrm{mg}, 0.300 \mathrm{mmol}$), potassium carbonate $(27.6 \mathrm{mg}, 0.200$ $\mathrm{mmol})$, product $4 \mathbf{a}(0-0.030 \mathrm{mmol})$ and dioxane $(1.00 \mathrm{~mL}, 0.100 \mathrm{M})$. The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane ($24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S7. Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation ${ }^{\text {a }}$

entry	Lewis acid	yield (\%)	d.r. $(\mathrm{Z} / \mathrm{E})^{\mathrm{b}}$
1	None	61	$0.67: 1$
2	$\mathrm{Al}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}$	65	$1.8: 1$
3	AlCl_{3}	<5	n.d. ${ }^{\text {c }}$
4	$\mathrm{Al}(\mathrm{OH})\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$	40	$1.2: 1$
5	BPh	39	$1.5: 1$
6	$\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{iPr}_{3}\right)_{4}$	47	$1.6: 1$
7	MgI_{2}	6	$3.7: 1$

${ }^{\text {a }}$ Reaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid 3c (0.500 mmol) , $\mathrm{NiCl}_{2} \cdot$ glyme $(0.020 \mathrm{mmol})$, potassium carbonate (0.200 mmol), Dioxane (1 mL) at $95^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard. ${ }^{\text {c }}$.r. not determined.

Procedure for Lewis Acid Screen for Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{NiCl}_{2} \cdot$ glyme (4.4 mg , 0.020 mmol), N-benzoyl- N-phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a ($73.4 \mu \mathrm{~L}$, 0.500 mmol , phenylboronic acid $\mathbf{3 c}(61.0 \mathrm{mg}, 0.500 \mathrm{mmol})$, potassium carbonate (27.6 mg , $0.200 \mathrm{mmol})$, Lewis acid (0.020 mmol), and dioxane ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$). The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and tridecane ($24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed
and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

${ }^{\text {a }}$ Reaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid $3 \mathbf{c}(0.500 \mathrm{mmol}), \mathrm{NiCl}_{2} \cdot$ glyme $(0.020 \mathrm{mmol})$, potassium carbonate $(0.200$ $\mathrm{mmol})$, Dioxane (1 mL) at $95^{\circ} \mathrm{C}$ for $6 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard.

Procedure for Screen of $\mathrm{Al}\left(\mathrm{O}^{\mathbf{t}} \mathbf{B u}\right)_{3}$ Loading in Ni-Catalyzed Alkyne Carboacylation

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{NiCl}_{2} \cdot$ glyme (4.4 mg , 0.020 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}$ ($73.4 \mu \mathrm{~L}$, 0.500 mmol , phenylboronic acid $\mathbf{3 c}(61.0 \mathrm{mg}, 0.500 \mathrm{mmol})$, potassium carbonate (27.6 mg , $0.200 \mathrm{mmol})$, aluminum tert-butoxide $(0-0.050 \mathrm{mmol})$, and dioxane $(1.00 \mathrm{~mL}, 0.100 \mathrm{M})$. The resulting solution was stirred at $95^{\circ} \mathrm{C}$ in an oil bath for 6 h . The reaction was cooled to room temperature and tridecane ($24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added as internal standard. A $100 \mu \mathrm{~L}$
aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Table S9. Solvent Mixture Design of Experiment (DoE) ${ }^{\text {a }}$

-Responses: Percent Yield, Conversion, Diastereomeric Ratio, Suzuki Product
-Factors: Dioxane, Toluene, and THF in mixtures adding up to $200 \mu \mathrm{~L}$
-JMP Pro 14^{\circledR} software was used to generate and analyze the 11 reactions of the mixture design.

entry	Dioxane $(\mu \mathrm{L})$	THF $(\mu \mathrm{L})$	Toluene $(\mu \mathrm{L})$	yield $(\%)^{\mathrm{b}}$	d.r. $(\mathrm{Z} / \mathrm{E})^{\mathrm{b}}$	Conversion $(\%)^{\mathrm{b}}$	Suzuki $(\%)^{\mathrm{b}}$
1	0	150	50	41	$4.5: 1$	49	2
2	50	0	150	17	$9.0: 1$	31	1
3	50	150	0	47	$6.1: 1$	50	2
4	66	66	66	21	$8.7: 1$	33	1
5	0	50	150	54	$2.9: 1$	88	4
6	0	0	200	15	$11.1: 1$	33	1
7	150	50	0	68	$4.4: 1$	70	3
8	0	200	0	1	$1.0: 1$	21	0
9	150	0	50	19	$9.0: 1$	24	1
10	200	0	0	66	$3.5: 1$	80	2
11	100	100	0	69	$4.2: 1$	72	3

${ }^{\text {a }}$ Reaction conditions: N-benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid $\mathbf{3 c}(0.500 \mathrm{mmol}), \mathrm{NiCl}_{2} \cdot$ glyme $(0.020 \mathrm{mmol})$, potassium carbonate (0.200 mmol $)$, aluminum tert-butoxide $(0.020 \mathrm{mmol})$, Solvent $(0.2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard.

Procedure for Solvent Mixture Design of Experiment (DoE)

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{NiCl}_{2} \cdot$ glyme (4.4 mg , 0.020 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}$, 0.500 mmol , phenylboronic acid $\mathbf{3 c}(61.0 \mathrm{mg}, 0.500 \mathrm{mmol})$, potassium carbonate (27.6 mg , 0.200 mmol), aluminum tert-butoxide ($4.9 \mathrm{mg}, 0.020 \mathrm{mmol}$), and solvent ($0.200 \mathrm{~mL}, 0.500 \mathrm{M}$). The resulting solution was stirred at $80^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature and diluted with 0.800 mL EtOAc. Tridecane $(24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol})$ was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1 .

Verification of Mixture DoE Results

From the mixture DoE, the predicted optimal solvent condition was a 1:1 mixture of dioxane and toluene. The reaction was run according to the DoE procedure using $100 \mu \mathrm{~L}$ dioxane and $100 \mu \mathrm{~L}$ toluene as the solvent. The predicted results were 64% yield with 6.1:1 d.r. (Z/E). The actual yield was 69% with 4.2:1 d.r.

Table S10. Optimization Design of Experiment (DoE) ${ }^{\text {a }}$

-Responses: Percent Yield, Conversion, Diastereomeric Ratio
-Factors: Temperature, Base Identity, Base Equivalents, $\mathrm{Al}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3} \mathrm{~mol} \%$, and Solvent Mixture -JMP Pro 14^{\circledR} software was used to generate and analyze the 38 reactions of the D-optimal design.

	 1a $\operatorname{Pr} \frac{+}{\overline{\text { 2a }}} \operatorname{Pr}$		NiCl_{2}-glyme $\mathrm{PhB}(\mathrm{OH})_{2}($ $\mathrm{K}_{2} \mathrm{CO}_{3}(2$ $\mathrm{Al}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}$ Solvent, (0. $80^{\circ} \mathrm{C}, 18 \mathrm{~h}$	(20 mol \%) $(5$ equiv) quiv) $(20 \mathrm{~mol} \%)$ M)	4a			
Entry	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Base Identity	Base Equiv	$\begin{gathered} \mathrm{Al}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3} \\ (\mathrm{~mol} \%) \end{gathered}$	Solvent	$\begin{aligned} & \hline \text { yield } \\ & (\%)^{b} \end{aligned}$	$\begin{gathered} \text { d.r. } \\ (\mathrm{Z} / \mathrm{E})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \text { Conversion } \\ (\%)^{\mathrm{b}} \\ \hline \end{gathered}$
1	77.5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1.375	30	Dioxane	28	7.7:1	38
2	95	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0.5	10	Dioxane	11	8.9:1	22
3	95	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.25	10	Dioxane	0	0	97
4	77.5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.25	50	Dioxane	0	0	65
5	60	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.25	30	Dioxane/Toluene	0	0	27
6	60	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1.375	50	Dioxane/Toluene	53	6.8:1	55
7	95	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.25	50	Dioxane/Toluene	26	5.2:1	63
8	95	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.5	30	Dioxane	24	2.5:1	70
9	77.5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.25	10	Dioxane/Toluene	55	4.2:1	63
10	95	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0.5	50	Dioxane/Toluene	33	5.3:1	46
11	95	KF	0.5	10	Dioxane/Toluene	17	5.6:1	26
12	95	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.5	50	Dioxane	56	3.4:1	74
13	95	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.5	30	Dioxane/Toluene	52	3.3:1	77
14	77.5	KF	0.5	50	Dioxane/Toluene	12	9.1:1	91
15	60	KF	2.25	50	Dioxane	0	0	13
16	77.5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	1.375	30	Dioxane	23	7.4:1	25
17	77.5	$\mathrm{K}_{3} \mathrm{PO}_{4}$	1.375	30	Dioxane/Toluene	31	10.7:1	28
18	95	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.375	50	Dioxane/Toluene	3	0	52
19	89.4	KF	2.25	30	Dioxane/Toluene	24	5.0:1	44
20	60	$\mathrm{K}_{3} \mathrm{PO}_{4}$	2.25	10	Dioxane	22	10.7:1	29
21	60	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0.5	50	Dioxane	18	15.7:1	20
22	95	KF	1.375	50	Dioxane	28	5.0:1	40
23	77.5	KF	2.25	10	Dioxane	24	6.0:1	31
24	95	$\mathrm{K}_{3} \mathrm{PO}_{4}$	2.25	10	Dioxane/Toluene	21	6.6:1	34
25	60	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.375	10	Dioxane	0	0	0
26	60	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.5	50	Dioxane/Toluene	0	0	44
27	95	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.25	10	Dioxane	56	1:1	99
28	60	$\mathrm{K}_{2} \mathrm{CO}_{3}$	0.5	10	Dioxane	21	10.2:1	28
29	60	KF	1.375	10	Dioxane/Toluene	0	0	22
30	60	KF	0.5	30	Dioxane	0	0	10
31	60	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0.5	10	Dioxane/Toluene	5	0	18
32	77.5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.5	10	Dioxane/Toluene	31	4.4:1	53
33	60	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.25	30	Dioxane	45	8.0:1	51
34	60	$\mathrm{K}_{3} \mathrm{PO}_{4}$	2.25	50	Dioxane/Toluene	40	9.3:1	51

Entry	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Base Identity	Base Equiv	$\mathrm{Al}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}$ $(\mathrm{~mol} \%)$	Solvent	yield $(\%)^{\mathrm{b}}$	d.r. $(\mathrm{Z} / \mathrm{E})^{\mathrm{b}}$	Conversion $(\%)^{\mathrm{b}}$
35	95	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	2.25	50	Dioxane	45	$3.8: 1$	72
36	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.5	50	Dioxane/Toluene	45	$6.6: 1$	61
37	75	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.5	50	Dioxane	35	$7.2: 1$	45
38	80	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2	20	Dioxane	69	$2.4: 1$	97

${ }^{\text {a }}$ Reaction conditions: N -benzoyl-N-phenylbenzamide 1a (0.1 mmol), 4-octyne 2a (0.500 mmol), phenylboronic acid 3c (0.500 mmol), $\mathrm{NiCl}_{2} \cdot$ glyme $(0.020 \mathrm{mmol})$, base ($0.050-0.225 \mathrm{mmol}$), aluminum tert-butoxide ($0.010-0.050 \mathrm{mmol}$), Solvent $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $60-95^{\circ} \mathrm{C}$ in an oil bath for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC with tridecane as internal standard.

Procedure for Optimization Design of Experiment

In a glovebox atmosphere, an oven dried 1-dram vial was charged with $\mathrm{NiCl}_{2} \cdot$ glyme (4.4 mg , 0.020 mmol), N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a ($73.4 \mu \mathrm{~L}$, 0.500 mmol , phenylboronic acid $\mathbf{3 c}(61.0 \mathrm{mg}, 0.500 \mathrm{mmol})$, base ($0.050-0.225 \mathrm{mmol}$), aluminum tert-butoxide ($0.010-0.050 \mathrm{mmol}$), and solvent $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$. The resulting solution was stirred at an appropriate temperature in an oil bath for 18 h . The reaction was cooled to room temperature and diluted with 0.800 mL EtOAc. Tridecane $(24.4 \mu \mathrm{~L}, 0.100 \mathrm{mmol})$ was added as internal standard. A $100 \mu \mathrm{~L}$ aliquot was removed and filtered through a 2 cm plug of silica gel in a pipette with $900 \mu \mathrm{~L}$ of EtOAc into an autosampler vial. The eluent was analyzed by GC method 1.

Verification of Optimization DoE Results

The reaction using the predicted optimized conditions was run according to the DoE procedure using potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010$ $\mathrm{mmol})$, and a $50: 50$ mixture of dioxane and toluene as the solvent $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The predicted results were 60% yield with 6.0:1 d.r. (Z/E). The actual yield was 62% with 5.3:1 d.r.

Figure S1. Surface Plots of Base Equivalents and $\mathrm{Al}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ mol \% with Percent Yield and d.r. from Optimization Design of Experiment

General Procedure A: Synthesis of Carboacylation Products 4a-4y:

1a: $\mathrm{R}=\mathrm{H}$
2a: $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Pr}$
3e: $\mathrm{R}=\mathrm{Ph}$
1b: $R=4-O M e$
2b: $R_{2}=R_{3}=E t$
3f: $\mathrm{R}=4-\mathrm{OMePh}$
1c: $R=4-M e$
2c: $\mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Ph}$
3g: $R=4-\mathrm{MePh}$
1d: $R=4-F$
1e: $R=4-C l$
1f: $\mathrm{R}=3-\mathrm{OMe}$
1g: $R=3-M e$
1h: $R=3-F$
1i: $R=3-C \mid$
3h: $R=4-\mathrm{CIPh}$
3i: $\mathrm{R}=3-\mathrm{OMePh}$
3j: $\mathrm{R}=3-\mathrm{MePh}$
3k: $\mathrm{R}=2-\mathrm{MePh}$

In a glovebox atmosphere, an oven dried 1-dram vial was charged with NiCl_{2} glyme (4.4 mg , 0.020 mmol), amide $\mathbf{1 a - 1 i}(0.100 \mathrm{mmol})$, alkyne $\mathbf{2 a - 2 c}(0.500 \mathrm{mmol})$, triarylboroxine $\mathbf{3 e - 3 k}$ (0.100 mmol), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide (2.5 mg , $0.010 \mathrm{mmol})$, and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$. The resulting solution was stirred at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature, filtered through a short plug of silica gel eluting with 50:50 hexanes:EtOAc, and concentrated under reduced pressure. The crude product was purified by flash column chromatography to give carboacylation products $\mathbf{4 a - 4 y}$.

Procedure for Ni-catalyzed Alkyne Carboacylation - 1 mmol Scale

In a glovebox atmosphere, an oven dried scintillation vial was charged with NiCl_{2} glyme (43.9 $\mathrm{mg}, 0.200 \mathrm{mmol}$), N-benzoyl- N-phenylbenzamide $1 \mathbf{1 a}(301.34 \mathrm{mg}, 1.000 \mathrm{mmol}$), 4-octyne (0.500 $\mathrm{mmol})$, triphenylboroxine $(0.312 \mathrm{~g}, 1.000 \mathrm{mmol})$, potassium carbonate $(0.311 \mathrm{~g}, 0.225 \mathrm{mmol})$, aluminum tert-butoxide ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}$), and $1: 1$ dioxane/toluene ($2.00 \mathrm{~mL}, 0.500 \mathrm{M}$). The resulting solution was stirred at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction was cooled to room temperature, filtered through a short plug of silica gel eluting with 50:50 hexanes:EtOAc, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (90:10 hexanes:EtOAc) to give carboacylation products $\mathbf{4 a}$ and $\mathbf{4 a} \mathbf{a}^{\prime}$ in $\mathbf{2 3 \%}$ yield (67.3 mg) and 6.0:1 d.r.

Characterization of tris(3-methylphenyl)boroxine 3j:

3j

Tris(3-methylphenyl)boroxine (3j) ${ }^{4,5,6}$: Prepared by heating 3methylphenylboronic acid in a Kugelrohr apparatus at $80^{\circ} \mathrm{C}$ for 8 hr under vacuum. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.09-8.03$ $(\mathrm{m}, 6 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 6 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 137.4,136.2,133.5,132.8,127.9,21.5$. (C-B not observed).

Characterization of Alkyne Carboacylation Products 4a-4y:

(Z)-1,3-diphenyl-2-propylhex-2-ene-1-one (4a): Prepared according to general procedure A from N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100$ mmol), 4-octyne 2a ($73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$), triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}$, 0.100 mmol), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tertbutoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give 4a and $\mathbf{4 a ^ { \prime }}$ in 62% yield and 5.3:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.62(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.29(\mathrm{t}, J=7.9,1 \mathrm{H})$, $7.18(\mathrm{dd}, J=7.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 5 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, Chloroform-d) δ 201.6, 143.0, 141.4, 138.2, 137.9, 132.1, 129.1, 128.8, 127.8, 127.7, 127.0,
35.6, 33.6, 22.2, 21.5, 14.4, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}^{+}$ 293.1900; Found 293.1902.

(E)-1,3-diphenyl-2-propylhex-2-ene-1-one (4a'): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz,

Chloroform- d) $\delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=$
$7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7$
$\mathrm{Hz}, 2 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 201.0,141.3$, $140.8,137.2,137.2,133.3,129.4,128.7,128.3,128.2,126.9,38.2,34.0,22.0,21.0,14.0,13.8$.

(Z)-1-(4-methoxyphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4b): Prepared according to general procedure A from 4-methoxy-N-(4-methoxybenzoyl)- N-phenylbenzamide $\mathbf{1 b}$ ($36.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100$
$\mathrm{mmol})$, potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol})$, aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010$ $\mathrm{mmol})$, and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 b}$ and $\mathbf{4 b}^{\prime}$ in 42% yield and 7.0:1 d.r. The isomers were able to be separated under the column chromatography conditions. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) δ $7.68-7.62$ (ddd, $J=9.6,2.8,2.0,2 H), 7.08-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.72-6.65(\mathrm{ddd}, J=9.6,2.8,2.0$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.1,162.8,141.6$, $141.5,138.2,131.6,130.6,128.7,127.7,126.9,113.1,55.3,35.5,33.8,22.1,21.5,14.4,14.0$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}$323.2006; Found 323.2040.

(Z)- 1-(4-methylphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4c):

Prepared according to general procedure A from 4-methyl- N -(4-methylbenzoyl)- N-phenylbenzamide $\mathbf{1 c}(32.9 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 c}$ and $\mathbf{4} \mathbf{c}^{\prime}$ in $\mathbf{4 3 \%}$ yield and 2.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 7 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 201.2,142.9,142.0,141.5,138.2,135.1,129.4$, 128.8, 128.6, 127.7, 126.9, 35.6, 33.7, 22.1, 21.6, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}^{+}$307.2056; Found 307.2077.

(E)- 1-(4-methylphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4c'): ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.11$ $-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.64(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.7,144.2,140.8$, $140.8,137.3,134.7,129.5,129.4,128.4,128.2,126.8,38.1,34.0,22.0,21.8,21.0,14.0,13.9$.

(Z)-1-(4-fluorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4d):

Prepared according to general procedure A from 4-fluoro- N -(4-
fluorobenzoyl)- N-phenylbenzamide $\mathbf{1 d}(33.7 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne 2a ($73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$), triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 d}$ and $\mathbf{4 d}^{\prime}$ in 32% yield and 4.3:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 2.63$ $-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 200.1, 166.2, 163.7, 143.2, 141.3, 137.9, 134.2, 131.7, 131.6, 128.8, 127.8, 127.2, 115.0, 114.7, 35.6, 33.6, 22.2, 21.5, 14.3, 14.0. ${ }^{19}$ F NMR (377 MHz , Chloroform- d) δ-75.75. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FO}^{+}$ 311.1806; Found 311.1808.

(Z)-1-(4-chlorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4e):

Prepared according to general procedure A from 4-chloro- N -(4-chlorobenzoyl)- N-phenylbenzamide $\mathbf{1 e}(37.0 \mathrm{mg}, 0.100 \mathrm{mmol}), 4$-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction
mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 e}$ and $\mathbf{4} \mathbf{e}^{\prime}$ in 25% yield and $>20: 1$ d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.54$ (ddd, $J=9.0,2.3,2.0,2 \mathrm{H}$), 7.13 (ddd, $J=9.0,2.3,2.0,2 \mathrm{H}$), $7.06-6.96(\mathrm{~m}, 5 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.4,143.5,141.2$, 138.3, 137.8, 136.3, 130.5, 128.8, 128.1, 127.9, 127.3, 35.6, 33.6, 22.2, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClO}^{+}$327.1510; Found 327.1512.

(Z)-1-(3-methoxyphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4f): Prepared according to general procedure A from 3-methoxy-N-(3-methoxybenzoyl)- N-phenylbenzamide $1 f(36.1 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 f}$ and $\mathbf{4 f}^{\prime}$ in 31% yield and 1.6:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.23$ (ddd, $J=7.9$, $1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 5 \mathrm{H})$, $6.85(\mathrm{ddd}, J=7.9,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}$, $2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ $159.1,142.9,141.5,139.2,138.3,128.8,128.8,127.8,127.0,122.2,118.8,113.1,55.3,35.6$,
33.6, 22.2, 21.5, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}$323.2006; Found 323.2007.

49
(Z)-1-(3-methylphenyl)-3-phenyl-2-propylhex-2-ene-1-one (4g):

Prepared according to general procedure A from 3-methyl-N-(3-
methylbenzoyl)- N-phenylbenzamide $\mathbf{1 g}(32.9 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 g}$ and $\mathbf{4 g}$ in 41% yield and 3.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 2.62$ $-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, 7.4 \mathrm{~Hz})$. ${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 201.6, 142.7, 141.6, 138.3, 137.7, 137.4, 132.9, 129.7, 128.8, 127.7, 127.7, 126.9, 126.6, 35.7, 22.2, 21.5, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}^{+}$307.2056; Found 307.2055.

$7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 201.2, 141.1, 140.8,

(Z)-1-(3-fluorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4h):

Prepared according to general procedure A from 3-fluoro- N -(3-
fluorobenzoyl)- N-phenylbenzamide $\mathbf{1 h}(33.7 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne 2a $(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $3 \mathrm{e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate (31.1 $\mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene (0.200 $\mathrm{mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to $90: 10$ hexanes:EtOAc) to give $\mathbf{4 h}$ and $\mathbf{4} \mathbf{h}^{\prime}$ in 25% yield and $>20: 1$ d.r. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 6 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.54-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.3,163.4,160.9,144.1,141.3,140.3,140.2,137.9,129.4,129.3$, $128.8,127.9,127.3,124.8,119.0,118.8,115.7,115.5,35.7,33.6,22.2,21.5,14.3,14.0 .{ }^{19} \mathbf{F}$ NMR (376 MHz , Chloroform- d) $\delta-113.38$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FO}^{+} 311.1806$; Found 311.1811.

(Z)-1-(3-chlorophenyl)-3-phenyl-2-propylhex-2-ene-1-one (4i):

Prepared according to general procedure A from 3-chloro- N -(3-chlorobenzoyl)- N-phenylbenzamide $\mathbf{1 e}(37.0 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne

2a ($73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$), triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate
($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 i}$ and $\mathbf{4 i ^ { \prime }}$ in 20% yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44$ (t, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=7.8,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 5 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 200.2,144.4$, $141.3,139.7,137.8,133.8,131.8,129.1,129.1,128.8,127.9,127.3,127.0,35.8,33.5,22.2,21.5$, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClO}^{+}$327.1510; Found 327.1505.
 (Z)-3-(4-methoxyphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4j): Prepared according to general procedure A from N -benzoyl -N phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a $(73.4 \mu \mathrm{~L}, 0.500$ mmol), tris(4-methoxyphenyl)boroxine $3 f(40.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4} \mathbf{j}$ and $\mathbf{4} \mathbf{j}^{\prime}$ in 50% yield and $3.2: 1$ d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz},) \delta 7.62(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=6.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=6.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.50$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}$,

3H). ${ }^{13}$ C NMR (101 MHz,) $\delta 201.8,158.5,142.7,138.0,137.7,133.9,132.0,130.0,129.1$, 127.8, 113.2, 55.1, 35.6, 33.7, 22.2, 21.6, 14.4, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}$323.2006; Found 323.2010.

(Z)-3-(4-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4k): Prepared according to general procedure A from N -benzoyl- N phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a $(73.4 \mu \mathrm{~L}, 0.500$ mmol), tris(4-methylphenyl)boroxine $\mathbf{3 g}$ ($35.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene ($0.200 \mathrm{~mL}, 0.500 \mathrm{M}$) at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 k}$ and $\mathbf{4} \mathbf{k}^{\prime}$ in 57% yield and 3.4 :1 d.r. The products were further separated by ReversePhase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 7.64(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.42(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 201.7, 143.0, 138.5, 137.9, 137.8, 136.6, 132.0, 129.2, 128.7, 128.4, 127.8, 35.6, 33.6, 22.2, 21.5, 21.0, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}^{+}$ 307.2056; Found 307.2057.

(Z)-3-(4-chlorophenyl)-1-phenyl-2-propylhex-2-ene-1-one (4I): Prepared according to general procedure A from N-benzoyl- N-phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $2 \mathrm{a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$), tris(4chlorophenyl)boroxine $\mathbf{3 h}(41.4 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 I}$ and $\mathbf{4 I}^{\prime}$ in 23% yield and $>20: 1$ d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.65(\mathrm{dt}, J=$ $8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{tt}, 7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dt}, J=8.5,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.31(\mathrm{~m}$, $2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ $201.2,141.4,139.9,138.9,137.6,132.8,132.4,130.1,129.1,128.0,128.0,35.5,33.6,22.1,21.4$, 14.3, 13.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClO}^{+}$327.1510; Found 327.1513.

$4 m$
(Z)-3-(3-methoxyphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4m):

Prepared according to general procedure A from N -benzoyl- N phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a $(73.4 \mu \mathrm{~L}, 0.500$ mmol), tris(3-methoxyphenyl)boroxine $\mathbf{3 i}(40.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 m}$ and $\mathbf{4 m}^{\prime}$ in 20% yield and 4.0:1 d.r. The products were able to be
separated under the column chromatography conditions. ${ }^{1}$ H NMR (400 MHz , Chloroform- d) δ $7.64(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{ddd}, J=$ 8.2, 2.6, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 201.5, $158.9,142.8,142.8,138.2,137.8,132.1,129.1,128.8,127.8,121.4,114.3,113.0,55.1,35.5$, 33.6, 22.2, 21.6, 14.4, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{+}$323.2006; Found 323.2011.

(Z)-3-(3-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (4n): Prepared according to general procedure A from N -benzoyl- N phenylbenzamide 1a ($30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne 2a ($73.4 \mu \mathrm{~L}, 0.500$ mmol), tris(3-methylphenyl)boroxine $\mathbf{3 j}$ ($35.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 n}$ and $\mathbf{4 n}$ ' in 56% yield and 5.0:1 d.r. The products were further separated by ReversePhase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 7.62(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.2,7.2, \mathrm{~Hz}, 2 \mathrm{H})$, $6.95-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, Chloroform- d) $\delta 201.7,143.5,144.4,138.1,138.0,137.1,131.9,129.7,129.0,127.7,127.7$,
127.6, 125.8, 35.6, 33.6, 22.2, 21.6, 21.1, 14.4, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}^{+} 307.2056$; Found 307.2055
 $-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.71(\mathrm{t}, 3 \mathrm{H}), 0.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 201.1, 141.5, 140.7, 137.8, 137.2, 137.0, 133.2, 129.4, 128.9, 128.7, 128.0, 127.6, 125.4, 38.2, 34.0, 22.0, 21.6, 21.1, 14.0, 13.9.

40

(Z)-3-(2-methylphenyl)-1-phenyl-2-propylhex-2-ene-1-one (40): Prepared

 according to general procedure A from N-benzoyl- N-phenylbenzamide 1a (30.1 $\mathrm{mg}, 0.100 \mathrm{mmol}), 4$-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, 2-methylphenylboronic $\operatorname{acid}(68.0 \mathrm{mg}, 0.500 \mathrm{mmol})$, potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol})$, aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 o}$ and $\mathbf{4 o}^{\prime}$ in $\mathbf{4 3 \%}$ yield and >20:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.57$ (dd, $J=8.0,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{tt}, J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.83-$ $6.75(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.47-$$1.30(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, Chloroform- d) $\delta 201.0,142.5,140.4,139.0,138.4,135.5,132.0,129.8,129.8,128.5,127.7$, 127.0, 124.7, 36.7, 32.7, 22.2, 21.3, 19.9, 14.4, 14.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}^{+} 307.2056$; Found 307.2060 .

(Z)-1-(4-methoxyphenyl)-3-(4-methylphenyl)-2-propylhex-2-ene-1one (4p): Prepared according to general procedure A from 4-methoxy-N-(4-methoxybenzoyl)- N-phenylbenzamide 1b $(36.1 \mathrm{mg}, 0.100 \mathrm{mmol})$, 4-octyne $\mathbf{2 a}$ ($73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$), tris(4-methylphenyl)boroxine $\mathbf{3 g}$ ($35.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to $90: 10$ hexanes:EtOAc) to give $\mathbf{4 p}$ and $\mathbf{4} \mathbf{p}^{\prime}$ in $\mathbf{2 8 \%}$ yield and 4.3:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.60(\mathrm{dt}, J=9.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dt}, J=9.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.39(\mathrm{~m}$, $4 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.3,162.8,141.5,138.6,137.8,136.4$, 131.6, 130.7, 128.6, 128.5, 113.1, 55.3, 35.5, 33.8, 22.1, 21.6, 21.0, 14.3, 14.0. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{+}$337.2162; Found 337.2169.

$4 q$
(Z)-1,3-bis(4-methylphenyl)-2-propylhex-2-ene-1-one (4q): Prepared according to general procedure A from 4-methyl- N -(4-methylbenzoyl)-N-phenylbenzamide 1c ($32.9 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4-octyne $2 \mathbf{2 a}(73.4 \mu \mathrm{~L}$, 0.500 mmol), tris(4-methylphenyl)boroxine $\mathbf{3 g}$ ($35.4 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 q}$ and $\mathbf{4 q}^{\mathbf{\prime}}$ in 55% yield and 3.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with $0.1 \% \mathrm{TFA}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 201.2,142.8,141.9,138.5,137.9,136.5,135.1,129.4$, 128.6, 128.5, 35.6, 33.7, 22.1, 21.6, 21.5, 21.0, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}^{+}$321.2213; Found 321.2214.

(Z)-1-(4-fluorophenyl)-3-(4-methylphenyl)-2-propylhex-2-ene-1-one (4r): Prepared according to general procedure A from 4-fluoro- N -(4-fluorobenzoyl)- N-phenylbenzamide $1 \mathbf{1 d}(33.7 \mathrm{mg}, 0.100 \mathrm{mmol}), 4$-octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, tris(4-methylphenyl)boroxine $\mathbf{3 g}$ (35.4 mg, 0.100 mmol), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tertbutoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene ($0.200 \mathrm{~mL}, 0.500 \mathrm{M}$) at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0
hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 r}$ and $\mathbf{4} \mathbf{r}^{\prime}$ in 49% yield and 7.5:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.72(\mathrm{~m}, 6 \mathrm{H})$, $2.51-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 200.2, 166.2, 163.7, 143.2, $138.3,137.5,136.9,134.3,131.7,131.6,128.6,128.5,114.9,114.7,35.6,33.6,22.2,21.6,21.0$, 14.3, 14.0. ${ }^{19}$ F NMR (377 MHz , Chloroform- d) δ-75.70. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FO}^{+}$325.1962; Found 325.1964 .

4s
(Z)-1-(4-chlorophenyl)-3-(4-methylphenyl)-2-propylhex-2-ene-1-one (4s): Prepared according to general procedure A from 4-chloro- N -(4-chlorobenzoyl)- N-phenylbenzamide $\mathbf{1 e}(37.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv), 4-octyne 2 a ($73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 5.00$ equiv), tris(4methylphenyl)boroxine $\mathbf{3 g}$ ($35.4 \mathrm{mg}, 0.100 \mathrm{mmol} 1.00$ equiv), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 s}$ and $\mathbf{4 s}{ }^{\prime}$ in 56% yield and 5.1:1 d.r. The products were further separated by ReversePhase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroformd) $\delta 7.48(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 200.5$,
$143.5,138.3,138.2,137.4,137.0,136.3,130.5,128.7,128.6,128.1,35.6,33.6,22.2,21.5,21.0$, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClO}^{+} 341.1667$; Found 341.1668.

4t
(Z)-1,3-bis(4-methoxyphenyl)-2-propylhex-2-ene-1-one (4t): Prepared according to general procedure A from 4-methoxy- N -(4-methoxybenzoyl)- N-phenylbenzamide $\mathbf{1 b}$ ($36.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4octyne $2 \mathbf{a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, tris(4-methoxyphenyl)boroxine $\mathbf{3 f}$ ($40.2 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol})$, aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 t}$ and $\mathbf{4 t}^{\prime}$ in $\mathbf{3 7 \%}$ yield and 2.4:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.59(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=$ $9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.58$ $(\mathrm{s}, 3 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 200.4, 162.8, 158.4, 141.2, $137.6,134.0,131.6,130.7,129.8,113.2,113.1,55.3,55.0,35.5,33.8,22.2,21.6,14.4,14.0$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{3}{ }^{+}$353.2111; Found 353.2112.

(Z)-3-(4-methoxyphenyl)-1-(4-methylphenyl)-2-propylhex-2-ene-1one (4u): Prepared according to general procedure A from 4-methyl- N -(4-methylbenzoyl)- N-phenylbenzamide $1 \mathbf{c}$ ($32.9 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, tris(4-methoxyphenyl)boroxine $\mathbf{3 f}$ ($40.2 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol})$,
aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 u}$ and $\mathbf{4 u} \mathbf{u}^{\prime}$ in $\mathbf{4 6 \%}$ yield and 2.8:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.41(\mathrm{~m}$, 4H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 201.4, 158.4, 142.8, 141.7, 137.7, 135.2, 133.9, 129.9, 129.4, 128.6, 113.2, 55.1, 35.6, 33.8, 22.2, 21.6, 14.3, 14.0. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{+}$337.2162; Found 337.2167.

butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene ($0.200 \mathrm{~mL}, 0.500 \mathrm{M}$) at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0
hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 v}$ and $\mathbf{4} \mathbf{v}^{\prime}$ in 57% yield and 7.1:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.51-$ $6.46(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 200.3,166.2$, 163.7, 158.7, 142.9, 137.4, 134.4, 133.7, 131.7, 131.6, 130.0, 115.0, 114.7, 113.3, 55.1, 35.6, 33.7, 22.2, 21.6, 14.4, 14.0. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) δ-106.89. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FO}_{2}{ }^{+}$341.1911; Found 341.1917.

(Z)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)-2-propylhex-2-ene-1one (4w): Prepared according to general procedure A from 4-chloro- N -(4-chlorobenzoyl)- N -phenylbenzamide $\mathbf{1 e}$ ($37.0 \mathrm{mg}, 0.100 \mathrm{mmol}$), 4octyne $\mathbf{2 a}(73.4 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, tris(4-methoxyphenyl)boroxine $\mathbf{3 f}$ ($40.2 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate $(31.1 \mathrm{mg}, 0.225 \mathrm{mmol})$, aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 w}$ and $\mathbf{4} \mathbf{w}^{\prime}$ in 55% yield and 4.3:1 d.r. The products were able to be separated under the column chromatography conditions. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.48(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=$ 8.7, 2.3 Hz, 2H), $6.85(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.51$ $-2.42(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 200.6, 158.7, 143.3, 138.2, 137.3, 136.4, 133.6, $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClO}_{2}{ }^{+}$357.1616; Found 357.1618.

4x
(Z)-2-ethyl-1,3-diphenylpent-2-ene-1-one (4x): Prepared according to general procedure A from N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), 3hexyne $\mathbf{2 b}(56.8 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}(31.2 \mathrm{mg}, 0.100 \mathrm{mmol})$, potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide ($2.5 \mathrm{mg}, 0.010 \mathrm{mmol}$), and 1:1 dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for 18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 x}$ and $\mathbf{4} \mathbf{x}^{\prime}$ in 35% yield and 4.6:1 d.r. The products were further separated by Reverse-Phase Prep HPLC (85:15 acetonitrile:water with 0.1% TFA). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.64$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (dd, $J=8.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 5 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 201.7,144.0,141.2,138.6,138.0$, 132.1, 129.1, 128.9, 127.8, 127.7, 127.0, 26.8, 24.5, 13.4, 13.1. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}^{+}$265.1587; Found 265.1586 .

2-methyl-1,3,3-triphenylprop-2-ene-1-one (4y): Prepared according to general procedure A from N-benzoyl- N-phenylbenzamide $\mathbf{1 a}(30.1 \mathrm{mg}, 0.100$ mmol), 1-phenyl-1-propyne $2 \mathbf{c}(62.6 \mu \mathrm{~L}, 0.500 \mathrm{mmol})$, triphenylboroxine $\mathbf{3 e}$ ($31.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), potassium carbonate ($31.1 \mathrm{mg}, 0.225 \mathrm{mmol}$), aluminum tert-butoxide $(2.5 \mathrm{mg}, 0.010 \mathrm{mmol})$, and $1: 1$ dioxane/toluene $(0.200 \mathrm{~mL}, 0.500 \mathrm{M})$ at $75^{\circ} \mathrm{C}$ in an oil bath for

18 h . The crude reaction mixture was purified by flash column chromatography (100:0 hexanes:EtOAc to 90:10 hexanes:EtOAc) to give $\mathbf{4 y}$ in $\mathbf{2 7 \%}$ yield as a single regioisomer. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.03-6.97$ (m, 5H), $2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 201.3$, 143.8, 141.3, 140.9, 136.8, 134.8, 132.6, 129.9, 129.9, 129.2, 128.3, 128.1, 127.8, 127.6, 127.5, 19.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}^{+}$299.1430; Found 299.1431.

References:

1. Kadam, A. A.; Metz, T. L.; Qian, Y.; Stanley, L. M. Ni-Catalyzed Three-Component Alkene Carboacylation Initiated by Amide C-N Bond Activation. ACS Catal. 2019, 9, 5651-5656.
2. Crampton, R.; Woodward, S.; Fox, M. Bis-Sulfamyl Imines: Potent Substrates for Asymmetric Additions of Arylboroxines under Rhodium Catalysis. Adv. Synth. Catal. 2011, 353, 903-906.
3. Antoft-Finch, A.; Blackburn, T.; Snieckus, V. N,N-Diethyl O-Carbamate: Directed Metalation Group and Orthogonal Suzuki-Miyaura Cross-Coupling Partner. J. Am. Chem. Soc. 2009, 131, 17750-17752.
4. So, C. M.; Kume, S.; Hayashi, T. Rhodium-Catalyzed Asymmetric Hydroarylation of 3Pyrrolines Giving 3-Arylpyrrolidines: Protonation as a Key Step. J. Am. Chem. Soc.

2013, 135, 10990-10993.
5. Huang, Y.; Hayashi, T. Asymmetric Synthesis of Triarylmethanes by Rhodium-

Catalyzed Enantioselective Arylation of Diarylmethylamines with Arylboroxines. J. Am.
Chem. Soc. 2015, 137, 7556-7559.
6. Moon, S.; Kato, M.; Nishii, Y.; Miura, M. Synthesis of Benzo[b]thiophenes through Rhodium-Catalyzed Three-Component Reaction using Elemental Sulfur. Adv. Synth. Catal. 2020, 362, 1669.

S-44

S-100

S-101

S-103

S-104

S-105

S-106

S-107

