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Table S1. Involved oligonucleotides and corresponding sequences 

Name Sequence (5’-3’) 

9 nt CPδ 

13 nt SPδ 

10 nt CPδ 

12 nt SPδ 

11 nt CPδ 

11 nt SPδ 

12 nt CPδ 

10 nt SPδ 

13 nt CPδ 

9 nt SPδ 

14 nt CPδ 

8 nt SPδ 

22nt CPδ 

DNA21-MBδ 

miR21 

miR21-Biotin-SP 

miR223 

miR223-CP 

miR223-Biotin-SP 

miR141 

miR141-CP 

miR141-Biotin-SP 

miR10b 

miR10b-CP 

miR10b-Biotin-SP 

HS-(CH2)6-TCAACATCA 

GTCTGATAAGCTA 

HS-(CH2)6-TCAACATCAG 

TCTGATAAGCTA 

HS-(CH2)6-TCAACATCAGT 

CTGATAAGCTA 

HS-(CH2)6-TCAACATCAGTC 

TGATAAGCTA 

HS-(CH2)6-TCAACATCAGTCT 

GATAAGCTA 

HS-(CH2)6-TCAACATCAGTCTG 

ATAAGCTA 

HS-(CH2)6-TCAACATCAGTCTGATAAGCTA 

TAGCTTATCAGACTGATGTTGA-MB 

UAGCUUAUCAGACUGAUGUUGA 

TCTGATAAGCTA-TTTTTT-Biotin 

UGUCAGUUUGUCAAAUACCCCA 

HS-(CH2)6-TGGGGTATTT 

GACAAACTGACA-TTTTTT-Biotin 

UAACACUGUCUGGUAAAGAUGG 

HS-(CH2)6-CCATCTTTAC 

CAGACAGTGTTA-TTTTTT-Biotin 

UACCCUGUAGAACCGAAUUUGUG 

HS-(CH2)6-CACAAATTCG 

GTTCTACAGGGTA-TTTTTT-Biotin 
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Name Sequence (5’-3’) 

SM-miR21 

TM-miR21 

Random-RNA 

UAGCUUAUCAGACUGAUAUUGA 

UAGAUUAUCAGACUGAUAUUGA 

UUGUACUACACAAAAGUACUG 

CP: capture probe  
SP: stacking probe 
MB: methylene blue 
δlabeled sequences were used in optimal HS-DNA CP selection. 
The mismatched bases were marked in red. 
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Table S2. Tm of different length of CPs (9 nt to 14 nt) and corresponding SPs (13 nt 
to 8 nt). 
 

Name   Tm   Name Tm  ΔTm 

9 nt CP 

10 nt CP 

11 nt CP 

12 nt CP 

13 nt CP 

14 nt CP 

12.5 

22.5 

27.3 

32.0 

35.1 

38.8 

13 nt SP 

12 nt SP 

11 nt SP 

10 nt SP 

9 nt SP 

8 nt SP 

  32.0 

  27.2 

  23.2 

  17.0 

  10.8 

  0.9 

16.5 

4.7 

4.1 

15.0 

24.3 

37.9 
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Table S3. Free energy of prehybridization mixtures (SP and DNA21) and direct 

hybridization mixtures (CP and DNA21) 

Name Free energy (F) Name  Free energy (F) Δ F 

13nt SP+D-21 

12nt SP +D-21 

11nt SP +D-21 

10nt SP +D-21 

9nt SP +D-21 

8nt SP +D-21 

-10.41 

-17.12 

-16.4 

-14.06 

-13.29 

-10.8 

9 nt CP+D-21 

10 nt CP +D-21 

11 nt CP +D-21 

12 nt CP +D-21 

13 nt CP +D-21 

14 nt CP +D-21 

-13.4 

-15.7 

-16.75 

-18.51 

-19.59 

-27.78 

2.99 

1.42 

0.35 

4.45 

6.3 

16.98 

D-21: DNA21; 
The unit of free energy is kcal/mol. 
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Table S4. Comparison between our sensor and other similar sensors for miRNA 
detection.  

Methods Targets Linear range Sensitivity Refa 

Fluorescence 

SERS 

Colorimetric 

Photoelectrochemistry 

Electrochemical 

FRET 

Fluorescence 

Chemiluminescence 

Electrochemical 

miR21 

miR21 

miR21  

miR21  

miR21  

miR21 

let-7a 

miR122 

miR21 

0-16 nM 

1 pM-10 nM 

150 fM-3 nM 

1 pM-100 nM 

140 pM-10 nM 

100 pM-200 nM 

100 fM-1 nM 

80 pM-100 nM 

10 fM-1 nM 

47 pM 

1 pM 

70 fM 

31 fM 

40 pM 

100 pM 

58 fM 

49.6 fM 

79.3 aM 

1 

2 

3 

4 

5 

6 

7 

8 

This work 

SERS: surface-enhanced Raman scattering 
FRET: fluorescence resonance energy transfer 
aReferences at the end of SI 
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Figure S1. Square wave voltammetry (SWV) curves of the sensor assembled with 0.5 

μΜ 9-14 nt HS-DNA CPs (a: 9 nt; b: 10 nt; c: 11 nt; d: 12 nt; e: 13 nt; f: 14 nt), in 

response to 1 μM DNA21-MB with (sandwich structure (IS): red line) or without 2 

μΜ corresponding reporter probes (direct CP-TS hybridization (IH): dark dot) in 10 

mM PBS (pH = 7.4) at room temperature. 
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Figure S2. To verify the successful assembly of probes on the sensor, cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed 

to characterize the step by step construction of the sensing interface using the redox 

pair of [Fe(CN)6]3−/4−. A typical CV response of bare gold electrode (GE) was 

obtained (line i in a) with minimal electro-transfer resistance (Ret) (curve i in b), 

reflecting the barrier-free diffusion of [Fe(CN)6]3−/4− to the bare gold electrode. After 

the immobilization of HS-DNA CPs, there is an increment in peak separation of CV 

(line ii in a), owning to the negatively charged phosphate backbone in DNA probes. 

Similarly, Ret also increased because of the improved repulsion between charged 

DNA and [Fe(CN)6]3−/4− (curve ii in b). After blocking by MCH, there were further 

changes of CV (line iii in a) and Ret (curve iii in b). As the prehybridized duplex was 

captured on the interrogating electrode, the peak current continued to reduce and an 

increase in peak separation emerged (line iv in a). There is also an increment for Ret 

(curve iv in b). Finally, when we apply avidin-HRP, we can also see changes of CV 

and EIS (line v in a, and curve v in b). Overall, these results indicated the successful 

preparation of our sensor. Electrochemical measurement in 0.1 M KCl solution 

containing 5 mM [Fe(CN)6]3-/4- by scanning the potential from -0.2 to 0.6 V at a scan 

rate of 100 mV/s. 
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Figure S3. The feasibility of Bsee-miR sensor implemented HRP-TMB signal 

amplification. Amperometric i-t curve of 1 pM 10 nt HS-DNA CP incubation with 

miR21-Biotin-SP (2 µM)-miR21 (1 pM) prehybridization complexes and SA-HRP 

(red line) or miR21-Biotin-SP (2 µM)-PBS complexes and SA-HRP (dark dot) in 

TMB at room temperature. 
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Figure S4. Assembly concentrations of HS-DNA CP ranging from 0.25 μΜ to 2 μM 

in Bsee-miR sensor were optimized (in the presence of 10 nM target miR21 and 20 

nM biotin stacking probe) to obtain the maximal hybridization efficiency and the 

minimal steric hindrance, as well as to maintain highly ordered molecular orientation 

at biointerface. Error bars show the standard deviations of measurements taken from 

at least three independent experiments. 
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Figure S5. Cyclic voltammetry characterization of stepwise modification of 

nanostructuring-enhanced Bsee-miR sensor. (a) bare SPCE; (b) SPCE decorated with 

gold nanostructures (AuNS-SPCE); (c) HS-DNA CPs assembled on AuNS-SPCE via 

Au-S bond; (d) Passivation by MCH; (e) Target miR21 and biotinylated stacking 

probe complexes were captured on AuNS-SPCE; (f) Introduction of 1% BSA to block 

the nonspecific sites. The CV was carried out in 0.1 M KCl solution containing 5 mM 

[Fe(CN)6]3-/4- at a scan rate of 100 mV/s.  
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Figure S6. Square wave voltammetry (SWV) curves of AuNS-SPCE based Bsee-miR 

sensor incubating with 0.5 μΜ 10nt HS-DNAs 1 μM DNA-21-MB and 2 μΜ 

corresponding probes (experimental group: black line) or PBS (control group: red dot) 

in 10 mM PBS (pH = 7.4) at room temperature. 
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Figure S7. Nanostructuring-enhanced Bsee-miR sensor allows for detection of the 

target miR21 from total RNA extracted from A549 (a), MCF-7 (b), HeLa (c), HepG-2 

(d) cells and HL7702 cells (e) with different numbers (102, 103, 104 and 105 cells), 

respectively. (f) Comparison of signal changes in response to HL7702, HepG-2 and 

A549 with distinct cell numbers. Error bars represent the standard deviations of 

measurements (n = 3). 
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Figure S8. The difference of nanostructuring-enhanced Bsee-miR sensor in detection 

of total RNA from different cells. T test was used to prove the over-expression of 

miR21 in A549 and MCF-7 cells relative to HepG-2 and HeLa, as well as HL7702. 
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