1	Supporting Information
2 3	Are melamine and its derivatives the alternatives for per- and polyfluoroalkyl substance (PFAS) fabric treatments in infant clothes?
4	
5	Guomao Zheng ¹ and Amina Salamova ^{1*}
6	
7	¹ Paul H. O'Neill School of Public and Environmental Affairs
8	Indiana University, Bloomington, Indiana 47405 USA
9	
10	*Corresponding author:
11	Amina Salamova
12	702 N Walnut Grove Ave., Bloomington, IN 47405
13	Email: <u>asalamov@indiana.edu</u>
14	
15	
16	Number of Pages: 15
17	Number of Figures: 3
18	Number of Tables: 8

Chemicals. ¹³C₃-Melamine (¹³C₃-MEL), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)trione (TTT), 2,4,6-triallyloxy-1,3,5-triazine (TALT), and 2,4-diamino-6-phenyl-1,3,5-triazine (DPT) were obtained from Sigma Aldrich (St. Louis, MO, USA). 2-Amino-4-methoxy-6-methyl-1,3,5-triazine (AMMT), ¹⁵N₃-MEL (¹⁵N₃-MEL), 2,4,6-*tris[bis*(methoxymethyl)amino]-1,3,5triazine (TBMMAT), 1,3,5-*tris*(3,5-di-tert-butyl-4-hydroxybenzyl)-s-triazine-2,4,6(1H,3H,5H)trione (TDTBHI), dichloroisocyanuric acid (DICASS), and ¹³C₃-cyanuric acid (¹³C₃-CYA) were purchased from Toronto Research Chemicals. MEL, ammeline (AMN), ammelide (AMD), and cyanuric acid (CYA) were purchased from AccuStandard (New Haven, CT, USA). ¹³C₃-¹⁵N₃-Cyanuric acid (¹³C₃-¹⁵N-CYA) was obtained from Cambridge Isotope Laboratories (Andover, MA, USA). All target PFAS compounds were obtained from Wellington Laboratories (Guelph, ON, Canada). All individual standards had a purity \geq 98% and all solvents were Optima grade. The complete list of the target compounds, their abbreviations, and the surrogate and internal standards are listed in Tables S1 and S2.

Instrumental methods for PFAS analyses. The analysis of ionic PFAS was performed on an UPLC-QQQ MS (Agilent 1290 Infinity II UPLC – 6470 QQQ-MS) with negative electrospray ionization (ESI-). The nebulizer, gas flow, gas temperature, capillary voltage, sheath gas temperature and sheath gas flow were set as 25 psi, 10 L/min, 300 °C, 2800 V, 330 °C and 11 L/min, respectively. The mobile phases consisting of 2 mM ammonium acetate in water (*A*) and 2 mM ammonium acetate in methanol (*B*) were used with gradient elution. The gradient was as follows: 0 min, 10% *B*; 0.5 min, 10% *B*; 1 min, 40% *B*; 17.5 min, 100% *B*. The instrument was equilibrated for 3.5 min after every run. The injection volume was 5 μ L. UPLC separation was achieved on an Acquity UPLC BEH C18 column (50 mm, 2.1 mm i.d., 1.7 μ m thickness, Waters, Milford, MA), and column temperature was 40 °C. Data acquisition was performed using multiple reaction monitoring (MRM) mode and the optimized MRM transitions are summarized in Table S1.

Neutral PFAS were analyzed on an Agilent 7890 gas chromatograph (GC) coupled to an Agilent 5975C mass spectrometer (MS) in the electron capture positive ionization (PCI) mode. The mass spectrometer ion source, quadrupole temperatures, GC/MS transfer line and the injection temperature, were maintained at 200, 106, 200 and 200 °C, respectively. A splitless injector was used and the injection volume was 2 µL and the carrier gas was helium at a constant flow rate of 1 mL/min. Separation was achieved on a CP-WAX 57 CB (25 m, 250 µm i.d., and 0.2 µm film thickness) fused silica capillary GC column (Agilent J&W). The initial oven temperature was set at 60 °C, held for 3 min, then increased to 85 °C at 25 °C/min, then increased to 190 °C at 3 °C/min, and kept for 8 min. The target compounds were analyzed through selected ion monitoring (SIM) mode and the optimized SIM transitions are summarized in Table S2.

Table S1. The optimized MRM transitions, fragmentors, and collision energies for melamine (MEL)-based compounds and PFAS, surrogate and internal standards analyzed under ESI (+) mode and ESI (-) mode. IS: Internal standard; SS: surrogate standard.

Abbr.	Compound Name	Precur sor ion	Fragmentor (volts)	Product ions (m/z)	Collision energy (volts)
	ESI (+)				
MEI	Malamina	107	00	85	25
WIEL	Merannine	127	90	68	37
AMN	An Ammeline 128 90 –				
		120	,,,	69	53
DDT		100	107	104	25
DP1	2,4-Diamino-o-phenyi-1,5,5-thazine	188	107	//	57
	1 3 5-Triallyl-1 3 5-triazine-2 4 6(1H 3H 5H)-			81.1	9
TTT	trione	250.1	45	41.2	33
TAT		250.1	50	81.1	5
IALI	1 AL 1 2,4,6-1 fially loxy-1,3,5-triazine 250.1 50				
	2.4.6-Tris[his(methoyymethyl)amino]-1.3.5-			359.2	5
TBMMAT	triazine	391.2	78	177.1	33
				45.1	73
TDTBHI	Tris(3,5-di-tert-butyl-4-hydroxybenzyl)	784.5	185	497.1	10
	Isocyaliurate			57.1	21
AMMT	2-Amino-4-methoxy-6-methyl-1,3,5-triazine	141.1	98	43.1	45
				166.1	17
DICASS	Dichloroisogyanuria agid	107.0	150	124.8	21
DICASS	Dichloroisocyanuric acid	197.9	152	93	65
				178.1	13
¹³ C ₃ -MEL (SS)	Melamine- ¹³ C ₃	130	90	87	25
	Melamine- ¹⁵ N ₃			70	37
¹⁵ N ₃ -MEL (IS)			107	69.1	41
	ESI (-)			84	33
AMD	Ammelide	127	90	42	73
CN/A		100	00	85	33
CYA	Cyanufic Acid	128	90	42	73
$^{13}C_{2}$ - $^{15}N_{2}$ -CYA (SS)	Cyanuric acid- ¹³ C ₂ - ¹⁵ N ₂	134	90	89	33
0, 10, 0111 (00)		151	,,,	44	73
¹³ C ₃ -CYA (IS)	Cyanuric acid- ¹³ C ₃	131	90	87	5
				45	20
PFBA	Perfluorobutanoic acid	213.0	64	109	5
				218.9	5
PFPeA	Perfluoropentanoic acid	263.0	64	140.8	5
ΡΕΗν Δ	Perfluoro-n-hevanoic acid	313.0	73	268.9	5
ППХА	remuoro-n-nexanore actu	515.0	13	119	21
PFHpA	Perfluoro- <i>n</i> -heptanoic acid	363.0	78	319	5
1	1			169	17
PFOA	Perfluoro-n-octanoic acid	413.1	83	309 160	17
				419	5
PFNA	Perfluoro- <i>n</i> -nonanoic acid	463.1	83	218.9	17
		512.0	02	468.9	5
PFDA	Perhuoro-n-decanoic acid	515.0	93	269	17

PFUdA	Perfluoro-n-undecanoic acid	563.0	102	518.9 268.9	5
PFDoA	Perfluoro-n-dodecanoic acid	613.0	102	569	9
	Dorfluoro a tridogencia soid	662 1	107	619	9
ITIDA		005.1	107	169	29
PFTeDA	Perfluoro-n-tetradecanoic acid	713.1	112	668.9	13
		010.1	101	768.9	13
PFHxDA	Perfluoro- <i>n</i> -hexadecanoic acid	813.1	121	168.9	37
PFPrS	Perfluoro-1-propanesulfonic acid	249.1	140	80 98.9	37
DEDC	Parfluoro 1 butanasulfonia agid	200.0	140	80	37
PFDS	Permuoro-1-outanesunonic acid	299.0	149	98.9	37
PFPeS	Perfluoro-1-pentanesulfonic acid	349.0	175	80	45
				80	45
PFHxS	Pertluoro-1-hexanesultonic acid	399.0	179	98.9	41
PFHpS	Perfluoro-1-heptanesulfonic acid	449.0	183	80	49
1	I			98.9	45
PFOS	Perfluoro-1-octanesulfonic acid	499.0	208	98.9	49
DENIC	Dorflyono 1 nononecultonic ocid	540.0	219	80	105
PFNS	Perhuoro-1-nonanesunome acid	549.0	218	98.9	49
				80	137
PFDS	Pertluoro-1-decanesultonic acid	598.9	232	98.9	53
				98.9 78	29 37
FOSA	Perfluoro-1-octanesulfonamide	498.0	169	48.1	150
M FORA		512.0	1.00	169	29
MeFOSA	N-methylperfluoro-1-octanesulfonamide	512.0	160	218.9	25
EtEOSA	N-ethylperfluoro-1-octanesulfonamide	526.0	165	169	29
Eu OSA		520.0	105	219	29
4:2 FTS	1H,1H,2H,2H-perfluorohexane sulfonic acid (4:2)	327.1	136	306.9	21
	· · · · · ·			81 406.0	25
6:2 FTS	1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2)	427.0	164	81	41
0.0 575		507.0	170	506.9	29
8:2 F15	1H,1H,2H,2H-perfluorodecane sulfonic acid (8:2)	527.0	179	81	41
M3PFBA (SS)	Perfluoro- <i>n</i> -[2,3,4- ¹³ C ₃]butanoic acid	216.0	64	172	5
MPFHxA (SS)	Perfluoro- <i>n</i> -[1,2- ¹³ C ₂]hexanoic acid	315.1	78	270	5
MPFOA (SS)	Perfluoro- <i>n</i> -[1,2,3,4- ¹³ C ₄]octanoic acid	417.1	83	372	5
MPFUdA (SS)	Perfluoro- n -[1,2- ¹³ C ₂]undecanoic acid	565.1	97	520	9
M2PFTeDA (SS)	Perfluoro- <i>n</i> -[1,2- ¹³ C ₂]tetradecanoic acid	715.1	116	669.9	13
M3PFBS (SS)	Perfluoro-1-[2,3,4- ¹³ C ₃]butanesulfonic acid	302.0	149	80	45
MPFHxS (SS)	Perfluoro-1-hexane[¹⁸ O ₂]sulfonic acid	403.0	169	84	49
MPFOS (SS)	Perfluoro-1-[1,2,3,4- ¹³ C ₄]octanesulfonic acid	503.0	198	80	93
d-N-MeFOSA (SS)	N-methyl-d3-perfluoro-1-octanesulfonamide	515.0	160	169	29
MPFBA (IS)	Perfluoro- <i>n</i> -[1,2,3,4- ¹³ C ₄]butanoic acid	217.0	64	172	5
M8PFOA (IS)	Perfluoro-n-[¹³ C ₈]octanoic acid	421.1	83	376	5
M7PFUdA (IS)	Perfluoro- <i>n</i> -[1,2,3,4,5,6,7- ¹³ C ₇]undecanoic acid	570.0	97	525	9
M3PFHxS (IS)	Perfluoro-1-[1,2,3- ¹³ C ₃]hexanesulfonic acid	402.0	184	80	45
M8PFOS (IS)	Perfluoro-[¹³ C ₈]octanesulfonic acid	507.0	203	79.9	97

Abbreviation	Compound Name	Quantifier	Qualifier
4:2 FTOH	2-Perfluorobutyl ethanol (4:2)	265	227
6:2 FTOH	2-Perfluorohexyl ethanol (6:2)	365	327
8:2 FTOH	2-Perfluorooctyl ethanol (8:2)	465	427
10:2 FTOH	2-Perfluorodecyl ethanol (10:2)	565	527
6:2 FTAcr	1H,1H,2H,2H-perfluorooctyl acrylate	419	399
8:2 FTAcr	1H,1H,2H,2H-Perfluorodecyl acrylate	519	499
10:2FTAcr	1H,1H,2H,2H-Perfluorododecyl acrylate	619	599
6:2 FTMAcr	1H,1H,2H,2H-perfluorooctyl methacrylate	433	413
8.2 FTMAcr	1H,1H,2H,2H-heptadecafluorodecyl	533	513
0.2 T TWAC	methacrylate	555	515
MeFOSE	2-(N-methylperfluoro-1-	558	540
	octanesulfonamido)-ethanol	550	510
EtFOSE	2-(N-ethylperfluoro-1-	572	554
	octanesulfonamido)-ethanol		
M2FOET	2-Perfluorooctyl- $[1, 2-^{13}C_2]$ -ethanol(8:2)	467	429
(SS)	2 Ferritorio (0.2)	107	127
MFOET	2-Perfluorooctyl- $[1,1-^{2}H_{2}]-[1,2-^{13}C_{2}]-$	469	431
(IS)	ethanol(8:2)	107	131

Table S2. Instrumental details for the analysis of PFAS analyzed using gas chromatographic mass spectrometry in the positive chemical ionization mode.

Conventional cotton $(n = 19)$ cotton (100)CoatThailcotton (100)DressThail	· · · · · · · · · · · · · · · · · · ·
cotton (100)CoatThaicotton (100)DressThai	
cotton (100) Dress Thail	land 2018
Cotton (100) Diess Than	land 2018
cotton (100) Onesie Vietr	nam 2019
cotton (100) Onesie India	a 2017
cotton (100) Onesie India	a 2018
cotton (100) Onesie India	a 2018
cotton (100) Onesie India	a 2019
cotton (100) Onesie India	a 2017
cotton (100) Onesie India	a 2018
cotton (100) Onesie Cam ¹	bodia 2018
cotton (100) Onesie Cam ¹	bodia 2019
cotton (100) Onesie Cam	bodia 2017
cotton (100) Onesie Cam	bodia 2018
cotton (100) Onesie Cam	bodia 2018
cotton (100) Onesie Cam	bodia 2019
cotton (100) Pants Vietr	nam 2017
cotton/other fiber (97/3) Shirt Vietr	nam 2018
cotton (100) Shirt Indo	nesia 2018
cotton (100) Shirt Thail	land 2019
Organic cotton $(n = 10)$	2017
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
organic cotton (100) Diaper Unite	ed States Not available
Cotton/polyester ($n = 20$)	
cotton/polyester (60/40) Dress Vietr	nam 2018
cotton/polyester (60/40) Onesie Vietr	nam 2018
cotton/polyester/spandex (65/34/11) Onesie Indo	nesia 2018
cotton/polyester (60/40) Onesie Chin	a 2019
cotton/polyester (60/40) Onesie Vietr	nam 2017
cotton/polyester/spandex (57/38/5) Onesie Vietr	nam 2018
cotton/polyester/spandex (58/38/4) Pants Chin	a 2018
cotton/polyester (60/40) Pants Chin	a 2018
cotton/polyester/spandex (57/38/5) Pants Chin	a 2019
cotton/polyester (60/40) Pants Chin	a 2017
	a 2018
cotton/polyester/spandex (57/38/5) Pants Chin	
cotton/polyester/spandex (57/38/5) Pants Chin cotton/polyester (60/40) Shirt Chin	a 2018
cotton/polyester/spandex (57/38/5)PantsChincotton/polyester (60/40)ShirtChincotton/polyester (60/40)ShirtIndoor	nesia 2018
cotton/polyester/spandex (57/38/5)PantsChincotton/polyester (60/40)ShirtChincotton/polyester (60/40)ShirtIndoocotton/polyester (60/40)ShirtIndoo	a 2018 nesia 2019 nesia 2017

Table S3. The details of samples analyzed in this study, including the fabric and clothing type, country of manufacture, and production year.

Fabric (composition)	Clothing type	Country	Production year
cotton/polyester (60/40)	Shirt	Nicaragua	2018
cotton/polyester (60/40)	Shirt	Nicaragua	2018
cotton/polyester (60/40)	Shirt	Nicaragua	2019
cotton/polyester (60/40)	Shirt	Nicaragua	2017
cotton/polyester (60/40)	Shirt	Indonesia	2018
Cotton/spandex	(<i>n</i> = 18)		
cotton/spandex (95/5)	Onesie	Vietnam	2018
cotton/spandex (95/5)	Pants	Vietnam	2019
cotton/spandex (97/3)	Pants	Salvador	2017
cotton/spandex (97/3)	Pants	Salvador	2018
cotton/spandex (97/3)	Pants	Salvador	2018
cotton/polyester (60/40)	Shirt	Salvador	2018
cotton/spandex (95/5)	Socks	China	2019
cotton/spandex (95/5)	Socks	China	2017
cotton/spandex (95/5)	Socks	China	2018
cotton/spandex (95/5)	Socks	China	2018
cotton/spandex (95/5)	Socks	China	2018
cotton/spandex (95/5)	Socks	China	2019
cotton/spandex (95/5)	Socks	China	2017
cotton/spandex (95/5)	Socks	China	2018
cotton/spandex (95/5)	Socks	China	2018
cotton/spandex (95/5)	Socks	China	2019
cotton/spandex (95/5)	Socks	China	2017
cotton/spandex (95/5)	Socks	China	2018
Polyester (<i>n</i>	= 11)		
polyester (100)	Diaper	China	2018
polyester (100)	Diaper	China	2019
polyester (100)	Diaper	China	2018
polyester (100)	Diaper	China	2019
polyester (100)	Diaper	China	2017
polyester (100)	Diaper	China	2018
polyester (100)	Diaper	China	2018
polyester (100)	Diaper	China	2018
polyester (100)	Diaper	China	2019
polyester (100)	Diaper	China	2017
polyester/rayon/spandex (62/33/5)	Onesie	China	2018
Nylon (<i>n</i> =	= 8)		
nylon (100)	Coat	Vietnam	2018
nylon (100)	Coat	China	2019
nylon/spandex (80/20)	Onesie	China	2017
nylon/spandex (80/20)	Onesie	China	2018
nylon/spandex (80/20)	Onesie	China	2018
nylon/spandex (80/20)	Onesie	China	2019
nylon/spandex (80/20)	Pants	China	2017
nylon/spandex (80/20)	Pants	China	2018

	cotton	organic cotton	cotton/polyester	polyester	cotton/spandex	Nylon
C ₁₃ -MEL	113 ± 2.2	90 ± 5.4	114 ± 3.1	100 ± 4.5	104 ± 3.1	99 ± 4.1
C ₁₃ -N ₁₅ -CYA	115 ± 2.4	96 ± 4.2	111 ± 3.5	97 ± 4.0	111 ± 3.5	87 ± 5.3
M3PFBA	90 ± 3.8	102 ± 6.3	86 ± 2.3	96 ± 4.0	84 ± 2.3	105 ± 3.8
M3PFBS	68 ± 1.4	78 ± 1.9	69 ± 1.7	65 ± 1.9	67 ± 1.7	74 ± 1.7
MPFHxA	74 ± 2.3	73 ± 2.3	77 ± 2.0	69 ± 1.6	68 ± 2.0	69 ± 1.7
MPFHxS	68 ± 2.6	84 ± 0.9	83 ± 1.8	82 ± 1.1	71 ± 1.8	88 ± 1.6
MPFOA	99 ± 2.9	93 ± 1.0	101 ± 2.8	92 ± 1.1	88 ± 2.8	94 ± 0.8
MPFOS	95 ± 2.6	101 ± 1.2	95 ± 2.4	98 ± 1.4	88 ± 2.4	100 ± 1.3
MPFUdA	79 ± 2.1	90 ± 0.9	78 ± 1.5	84 ± 0.9	75 ± 1.5	88 ± 1.2
dMeFOSA	83 ± 3.0	53 ± 0.6	81 ± 5.0	19 ± 8.8	58 ± 5.0	62 ± 3.4
M2PFTeDA	115 ± 5.7	81 ± 1.0	110 ± 6.5	110 ± 3.3	91 ± 6.5	86 ± 2.6
M2FOET	98 ± 4.6	85 ± 3.5	90 ± 5.1	87 ± 5.7	84 ± 5.1	87 ± 4.2

Table S4. Average recoveries of MEL and PFAS surrogate standards (Tables S1 and S2) in different fabrics (mean \pm standard error, %).

Table S5. Median concentrations of MEL derivatives and other emerging chemicals in textiles reported in previous publications.

Textile type	Compounds	Median	Reference
Infant clothing	MEL	35.7	This study
	AMN	1,530	
	AMD	28.2	
	СҮА	77.6	
	TBMMAT	0.451	
Raw textiles and infant clothing	MEL	53	Zhu et al., 2020 ¹
	AMN	3.42	
	AMD	4.04	
	СҮА	43.5	
New and used clothing	Bisphenol-A 26.		Wang et al., 2019 ²
	Bisphenol-S	7.38	
Pantyhose	Bisphenol-S	1,430	Li and Kannan, 2018 ³
Infant cotton clothing	Di-(2-ethylhexyl) phthalate	2,740	Li et al., 2019 ⁴
	Dibutyl phthalate	1,510	
	Di-iso-butyl phthalate	690	
Raw textiles and infant clothing	Benzothiazoles	51.1	Liu et al., 2017 ⁵

	MEL	CYA	AMD	AMN	TBMMAT	ΣMEL	ΣIonic PFAS	ΣNeutral PFAS	ΣPFAS
Outerwear $(n = 3)$	38200	471	453	76,000	126	70,800	3.31	93.8	4.53
Diapers $(n = 20)$	14.0	5,440	42.1	128	0.084	4,570	3.87	17.3	3.93
Dresses $(n = 2)$	26.2	336	11.1	n.d.	0.254	374	2.7	n.d.	2.7
Onesies $(n = 24)$	58.8	48.8	8.29	2,120	0.561	166	3.35	85.1	3.4
Pants $(n = 12)$	69.0	10.1	18.1	1,550	0.402	78.2	3.46	140	3.61
Shirts $(n = 13)$	8.60	7.17	3.40	221	0.162	8.83	3.42	n.d.	3.42
Socks (<i>n</i> = 12)	7.45	340	77.0	262	n.d.	23.9	2.71	10.4	3.41

Table S6. Median concentrations of MEL-based compounds and PFAS in different types of clothes (ng/g); n.d.: not detected.

Table S7. Median concentrations of MEL-based compounds and PFAS in clothes manufactured in different countries (ng/g). n.d.: not detected.

	MEL	CYA	AMN	AMD	TBMMAT	ΣMEL	Σ Ionic PFAS	ΣNeutral PFAS	ΣPFAS
Cambodia $(n = 6)$	35.9	96.1	11.8	n.d.	0.616	57.0	3.05	n.d.	3.05
China $(n = 38)$	58.0	86.8	134	5,550	0.276	36.9	3.40	27.1	3.78
India $(n = 6)$	421	51.2	1.47	708	1.88	790	3.46	n.d.	3.46
Indonesia $(n = 5)$	43.7	26.7	n.d.	221	0.367	87.1	4.06	n.d.	4.06
Nicaragua $(n = 5)$	5.72	4.48	3.40	n.d.	n.d.	7.57	2.79	n.d.	2.79
Salvador $(n = 4)$	56.0	19.3	n.d.	n.d.	n.d.	59.0	3.50	n.d.	3.50
Thailand $(n = 2)$	44.9	255	3.46	n.d.	0.254	304	2.10	n.d.	2.10
United States $(n = 10)$	20.8	5,990	42.1	n.d.	n.d.	6,120	4.02	n.d.	4.02
Vietnam $(n = 10)$	36.7	28.9	17.1	61,100	0.597	52.1	3.45	93.8	3.54

		0-1 mo.	1-3 mo.	3-6 mo.	6-12 mo.
Absorption from non-nylon clothes	MEL	0.0138	0.0127	0.0117	0.0112
	CYA	0.0292	0.0269	0.0247	0.0236
Absorption from nylon clothes	MEL	8.59	7.91	7.26	6.94
	CYA	0.0851	0.0784	0.072	0.0688
Breastfeeding	MEL	30.6	28.6	22.4	16.9
	CYA	161	150	118	88.8
Consumption of infant formula	MEL	60.8	67.3	52.5	28.2
	CYA	473	523	409	219
Ingestion of dust	MEL	34.3	34.3	34.3	34.3
	CYA	8.29	8.29	8.29	8.29

Table S8. Estimated daily intakes (EDIs; pg/kg bw/day) of MEL and CYA via dermal absorption from clothing (based on median concentrations), breastfeeding, consumption of infant formula, and ingestion of dust for 0-1, 1-3, 3-6, 6-12 months old infants.

Figure S1. Selected chromatograms of FTOHs in the authentic standard (A, 20 ppb) and in a sample (B).

Figure S2. Concentrations of \sum MEL (A) and \sum PFAS (B) in clothes manufactured in different countries (ng/g). Concentrations are shown as boxplots representing the 25th and 75th percentiles; black lines represent the median; and the whiskers represent the 10th and 90th percentiles. The letters represent the results of the analysis of variance (ANOVA); boxes sharing the same letters are not significantly different at *p* < 0.05.

Figure S3. Composition of PFAS measured in different fabrics: (A) shows the contributions of PFCAs, PFSAs, and PFCA precursors (6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) to Σ PFAS concentrations; (B) shows the contributions of short- (< C7) and long-chain PFAS (\geq C8) to Σ PFAS concentrations.

References

- (1) Zhu, H.; Kannan, K. Determination of melamine and its derivatives in textiles and infant clothing purchased in the United States. *Sci. Total Environ.* **2020**, *710*.
- (2) Wang, L.; Zhang, Y.; Liu, Y.; Gong, X.; Zhang, T.; Sun, H. Widespread occurrence of bisphenol A in daily clothes and its high exposure risk in humans. *Environ. Sci. Technol.* 2019, 43, 7095–7102.
- (3) Li, A. J.; Kannan, K. Elevated concentrations of bisphenols, benzophenones, and antimicrobials in pantyhose collected from six countries. *Environ. Sci. Technol.* **2018**, *52*, 10812–10819.
- (4) Li, H. L.; Ma, W. L.; Liu, L. Y.; Zhang, Z.; Sverko, E.; Zhang, Z. F.; Song, W. W.; Sun, Y.; Li, Y. F. Phthalates in infant cotton clothing: Occurrence and implications for human exposure. *Sci. Total Environ.* **2019**, *683*, 109–115.
- (5) Liu, W.; Xue, J.; Kannan, K. Occurrence of and exposure to benzothiazoles and benzotriazoles from textiles and infant clothing. *Sci. Total Environ.* **2017**, *592*, 91–96.