Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas Yushan Liu^{†‡}, Haiyue Yang[†], Chunhui Ma^{†‡}, Sha Luo^{†‡}, Mingcong Xu^{†‡}, Zhenwei Wu^{†‡}, Wei Li^{*†‡}, and Shouxin Liu^{*†‡}

[†] Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China

‡ Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, 150040, P. R. China

- * Email: <u>liwei19820927@126.com</u>.
- * Email: <u>liushouxin@126.com</u>.

Figure S1 Carbon-core and surface-functional group composition of CDs.

Figure S2 Fluorescence emission spectra of (a) B-LTW and (b) Y-LTW recorded at

different excitation wavelengths, respectively.

Figure S3 Fluorescence decay spectra of BCDs and YCDs excitation at 320 and 440 nm, respectively.

Figure S4 Selectivity of Dual-CDs against various metal ions (the concentrations were

all 1000 µM).

Figure S5 UV-vis absorption spectra of Cr(VI), FA, Dual-CDs, Dual-CDs@Cr(VI),

and Dual-CDs@Cr(VI)@FA.

Figure S6 RTP decay spectra of the B-LTW@Cr(VI) excitation at 380 nm.

Wavenumber (cm ⁻¹)	Functional group
3408	Stretching vibration of O-H in hydroxyl
2950, 2832	Stretching vibration of alkyl C-H
1714	Stretching vibration of non-conjugated C=O in ketone
1670	Stretching vibration of conjugated C=O
1596	Stretching vibration of aromatic nucleus with C=O
1508	Stretching vibration of aromatic nucleus
1462	Deformation vibration of C-H in alkyl
1428	Plane deformation vibration of C-H on aromatic ring
1368	Stretching vibration of O-H in phenol hydroxyl
1266	Stretching vibration of guaiac and C=O
1212	Stretching vibration of C-C/C-O and C=O
1134	In-plane deformation vibration of C-H on aromatic nuclei
1047	Out-plane deformation vibration of C-H on aromatic nuclei

Table S1 Functional group assignments for lignin from FT-IR spectra

Table S2 Element contents and atomic ratios in CDs determined by XPS results

Sample	C(%)	N(%)	O(%)	O/C	N/C
BCDs	59.4	29.13	11.47	0.19	0.49
YCDs	76.81	9.07	14.12	0.18	0.12

Table S3 XPS data	analyses of t	he C1s and N1s s	spectra of CDs
-------------------	---------------	------------------	----------------

XPS	C1s				N1s		
Sample	C=C/C-C	C-N	C-O	C=O	C=N-C	C-N-C	N-(C) ₃ /H-N-(C) ₂
BCDs	0.49	0.28	0.16	0.070	0.35	0.44	0.21
YCDs	0.63	0.23	0.13	0.010	0.30	0.50	0.20

Table S4 Lifetimes of CDs and LTW

Sample	A 1	T 1	A2	T 2	Tave
BCDs	6418.38	1.58 ns	3728.30	6.11 ns	4.72 ns
YCDs	4303.94	1.91ns	5977.64	3.62 ns	3.15 ns
B-LTW	3394.34	23.37 ms	223.12	381.60 ms	208.83 ms
Y-LTW	3897.01	16.06 ms	168.92	304.31 ms	146.06 ms

Table S5 Comparison of the gas-sensing properties of sensors based on different

materials toward FA gas

Materials	Detection methods	Working	Linear range	LOD	Visual-	Ref.
		Temperature(°C)			ization	
Hollow	Electrochemistry	Room	1-10	/	No	1
TiO ₂ @SnO ₂ nanospheres		Temperature	ppm			
Ag ⁺ -SiO ₂ microspheres	Electrochemistry	Room	2 - 6000	0.5 pmol·L ⁻¹ /	No	2
		Temperature	pmol/	1.16 ppb		
			4.66 - 13967.6			
			ppb			
Cd-doped	Electrochemistry	160	1 - 1000	100 ppm	No	3
SnO ₂ nanofibers			ppm			
ZnO@ZIF-8	Electrochemistry	300	10 - 200	5.6 ppm	No	4
core-shell nanorods			ppm			
Hydrazinium	Electrochemistry	Room	4 - 16	/	No	5
polyacrylate		Temperature	ppm			
CuO nanocubes	Electrochemistry	300	0.05 - 3	6 ppb	No	6
			ppm			
Electronic nose	Electrochemistry	Room	0 - 180	3 ppb	No	7
		Temperature	ppb			
2,4-	Liquid	Room	0.10 - 3.8	/	No	8
dinitrophenylhydrazlne.	Chromatography	Temperature	ppm			
coated silica gel						
N-benzylethanolamlne	Capillary	Room	0.55 - 4.71	/	No	9
coated chromosorb 102	gas chromatography	Temperature	mg⋅m ⁻³			
sorbent						
Nano-Ti ₃ SnLa ₂ O ₁₁	Cataluminescence	350	0.17 - 51.5	$0.06 \text{ mg} \cdot \text{m}^{-3}$	No	10
			mg⋅m ⁻³			
2,4-pentandione	Fluorescence	Room	2 - 300	1.6 μg⋅m ⁻³	No	11
		Temperature	µg∙m ⁻³			
Ag ⁺ -CD@SiO ₂ -NH ₂	Fluorescence	Room	10 ppb -	3 ppb	Yes	12
spheres		Temperature	1 ppm			
LTW	Fluorescence/	Room	20 - 1500 μM/	1.08/45.8	Yes	Current
	Phosphorescence	Temperature	20 - 2000 μM	nM		work

REFERENCES:

 Zhang, S.; Zhao, L.; Huang, B.; Li, X., UV-Activated Formaldehyde Sensing Properties of Hollow TiO₂@SnO₂ Heterojunctions at Room Temperature. Sens. Actuators, B 2020, 319, No.128264.

(2) Li, H.; Li, Y.; Li, M.; Xu, L.; Li, J., Facile and Ultrasensitive Electrochemical Impedance Sensing for Formaldehyde Based on Silver Ions Doped in Controllable and Homogeneous Silica Microspheres. *Sens. Actuators, B* **2019**, *284*, 657-662.

(3) Zhao, R.; Zhang, X.; Peng, S.; Hong, P.; Wang, Y., Shaddock Peels as Bio-Templates Synthesis of Cd-Doped SnO₂ Nanofibers: A High Performance Formaldehyde Sensing Material. *J. Alloys Compd* **2019**, *813*, No.152170.

(4) Tian, H.; Fan, H.; Li, M.; Ma, L., Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. *ACS Sensors* **2015**, *1*(3), 243-250.

(5) Menart, E.; Jovanovski, V.; Hočevar, S. B., Novel Hydrazinium Polyacrylate-Based Electrochemical Gas Sensor for Formaldehyde. *Sens. Actuators, B* **2017**, *238*, 71-75.

(6) Park, H. J.; Choi, N. J.; Kang, H.; Jung, M. Y.; Park, J. W.; Kang, H. P.; Lee, D. S., A ppb-Level Formaldehyde Gas Sensor Based on CuO Nanocubes Prepared Using a Polyol Process. *Sens. Actuators, B* **2014**, *203*, 282-288.

(7) Guentner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E., E-nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? *ACS Sensors* **2016**, *1*(5), 528-535

(8) Beasley, R. K.; Hoffmann, C. E.; Rueppel, M. L.; Worley, J. W., Sampling of

Formaldehyde in Air with Coated Solid Sorbent and Determination by High Performance Liquid Chromatography. *Anal. Chem.* **1980**, *52* (7), 1110-1114.

(9) Kennedy, E. R.; Hill, R. H., Determination of Formaldehyde in Air as an Oxazolidine Derivative by Capillary Gas Chromatography. *Anal. Chem.* **1982**, *54* (11), 1739-1742.

(10) Fan, H. Z.; Cheng, Y. L.; Gu, C. X.; Zhou, K. W., A Novel Gas Sensor of Formaldehyde and Ammonia Based on Cross Sensitivity of Cataluminescence on Nano-Ti₃SnLa₂O₁₁. *Sens. Actuators, B* **2016**, *223*, 921-926.

(11) Motyka, K.; Mikuška, P., Continuous Fluorescence Determination ofFormaldehyde in Air. Anal. Chim. Acta 2004, 518 (1-2), 51-57.

(12) Yang, W.; Zhang, G.; Ni, J.; Lin, Z., Metal-Enhanced Fluorometric Formaldehyde Assay Based on the Use of In-Situ Grown Silver Nanoparticles on Silica-Encapsulated Carbon Dots. *Microchim. Acta* **2020**, *187* (2), 137.