Supporting Information Enhanced Adsorption of Methylene Blue Triggered by the Phase Transition of Thermoresponsive Polymer in Hybrid Interpenetrating Polymer Network Hydrogels

Neng Hu,^{1,†} Chen Chen,^{1,†} Jun Tan,^{2,*} Weijia Wang,^{3,*} Chao Wang,³ Huiqing Fan,³ Jiping Wang,⁴ Peter Müller-Buschbaum^{5,6} and Qi Zhong^{1,5,*}

¹Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education,

Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China

²College of Biological, Chemical Science and Engineering, Jiaxing University, 56 South Yuexiu Road,

314001 Jiaxing, China

³ School of Materials Science and Engineering, State Key Laboratory of Solidification Processing,

Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi'an, China

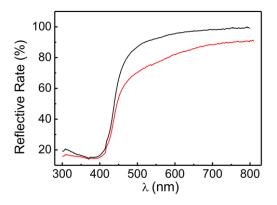
⁴Shanghai University of Engineering Science, 333 Long Teng Road, 201620 Shanghai, China

⁵Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-

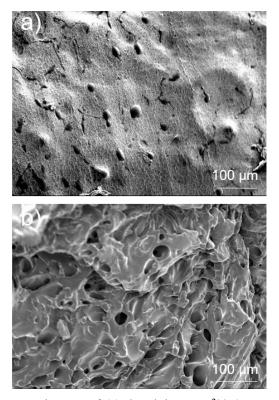
Franck-Str. 1, 85748 Garching, Germany

⁶Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748

Garching, Germany


[†] The two authors contributed equally to this work.

*Corresponding author.

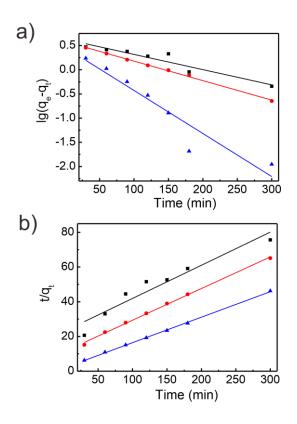

<u>qi.zhong@zstu.edu.cn</u> Phone +86 571 86843436 Fax +86 571 86843436

tanjunzjxu@126.com Phone +86 573 83643264

weijia.wang@nwpu.edu.cn

Figure S1. The UV-Vis diffuse reflectance spectra of the hybrid alginate-Ca²⁺/P(MEO₂MA-*co*-OEGMA₃₀₀)/g-C₃N₄ IPN hydrogels (red) and g-C₃N₄ (black) after freeze drying.

Figure S2. Cross-section SEM images of (a) the alginate-Ca²⁺/P(MEO₂MA-*co*-OEGMA₃₀₀) IPN hydrogels and (b) hybrid alginate-Ca²⁺/P(MEO₂MA-*co*-OEGMA₃₀₀)/g-C₃N₄ IPN hydrogels at 45 °C (TT).


Adsorption kinetics model for ionic dyes into hybrid IPN hydrogels

In order to better understand the adsorption behavior of the hybrid hydrogels, the adsorption kinetics are fitted by two kinetic models: the pseudo-first-order model by Lagergren (Eq. S1), and pseudo-second-order model (Eq. S2). These two models are used to evaluate the experimental adsorption data of methylene blue into hybrid hydrogels.

$$lg(q_e - q_t) = lgq_e - \frac{k_1}{2.303}t$$
 (S1)
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (S2)

In which q_e and q_t represent the amounts of the dye adsorbed at equilibrium (mg g⁻¹) at time t, respectively. k_1 is the rate constant of pseudo-first-order kinetic (min⁻¹), and k_2 is the rate constant of pseudo-second-order kinetic (g (mg min)⁻¹). The

experimental data presented in Figure S1 are fitted linearly by using Eq. S1 and Eq. S2.

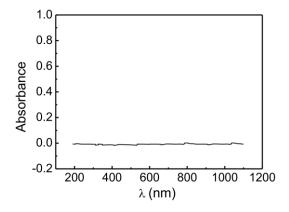
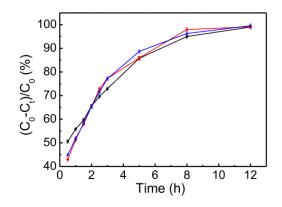
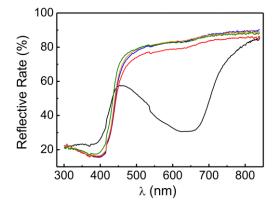
Figure S3. Comparison of adsorption kinetic models of methylene blue in the alginate-Ca^{2+/} $P(MEO_2MA\text{-}co\text{-}OEGMA_{300})$ IPN hydrogels at 35 °C (black), the hybrid alginate-Ca^{2+/} $P(MEO_2MA\text{-}co\text{-}OEGMA_{300})/g\text{-}C_3N_4$ IPN hydrogels at 35 °C (red) and 45 °C (blue). (a) Linear dependence of $lg(q_e - q_t)$ on t based on the pseudo-first-order, (b) Linear dependence of t/q_t on t based on the pseudo-second-order model.

The constants corresponding to the kinetic models are included in Table S1. As Table S1 shows, the theoretical q_e values estimated from the pseudo-second-order model were very close to the experimental values for all composite hydrogels, the correlation efficient R² being also high. These results show that the kinetic behavior of the hydrogel-adsorbed methylene blue dye follows a quasi-second-order kinetic equation. In addition, the effect of the temperature on the adsorption performance of hybrid alginate-Ca²⁺/P(MEO₂MA-*co*-OEGMA₃₀₀)/g-C₃N₄ hydrogels was studied. As depicted in Figure 7, the adsorption rate of the hybrid hydrogel adsorbent was slightly enhanced

with increasing temperature from 30 to 45 °C. On the basis of the above results, the hybrid hydrogel can play a role as an excellent adsorbent not only for its efficient adsorption behavior on cationic aromatic dyes via strong π - π stacking interaction and ionic interaction, but also for the collapse of P(MEO₂MA-*co*-OEGMA₃₀₀) causes the more porous structure in the hybrid IPN network when the temperature is increased to its transition temperature (TT, 45 °C).

Table S1. Kinetic parameters for methylene blue adsorption of (a) alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})$ IPN hydrogels at 35 °C; (b) the hybrid alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4$ IPN hydrogels at 35 °C; (c) the hybrid alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})/g-C_3N_4$ IPN hydrogels at 45 °C.

Models	Parameters	a	b	с
pseudo-first-order	R ²	0.890	0.998	0.890
	K1	-0.003	-0.004	-0.009
	q _e	4.477	4.830	6.530
pseudo-second-order	R ²	0.909	0.998	0.991
	K_1	0.191	0.182	0.147
	q _e	4.491	5.054	6.708

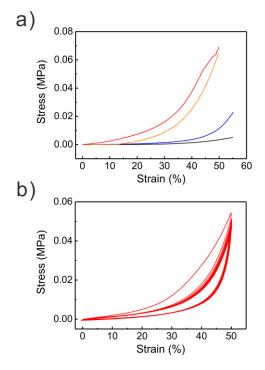

Figure S4. UV-Vis absorption spectrum of the residual solution after the photo-degradation (12 h).

Figure S5. Three cycles of adsorption and photo-degradation measurements of the hybrid IPN hydrogels (black: 1st, red: 2nd and blue: 3rd).

Figure S6. The UV-Vis diffuse reflectance spectra of the hybrid IPN hydrogels (red), the hybrid IPN hydrogels containing methylene blue (black) and the hybrid IPN hydrogels after the adsorption and photo-degradation measurement. The cycle number is 1 (blue), 3 (orange) and 5 (olive), respectively.

Figure S7. Mechanical properties of the hydrogels at 45 °C (above TT): (a) Stress-strain compression curves of the P(MEO₂MA-*co*-OEGMA₃₀₀) hydrogels (black), alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})$ IPN hydrogels (blue) and hybrid alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})/g$ -C₃N₄ IPN hydrogels as-prepared (red) as well as after adsorption and photodegradation (orange). (b) 10 cycles through compression with 50% strain in hybrid alginate- $Ca^{2+}/P(MEO_2MA-co-OEGMA_{300})/g$ -C₃N₄ IPN hydrogels.