Supporting Information

Modeling the mechanism of CO2/cyclohexene oxide copolymerization catalyzed by chiral zinc β-diiminates: factors affecting reactivity and isotacticity

Huiling Shao*, Yernaidu Reddi, Christopher J. Cramer

Corresponding Author: Huiling Shao (shaoh@umn.edu)

Dep	partment of Chemistry, Minnesota Supercomputing Institute and Chemical Theory Center, University of Minn Minneapolis, Minnesota 55455, United States	esota,
1.	Computational method benchmark of the initiation cycle	S1
2.	Higher energy conformations of the catalyst resting state	S2
3.	Higher energy conformations of IM2	S4
4.	Higher energy conformations of the CHO insertion transition state (TS1) and the Zn-acetate/Zn-	
alko	oxy dimer intermediate (IM3)	S6
5.	Less stable monomeric CHO insertion into Zn-acetate monomer of the initiation cycle	S8
6.	Scan of the CO ₂ insertion (TS2) transition state reaction coordinate	S8
7.	Less stable conformations of the Zn-alkoxy monomer IM6	S9
8.	Less stable conformations of the monomeric CO_2 insertion transition state (TS3)	S10
9.	Procedure to calculate %V _{bur} for each quadrant	S10
10.	Procedure to calculate the dispersive interaction energy between the substrates and the BDI	
liga	nd in each quadrant	S11
11.	Less favorable competing pathways along the cycle of propagation with C1	S13
12.	Effects of BDI backbone and N-Cy substitution on the rate- and enantioselectivity	S14
13.	PES of the cycle of initiation of C10-catalyzed CHO/CO2 copolymerization reaction	S15
14.	PES of the cycle of initiation of C19-catalyzed CHO/CO2 copolymerization reaction	S15
 Higher energy conformations of the CHO insertion transition state (TS1) and the Zn-acetate/Zn-alkoxy dimer intermediate (IM3) Less stable monomeric CHO insertion into Zn-acetate monomer of the initiation cycle Scan of the CO₂ insertion (TS2) transition state reaction coordinate Less stable conformations of the Zn-alkoxy monomer IM6 Less stable conformations of the monomeric CO₂ insertion transition state (TS3) Procedure to calculate %V_{bur} for each quadrant Procedure to calculate the dispersive interaction energy between the substrates and the BDI ligand in each quadrant Less favorable competing pathways along the cycle of propagation with C1 Effects of BDI backbone and <i>N</i>-Cy substitution on the rate- and enantioselectivity PES of the cycle of initiation of C10-catalyzed CHO/CO₂ copolymerization reaction 		S17

1. Computational method benchmark of the initiation cycle

We calculated the single point energy of key intermediates and transition states along the cycle of initiation of the C1-catalyzed CHO/CO₂ copolymerization reaction, and the rate-limiting TS1 with catalysts C10 (dichloro substituted) and C11 (dibromo substituted) with different DFT methods and basis set. As illustrated in **Table S1**, we used M06¹ and MN15² with a mixed basis set of SDD for Zn and 6-311+G(d,p)

for other atoms. We have also tested ωB97XD with a def2-TZVP³ basis set. Because the energies calculated with MN15 leads to consistent conclusions on the most favored reaction mechanism and the predicted enantioselectivity, we conclude that our choice of DFT functional in the manuscript is good enough to model this reaction. Noting that although M06 predicted the same enantioselectivity, it failed to describe the exergonic nature of the CHO/CO₂ copolymerization reaction. Moreover, because changing the basis set to def2TZVP had minimal effect on the computed energies, we conclude that our choice of basis set in the manuscript is good enough to model this reaction. The predicted higher enantioselectivity with catalyst C10 and C11 are maintained with different functional and basis sets as well.

TableS1. Benchmark of the computational methods of Zn-catalyzed CHO/CO₂ copolymerization reaction along the cycle of initiation. (All energies are in kcal/mol)

	SMD _(toluene) /M06/ 6-311+G(d,p)/SDD ΔE ΔG			_{ne)} /MN15/ (d,p)/SDD	SMD _(toluene) /ωb97XD /def2TZVP		
			ΔΕ ΔG		ΔE	ΔG	
IM1	0.0	0.0	0.0	0.0	0.0	0.0	
IM2	-6.0	9.7	-0.5	10.7	-6.2	9.5	
TS1	5.3	21.5	5.5	21.7	4.7	20.9	
TS1_SS	7.0	24.2	8.0	25.2	8.0	25.2	
IM3	-17.0	2.3	-17.9	1.4	-19.6	-0.3	
TS2	2.8	31.7	0.1	29.0	2.2	31.1	
IM4	-26.2	5.6	-32.8	-1.0	-31.1	0.7	
TS1b	7.4	40.5	5.2	38.3	5.2	38.3	
IM5	-26.3	9.9	-29.3	7.0	-29.2	7.0	
IM6	-7.5	1.2	-6.9	1.7	-7.5	1.1	
TS3	-5.3	15.0	-7.2	13.1	-3.8	16.5	
IM7	-11.6	11.2	-18.7	4.1	-14.6	8.1	
IM8	-58.5	4.7	-71.3	-8.1	-65.4	-2.3	
IM1_C10	0.0	0.0	0.0	0.0	0.0	0.0	
TS1_RR_C10	-0.9	16.3	2.4	19.6	2.0	19.2	
TS1_SS_C10	4.5	22.3	6.7	24.4	7.2	24.9	
IM1_C11	0.0	0.0	0.0	0.0	0.0	0.0	
TS1_RR_C11	0.0	17.4	3.0	20.4	2.5	19.9	
TS1_SS_C11	5.4	23.1	7.9	25.6	8.1	25.9	

2. Higher energy conformations of the catalyst resting state

We first investigated the identity of the resting state of catalyst C1 in the cycle of initiation (IM1). As shown in Figure S1, the formation of IM1 from the original C1 catalyst is thermodynamically favored by 8.1 kcal/mol. The formation of a potentially inactive catalyst C1_inactive, where two BDI ligands bind one Zn-center, is highly unfavorable evidenced by the high activation free energy of 45.6 kcal/mol, with respect to IM1. This is likely because of the steric repulsion between bulky ortho *N*-aryl substituents. In the most stable conformation of IM1 (*dimer-anti*), the *N*-aryl groups (colored in yellow) and the *N*-cyclohexyl groups (colored in red and blue) locate on different side of the plane created by the two Zn atoms and the two acetate groups. In the future discussions, whenever the *N*-aryl groups and the *N*-cyclohexyl groups locates on different side of the plane created by the two Zn atoms and the two acetate groups will be called *dimer-anti*. In IM1_syn, the *N*-aryl groups and the *N*-cyclohexyl groups locates on different side of the plane

created by the two Zn atoms and the two acetate groups, and this relative orientation will be called *dimersyn*. **IM1_syn** is 18.8 kcal/mol higher in energy with respect to **IM1**.

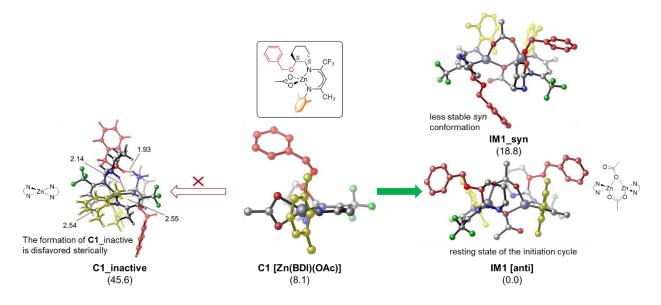


Figure S1. Formation of the resting state (IM1) of catalyst C1 in the cycle of initiation (ΔG in kcal/mol)

The acetate groups can also bridge the Zn-centers in an μ , η^2 -fashion (**IM1_8**). Because of the asymmetric nature of the BDI ligand used, the formed dimer compound consequently has four possible conformations (2 degrees of freedom) depending on the orientation of *N*-substituents. On top of the *dimeranti* and *dimer-syn* we defined, the relative position of the red part of the *N*-cyclohexyl group and the blue part of the *N*-cyclohexyl group will be identified as *Cy-anti* and *Cy-syn*. Take the lowest energy conformation of **IM1** for example. In **IM1_8_anti_anti**, the two *N*-aryl groups and the two *N*-cyclohexyl group sare on opposite side locate on different side of the plane created by the two Zn atoms (or the *xz* plane). The red part of the left *N*-cyclohexyl group and the two Zn atoms and the nitrogen atoms of the BDI ligands (or the *xy* plane). Among the four conformations, the **IM1_8_anti_anti** with the longest Zn-Zn separation (4.07Å) is the most stable conformation (7.6 kcal/mol). This conformation has also been observed by Coates in X-ray crystallography studies.⁴

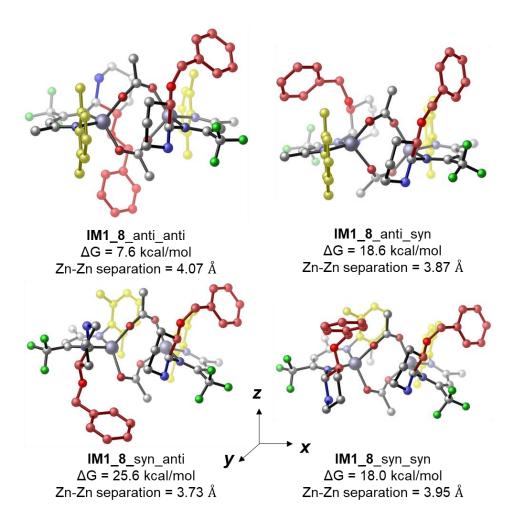


Figure S2. 4 conformations of the IM1_8 complex with bridging μ , η^2 -acetates

3. Higher energy conformations of IM2

The subsequent cyclohexene oxide (CHO) (purple) coordination introduced a third degree of conformational freedom (**Figure S3**). As such, a total of $2^3 = 8$ conformations is available of the **IM2**. In conformations where CHO substrate coordinates to the Zn-atom closer to the red part of the *N*-cyclohexyl substituent (left four conformations), we label them with *RED*; and in conformations where CHO substrate coordinates to the *N*-cyclohexyl substituent (right four conformations), we label them with *RED*; and in conformations where CHO substrate coordinates to the Zn-atom closer the blue part of the *N*-cyclohexyl substituent (right four conformations), we label them with *BLUE*. Among the 8 optimized conformations, **IM2** is the lowest energy conformation. In which the relative position of the two BDI ligands is *Cy-syn* and *Cy-anti*, with CHO coordinates to the Zn atom so it is closer to the *RED* label.

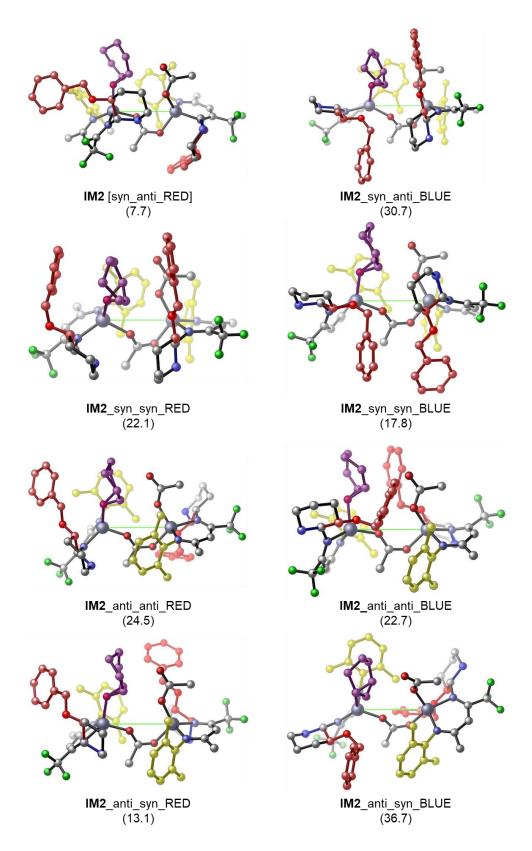


Figure S3. 8 conformations of the CHO coordinated IM2 (ΔG in kcal/mol)

4. Higher energy conformations of the CHO insertion transition state (TS1) and the Zn-acetate/Zn-alkoxy dimer intermediate (IM3)

On top of the three degrees of freedom we discussed in section 2 and 3, (*dimer-syn* and *dimer-anti*; *CY-syn* and *CY-anti*; *RED* and *BLUE*), the CHO ring-opening transition state (**TS1**) has two more degrees of freedom. Firstly, in the ring-opening transition state, the forming C-O bond can face closer to the *N*-cyclohexyl group (*bottom*) or to the *N*-aryl group (*top*) (Figure S4). Secondly, we can form *R*,*R* or *S*,*S* stereocenters after the ring-opening step.

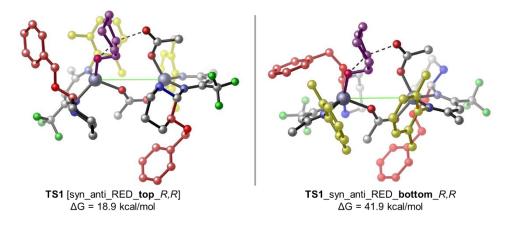


Figure S4. Illustration on the definition of top and bottom labels

As such, there are at least a total of $2^5 = 32$ conformations (16 of each enantiomers) of **TS1** and the subsequent Zn-acetate/Zn-alkoxy dimer intermediate (**IM3**). The computed activation of free energies is summarized in **Table S2**. The lowest energy conformations of **TS1_***R*,*R* and **TS1_***S*,*S* are entry 10 and 25, respectively.

#	dimer-anti	dimer-syn	Cy-anti	Cy-syn	RED	BLUE	bottom	top	R,R	S,S	∆G‡_TS1	ΔG_IM3
1	1		1		1		1		1		38.3	18.9
2	1		1		1			1	1		36.3	11.9
3	1		1			1	1		1		38.0	15.0
4	1		1			1		1	1		37.2	18.6
5	1			1	1		1		1		47.9	27.6
6	1			1	1			1	1		22.7	1.8
7	1			1		1	1		1		26.8	4.8
8	1			1		1		1	1		47.5	23.1
9		1	1		1		1		1		41.9	23.5
10		1	1		1			1	1		18.9	-2.2
11		1	1			1	1		1		27.9	7.5
12		1	1			1		1	1		45.2	26.6
13		1		1	1		1		1		32.1	11.3
14		1		1	1			1	1		31.1	7.6
15		1		1		1	1		1		46.3	23.2
16		1		1		1		1	1		34.9	8.4
17	1		1		1		1			1	29.1	8.8
18	1		1		1			1		1	35.0	13.6
19	1		1			1	1			1	33.7	13.8
20	1		1			1		1		1	31.0	11.6
21	1			1	1		1			1	23.0	1.6
22	1			1	1			1		1	46.9	27.5
23	1			1		1	1			1	40.9	17.9
24	1			1		1		1		1	24.3	6.3
25		1	1		1		1			1	22.8	2.5
26		1	1		1			1		1	48.4	26.4
27		1	1			1	1			1	41.8	22.9
28		1	1			1		1		1	31.8	12.3
29		1		1	1		1			1	32.2	11.4
30		1		1	1			1		1	42.5	25.4
31		1		1		1	1			1	33.6	14.1
32		1		1		1		1		1	32.5	12.4

Table S2. Calculated ΔG^{\ddagger} of TS1 and IM3 (All energies are calculated with respect to IM0 in kcal/mol)

We also observed a good correlation between the activation free energy of **TS1** and that of **IM3**. Overall, the kinetically more favorable CHO ring opening transition state **TS1** would form a thermodynamically more stable Zn-alkoxide intermediate **ii**. This observation is in good agreement with the Hammond postulate.



Figure S5. Correlation between ΔG^{\ddagger} of TS1 and ΔG of subsequent IM3

5. Less stable monomeric CHO insertion into Zn-acetate monomer of the initiation cycle

We have also calculated a potential monomeric CHO ring-opening transition state. Because **TS1_mono** is 35.0 kcal/mol higher in energy, with respect to **C1**, the monomeric CHO insertion is kinetically disfavored.

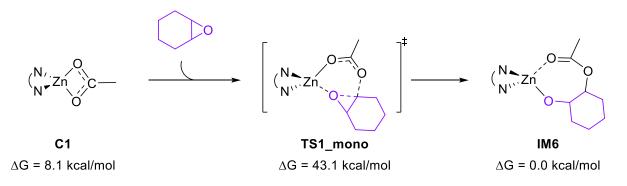
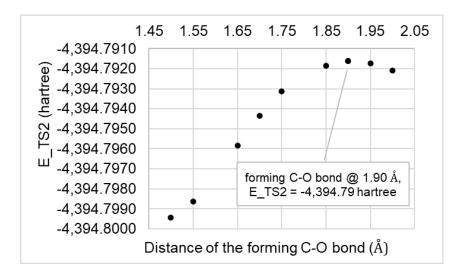
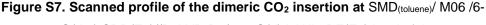




Figure S6. Correlation between ΔG^{\ddagger} of TS1 and ΔG of subsequent IM6

6. Scan of the CO₂ insertion (TS2) transition state reaction coordinate

Because we cannot locate the dimeric CO_2 insertion transition state after multiple attempts, we identified that the highest energy point along the reaction coordinate is at C-O distance at 1.90 Å (**Figure S7**). Scanning of the CO_2 insertion reaction coordinate is calculated at $SMD_{(toluene)}$ / M06 /6-311+G(d,p),SDD(Zn)//B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory.

311+G(d,p),SDD(Zn)//B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory

We then estimate the $\Delta G^{\ddagger}_{TS2}$ using a restrained modredundant calculation with C-O distance fixed at 1.90 Å, SMD_(toluene)/ ω B97XD /6-311+G(d,p),SDD(Zn)//B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory, which is the same method used in all other calculations presented in the main manuscript.

7. Less stable conformations of the Zn-alkoxy monomer IM6

We identified a total of four conformations of the Zn-alkoxy monomer **IM6**. In the lowest energy conformation **IM6** is stabilized by the chelation of backbone acetate group with the CHO substrate closer to *N*-aryl group. In **IM6a** the CHO substrate locates closer to the N-cyclohexyl group, and is disfavored by 12.8 kcal/mol. In **IM6b**, OBn chelates the Zn(II) center and is disfavored by 9.3 kcal/mol. **IM6c** with no extra chelation is also disfavored by 7.1 kcal/mol.

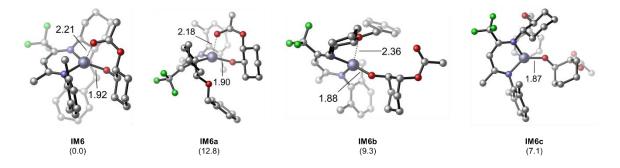


Figure S8. Conformations of IM6 (ΔG in kcal/mol)

8. Less stable conformations of the monomeric CO₂ insertion transition state (TS3)

Figure **S9** presents a total of 8 conformations of the monomeric CO₂ insertion transition state of the cycle of initiation. All 7 conformations (**TS3a** to **TS3g**) are less stable than **TS3**, in which the acetate group at the end of the growing polymer chain chelates the Zn center, and the OBn substituent of the *N*-cyclohexyl group points toward the BDI backbone.

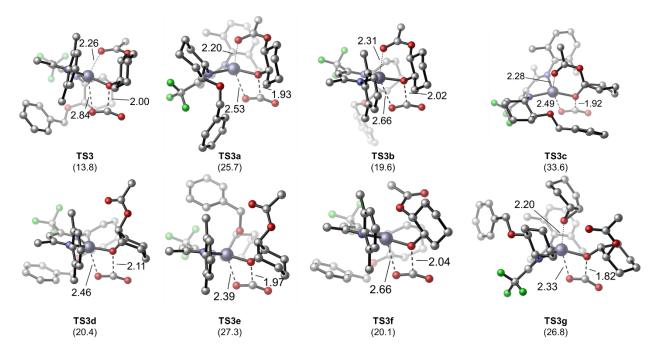


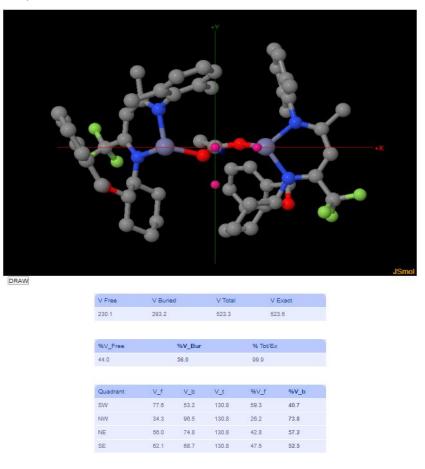
Figure S9. Conformations of TS3 (ΔG in kcal/mol)

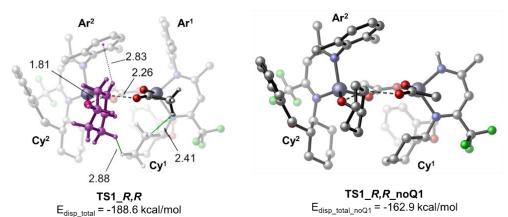
9. Procedure to calculate %V_{bur} for each quadrant

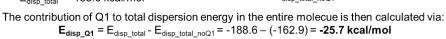
We calculate the %V_{bur} of the BDI ligand in each quadrant using the following procedure. Take the **TS1_***R*,*R* as an example:

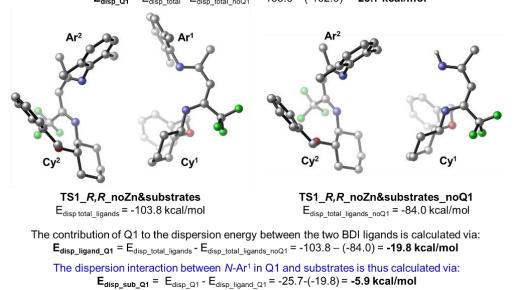
- 1) We first removed the CHO and inserting acetate group from the DFT optimized **TS1_***R***,***R*.
- 2) We then defined the cartesian coordinates using following procedure:
 - a. The *x*-axis is defined as the line connecting the two Zn-atoms
 - b. The origin is been set to the middle point of the line connecting the two Zn-atoms
 - c. The *z*-axis is defined as the line connecting the origin and the carbon of the acetate group in the back.
 - d. The y-axis is thus defined as the vertical line perpendicular to x- and z-axis
- 3) The %V_{bur} is then calculated using the SambVca 2.0^5 with following settings:
 - a. The center of the sphere is set to the defined origin (middle point of the line connecting the two Zn-atoms)

- b. The bondi radii is scaled by 1.17
- c. The sphere radius is set to 5.0 Å




Figure S10. Procedure to calculate %Vbur of BDI ligand in TS1_R,R


10. Procedure to calculate the dispersive interaction energy between the substrates and the BDI ligand in each quadrant


We calculated the dispersive interaction energy between the substrates and the BDI ligand in each quadrant using the following procedure. **Figure S11** depicts the procedure to calculate the dispersive interaction energy between the substrate and the Ar¹ of the BDI ligand in **TS1_***R*,*R*. The dispersion energy is calculated using the DFTD3 program.

- 1) We first calculated the dispersive interaction of Ar¹ in Q1 with rest of the molecule:
 - a. total dispersion energy in the DFT optimized structure of TS1_R,R is Edisp_total
 - b. After replacing the Ar¹ with a hydrogen, we calculated the total dispersion energy again (Edisp_total_noQ1)
 - c. As such, the difference between E_{disp_total} and E_{disp_total_noQ1} is the contribution of Q1 to the total dispersive interactions (E_{disp_Q1})

- 2) We then calculate the dispersive interaction of Ar¹ in Q1 with the other BDI ligand only:
 - a. We first removed both Zn atoms, both acetate groups, and the CHO substrate
 - b. Then we calculated the total dispersion energy between the two BDI ligands, which is Edisp_total_ligand
 - c. Then we replaced the Ar^1 with a hydrogen and calculated the $E_{disp_total_ligand_noQ1}$
 - d. The difference between E_{disp_total_ligand} and E_{disp_total_ligand_noQ1} is the contribution of Q1 to the dispersive interactions between the ligands (E_{disp_ligand_Q1})
- By taking the difference between E_{disp_Q1} and E_{disp_ligand_Q1}, we can calculate the dispersive interaction between the *N*-Ar¹ group and the substrates (both acetates and the CHO) E_{disp_sub_Q1} in TS1_*R*,*R*.

Figure S11. Procedure to calculate dispersive interaction energy between the substrate and the Ar¹ of the BDI ligand in **TS1_***R***,***R*

11. Less favorable competing pathways along the cycle of propagation with C1

We have also considered the two possible competing pathways from the Zn-alkoxy/Zn-carbonate mixed dimer **IM12**. The free energy of activation of a dimeric CO₂ insertion is estimated from restrained calculation by fixing the forming C-O bond at 2.00 Å. The high kinetic energy barriers of **TS2_propagation** and **TS1b_propagation** suggest neither pathways are operative along the cycle of propagation with **C1**.

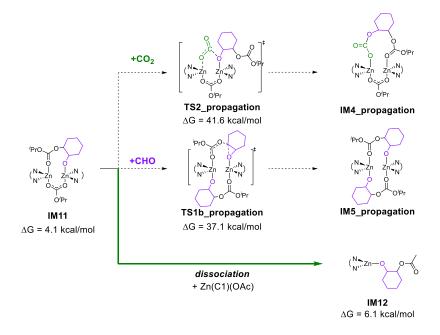


Figure S12. Higher energy competing pathways along the cycle of propagation

Because we cannot locate the dimeric CO₂ insertion transition state in the propagation cycle after multiple attempts, we identified that the highest energy point along the reaction coordinate is at C-O distance at 2.00 Å (**Figure S13**). Scanning of the CO₂ insertion reaction coordinate is calculated at SMD_(toluene)/ ω B97XD /6-311+G(d,p),SDD(Zn)//B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory. We then calculated the frequencies using a restrained modredundant calculation with C-O distance fixed at 2.00 Å, at B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory, which is the same method used in all other calculations presented in the main manuscript.

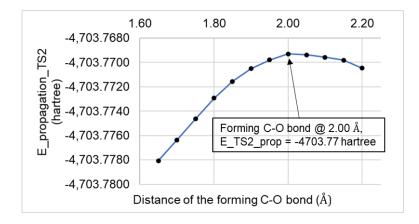


Figure S13. Scanned profile of TS2_propagation at SMD_(toluene)/ ωB97XD /6-311+G(d,p),SDD(Zn)//B3LYP-D3/6-31G(d),LANL2DZ(Zn) level of theory

12. Effects of BDI backbone and *N*-Cy substitution on the rate- and enantioselectivity

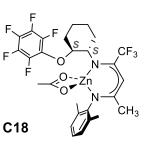
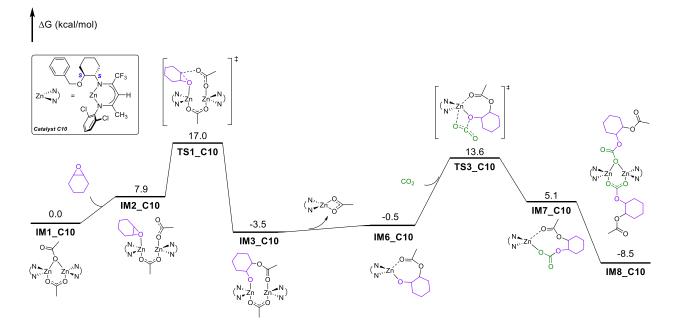

The computed ΔG^{\ddagger} for BDI ligand backbone substituted catalysts (C12-C17) are almost similar or higher than that with the C1 catalyst. Among the series, C13 and C14 slightly improve the enantioselectivity, the calculated reactivity is much lower than the parent C1 catalyst. As such, we concluded that modification of the BDI ligand backbone does not further improve the reactivity nor enantioselectivity as compared with catalyst C1.

Table S3. Effects of electronically and sterically distinct backbone substituents of the BDI ligand on the rate and enantioselectivity of the initiation cycle of CHO/CO2 copolymerization reaction

	catalyst	R4 =	R ⁵ =	$\Delta G^{\ddagger}_{R,R}$	∆G‡ _{S,S}	ΔΔG‡
	C12	CF ₃	CF ₃	19.0	23.1	4.1
	C13	CH₃	CF ₃	22.8	26.2	5.1
N R ⁵	C14	CH₃	CH₃	22.7	26.3	5.4
	C15	CF ₃	Et	22.8	25.1	3.5
Catalyst #	C16	CF ₃	iPr	24.1	26.8	4.0
	C17	CF ₃	OMe	23.2	26.0	3.6


*All energies in kcal/mol

We studied **C18** (with C₆F₅ substituent instead of OBn on the *N*-cyclohexyl group) catalyzed CHO/CO₂ copolymerization reaction. The calculated $\Delta G^{\ddagger}_{R,R_{-}C18} = 15.9$ kcal/mol and $\Delta G^{\ddagger}_{S,S_{-}C18} = 19.6$ kcal/mol. As such, **C18** is predicted to show very similar enantioselectivity and higher reactivity of CHO/CO₂ copolymerization reaction as compared with catalyst **C1** ($\Delta G^{\ddagger}_{R,R_{-}C1} = 18.9$ kcal/mol and $\Delta G^{\ddagger}_{S,S_{-}C1} = 22.8$ kcal/mol).

13.PES of the cycle of initiation of C10-catalyzed CHO/CO₂ copolymerization reaction

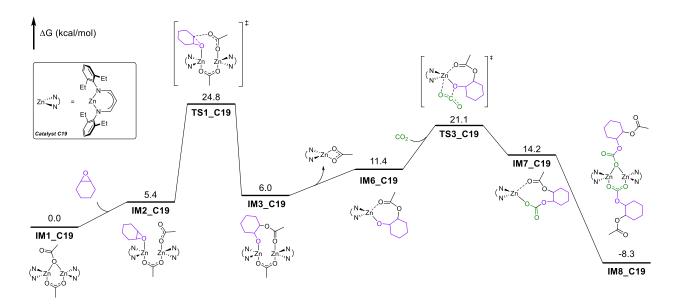

The **C10**-catalyzed CHO/CO₂ copolymerization reaction proceeds via the same mixed reaction mechanism. The dimeric CHO ring-opening (**TS1**) is the rate- and enantioselectivity determining step of the cycle of initiation.

Figure S14. Computed potential energy surface of the initiation cycle of the **C10**-catalyzed CO₂/CHO copolymerization reaction

14.PES of the cycle of initiation of C19-catalyzed CHO/CO₂ copolymerization reaction

In 2003, Coates group reported catalyst **C19** to be an active catalyst for CHO/CO₂ copolymerization reaction to produce high % carbonate linkages and good TOF.⁶ Figure S15 summarized the computed PES of the initiation mechanism of the **C19**-catalyzed CHO/CO₂ copolymerization reaction. The **C19**-catalyzed CHO/CO₂ copolymerization reaction proceeds via the same mixed reaction mechanism. Because the dimeric CHO ring-opening (**TS1_C19**) requires higher free energy of activation (24.8 kcal/mol) than the monomeric CO₂ insertion (**TS3_C19**), (21.1 kcal/mol), we conclude that the **TS1_C19** is the rate-limiting step of the cycle of initiation with the C2 symmetric catalyst **C19**.

Figure S15. Computed potential energy surface of the initiation cycle of the **C19**-catalyzed CO₂/CHO copolymerization reaction

15. Energies of all structures in main article

Main-Article	E ZP							E_sol-wb97
								100 50000
CO2	-188.582581	0.011592	-188.567397	0.02431	0.02431	-188.591707	-188.591707	-188.58082
R_S_Epoxide	-309.875843	0.152634	-309.716323	0.036424	0.036422	-309.752746		-309.84882
IM1	-3574.882217	1.14363	-3573.661739	0.194332	0.182427	-3573.856071		-3897.62950
IM2	-3884.768248	1.298609	-3883.385448	0.209835	0.19682	-3883.595283		-4207.49092
TS1	-3884.755698	1.297975	-3883.37422	0.20732	0.194822	-3883.58154		-4207.47371
IM3	-3884.791745	1.301669	-3883.407291	0.204274	0.192747	-3883.611565		-4207.51241
TS2	-4073.352941	1.31285	-4071.95376	0.215479	0.201317	-4072.169238		-4396.0610
IM4	-4073.405354	1.316501	-4072.002857	0.211865	0.20005	-4072.214722		-4396.11369
TS1b	-4194.635432	1.454262	-4193.091084	0.221761	0.207802	-4193.312845		-4517.32552
IM5	-4194.686121	1.458101	-4193.13855	0.219368	0.205997	-4193.357918		-4517.3795
IM6	-2097.326711	0.727626	-2096.554537	0.121512	0.116559	-2096.676049		
TS3	-2285.913058	0.740696	-2285.124812	0.128977	0.123139	-2285.253789		-2447.25455
IM7	-2285.930599	0.743555	-2285.140046	0.12699	0.121479	-2285.267036		-2447.27046
IM8	-4571.928264	1.489113	-4570.343807	0.232432	0.218266	-4570.576238	-4570.562072	-4894.60237
TS1_SS	-3884.754773	1.298672	-3883.373001	0.204939	0.193472	-3883.57794	-3883.566473	-4207.46914
IM9	-3882.636124	1.268547	-3881.284042	0.20653	0.194985	-3881.490573	-3881.479027	-4205.36106
IM10	-4192.531506	1.423118	-4191.017328	0.223013	0.209841	-4191.240341	-4191.227169	-4515.22392
TS4_R_R	-4192.506623	1.422242	-4190.994008	0.221112	0.208168	-4191.21512	-4191.202176	-4515.19650
TS4 S S	-4192.50701	1.423032	-4190.993827	0.219852	0.20738	-4191.213679	-4191.201207	-4515.19493
IM11 R R	-4192.537517	1.426193	-4191.021594	0.218688	0.20637	-4191.240283	-4191.227964	-4515.23278
IM12	-2251.19394	0.789919	-2250.356049	0.128904	0.123209	-2250.484953		-2412.53268
TS5	-2439.780757	0.803147	-2438.926735	0.136134	0.129563	-2439.062869		-2601.11052
IM13	-2439.800834	0.805667	-2438.944618	0.135132	0.128723	-2439.079751		-2601.13016
IM14	-4879.666399	1.613403	-4877.95062	0.249347	0.232423	-4878.199967		-5202.31907
11112-1	4075.000555	1.013403	4077.55002	0.243347	0.232423	40/0.15550/	40/0.105044	5202.51507
IM1 C2	-3574.880889	1.14267	-3573.660636	0.198732	0.184776	-3573.859368	-3573.845412	-3897.62514
TS1 RR C2	-3884.75635	1.296931	-3883.37524	0.138732	0.19671	-3883.5855		-4207.46567
TS1_KK_C2 TS1_SS_C2	-3884.759401	1.298021		0.205923	0.194255	-3883.583854		-4207.46932
			-3883.377932		0.194255	-3416.663656		
IM1_C3_real	-3417.586201	1.03254	-3416.483801	0.179855				-3740.35571
TS1_RR_C3	-3727.459635	1.185723	-3726.197692	0.19164	0.180501	-3726.389332		-4050.19473
TS1_SS_C3	-3727.462498	1.186935	-3726.199133	0.191294	0.180594	-3726.390427		-4050.19636
IM1_C4	-4765.75522	1.051021	-4764.619875	0.211172	0.197703	-4764.831047		-5088.56815
TS1_RR_C4	-5075.62729	1.205328	-5074.330874	0.226052	0.210413	-5074.556927		-5398.40878
TS1_SS_C4	-5075.625129	1.205826	-5074.328739	0.22137	0.208148	-5074.550109		-5398.40502
IM1_C5	-3732.157979	1.259816	-3730.816402	0.204477	0.192039	-3731.020879		-4054.8863
TS1_RR_C5	-4042.030323	1.414141	-4040.527631	0.21916	0.205037	-4040.746791		-4364.7290
TS1_SS_C5	-4042.027119	1.41459	-4040.524263	0.217778	0.204199	-4040.742041		-4364.72159
IM1_C6	-3889.438735	1.374314	-3887.977616	0.212215	0.200581	-3888.189832		-4212.14703
TS1_RR_C6	-4199.304518	1.528917	-4197.680616	0.231185	0.216511	-4197.911801	-4197.897127	-4521.98133
TS1_SS_C6	-4199.297252	1.528887	-4197.67507	0.225675	0.212754	-4197.900745	-4197.887824	-4521.97400
IM1_C7	-3814.515522	0.999743	-3813.442523	0.186305	0.174667	-3813.628828	-3813.61719	-4137.30366
TS1_RR_C7	-4124.392522	1.153885	-4123.158618	0.199084	0.187603	-4123.357702	-4123.34622	-4447.1508
TS1_SS_C7	-4124.391274	1.153856	-4123.157586	0.198118	0.186868	-4123.355705	-4123.344454	-4447.14710
IM1_C8	-4012.975915	0.983221	-4011.917606	0.190944	0.178383	-4012.108549	-4012.095989	-4335.78022
TS1_RR_C8	-4322.853652	1.137339	-4321.634452	0.203507	0.19118	-4321.837959	-4321.825632	-4645.62826
TS1_SS_C8	-4322.852957	1.137355	-4321.633993	0.202089	0.190338	-4321.836082	-4321.824331	-4645.62412
IM1_C9	-4409.846616	0.950053	-4408.817089	0.200408	0.187261	-4409.017497	-4409.00435	-4732.67980
TS1_RR_C9	-4719.726513	1.104813	-4718.536022	0.209633	0.198035	-4718.745655	-4718.734057	-5042.52730
TS1_SS_C9	-4719.726667	1.104407	-4718.536578	0.20966	0.197911	-4718.746238		-5042.52457
IM1_C10	-5255.960909	0.992374	-5254.893121	0.195205	0.180685		-5255.073806	
TS1 RR C10	-5565.842758	1.147619	-5564.613351	0.204716	0.192128		-5564.805479	
TS1 SS C10	-5565.838727	1.147786	-5564.609427	0.202798	0.192120	-5564.812225		-5888.61950
IM1_C11	-13700.81917	0.990806	-13699.75199	0.19803	0.1911		-13699.93544	-14034.6402
	-14010.70396	1.146301	-14009.47504	0.19803	0.183451		-14009.66963	-14034.640
TS1_RR_C11								
TS1_SS_C11	-14010.69877	1.146185	-14009.47012	0.206534	0.193839	-14009.67665	-14009.66396	-14344.4797
	FF (2) 74 (2020	4 4 - 7 - 6	FF 60 F 1 6	0 007/	0.100755	FFC3 7000	FF(2) 74 02	5000 510 5
IM9_dCl	-5563.716329	1.117461	-5562.516654	0.207166	0.193709		-5562.710363	-5886.51064
TS4_R_R_dCl	-5873.597247	1.271788	-5872.236885	0.217765	0.205		-5872.441885	-6196.3529
TS4 S S dCl	-5873.589758	1.271482	-5872.229281	0.22019	0.206173		-5872.435454	-6196.34635

*All energies in this table are in hatree

References:

(1) Zhao, Y.; Truhlar, D. G. The M06 suite of density function-als for main group thermochemistry, thermochemical kinet-ics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.*, **2008**. *120*. 215-241

(2) Haoyu, S. Y.; He, X.; Li, S. L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange– correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chem. Sci.*, **2016**. *7*, 5032-5051.

(3) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. *J. Chem. Phys.*, **1992**. *97*, 2571-2577

(4) Ellis, W. C.; Jung, Y.; Mulzer, M.; Di Girolamo, R.; Lobkovsky, E. B.; Coates, G. W. Copolymerization of CO 2 and meso epoxides using enantioselective β -diiminate catalysts: a route to highly isotactic polycarbonates. *Chem. Sci.*, **2014**. *5*, 4004-4011.

(5) Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. *Organometallics*, **2016**. *35*, 2286-2293.

(6) Moore, D.R.; Cheng, M.; Lobkovsky, E.B.; Coates, G.W. Mechanism of the alternating copolymerization of epoxides and CO2 using β -diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. *J. Am. Chem. Soc*, **2003**. *125(39)*, 11911-11924.