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Figure S1. Experimental setup for the photosubstitution experiments with blue LED.
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Figure S2. Absorption spectral changes of 1a during the titrtation eximeriments with DBU as a base.
Inset shows the changes of absorption at 514 nm upon the addition of DBU. The absorption maxima (500

nm) of mono-deprotonated complex 1b coincides with the reported value.> Absorption spectra upon

addition of excess amount of DBU are shown in Figure S5.
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Figure S3. (A) *H NMR spectra of 1a (5 mM) during the titration experiment with lutidine (pKa = 14.13
in acetonitrile?) in 90 % CHsCN and 10 % CDsCN. (B) Plots of chemical shift of a singlet peak at 6.36
ppm upon the addition of lutidine. (C) Titration plot for deprotonation of 1a to 1b upon addition with
lutidine.
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Figure S3. (Continued)
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In acetonitrile, 1a deprotonated quantitatively with DMAP (see Figure 3). The chemical shift of pyrazole
proton at 6.36 ppm shifted to 6.11 ppm. The chemical shift of the pyrazole proton for 1a (dia) and 1b
(o10) were determined as 6.36 and 6.11 ppm, respectively. The proportion of 1a to the total concentration
of ruthenium complexes was calculated from the equation:
[1a]  _ [Sobsa — S1p
[1a] + [1b] 81a — O1p

where &psd is the observed chemical shift. In the titration experiment with lutidine (pKa = 14.132), the

pKa value of 1a was determined from the linear plot of [1b][lutidineH] / [1a] versus [lutidine].® The
concentrations of lutidine and protonated lutidine (lutidineH) were assumed to be equal. The slope of the
line represents an equilibrium constant value of K = 0.076
where:
[1b][lutidineH]
[1a][lutidine]

The pK was 1.12, which corresponds to the difference of pKa values of 1a and lutidine. The pKa of 1a

was determined to be 15.2.
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Figure S4. (A) Absorption spectral changes of 1b during the titration experiments with TBD in MeCN.
Inset shows the changes of absorption at 620 nm upon addition of TBD (pKa = 26.03). The absorption
maxima (572 nm) of neutral complex is close to the reported value of neutral complex 1c (581 nm) in
DMF. (B) Titration plot for deprotonation of 1b to 1c upon addition with TBD
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Figure S5. (A) Absorption spectral changes of 1b during the titration experiments with DBU in MeCN.
Inset shows the changes of absorption at 620 nm upon addition of DBU (pKa = 24.34). (B) Titration plot
for deprotonation of 1b to 1c upon addition with DBU.
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Determination of pKa value by absorption spectroscopy
The pKa value of 1b was determined from absorption spectroscopy instead of *H NMR spectroscopy due
to the poor solubility of 1c. The proportion of 1b was calculated from the following equation:

[1b]  _ |Ainf — Aobsd

[1b] + [1c] Aing — Ao
where Aint, Aobsd, Ao Were absorbance of 1c in the presence of 500 equivalents of TBD (pKa = 26.09?),

observed absorbance during the titration experiment, initial absorbance of 1b before titration. The pKa
value of 1b was determined from the linear plot of [1c][TBDH]/ [1b] versus [TBD].2 The concentrations
of TBD and protonated TBD (TBDH) were assumed to be equal. The slope of the line represents an
equilibrium constant value of K = 0.132 as shown in Figure S4B.

where:
[1c][TBDH]

~ [1b][TBD]
The pK was 0.88, which corresponds to the difference of pKa values of 1b and TBD. The pKa of 1b

was determined to be 26.9.

The titration experiments were carried out with DBU (pKa = 24.34%) (Figure S5). In the same manner,
The pKa value of 1b was determined from the linear plot of [1c][DBUH] / [1b] versus [DBU]. The slope
of the line represents an equilibrium constant value of K’ =0.00127
where:
[1c][DBUH]
~ [1b][DBU]
The pK was 2.89, which corresponds to the difference of pKa values of 1b and DBU. The pK, of 1b

/

was estimated to be 27.2, which approximately coincides with the pKa value of 26.9 estimated from the
titration with TBD.
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Figure S6. Absorption spectra of (A) [Ru(bpy)s]** (32 uM) and TEACI (10 mM), (B) [Ru(bpy)s]** (32
uM), (C) cis-[Ru(bpy)2(py)2]?>* (0-15sec), and (D) cis-[Ru(bpy)2(py)2]?* (30-60 sec) during photolysis
with blue LED (A = 470 nm, 14 mW cm™2) in acetonitrile containing 10 mM TEACI at 298 K. Insets in
Figure S7(C) show Kinetic traces based on the absorbance changes (black dots) and fitting curves (red

line).
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Figure S7. (A) 'H NMR spectra of cis-[Ru(bpy)2(MeCN)2]** (1.0 mM), during photolysis with
polychromatic light (A > 340 nm, 70 mW cm=?) in CHsCN and CD3CN (CHsCN : CDsCN = 1:1)
containing 10 mM TEACI. Peaks of cis-[Ru(bpy)2(MeCN)z]?* and cis-[Ru(bpy)2(MeCN)CI]* are
highlighted with gray and red, respectively. (B) Kinetic traces of cis-[Ru(bpy)2(MeCN)2]?* (black) and
cis-[Ru(bpy)2(MeCN)CI]* (red), where the concentrations of the reactant and product were calculated

based on the integrations at 9.33 and 9.38 ppm, respectively.
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Figure S8. Absorption spectra of 1¢ (37 uM) and TBD (16 mM) during photolysis with blue LED (A =
470 nm, 14 mW cm ?) in acetonitrile containing 10 mM TEACI. Insets show kinetic traces based on the

absorbance changes (black dots) and fitting curves (red line).
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Figure S9. (A) 'H NMR spectra of 1b (0.4 mM), during photolysis with polychromatic light (A > 340
nm, 70 mW cm) in acetonitrile/CD3CN containing 4 mM DMAP. (B) Kinetic traces of 1b during
photolysis in the absence (black) and presence (red) of TEACI. The concentration of 1b was calculated
based on the integrations of the peak at 7.22 ppm.
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Figure S10. Absorption spectra of (A) 1b (38 uM) with 4 mM DMAP and (B) 1b (38 uM) with 0.4 M
DMAP during photolysis with blue LED (A = 470 nm, 14 mW cm?) in the absence of TEACI in
acetonitrile. The increase of absorbance below 340 nm may be an absorption band of protonated DMAP
(DMAPH"), * which was formed overtime by the protonation with trace amount of water. (C) Kinetic
traces of 1b based on the absorbance changes at 540 nm in the presence of 0.4 M DMAP (black), 4 mM
DMAP (red), and 4 mM DMAP and 0.01 M TEACI (blue).
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Figure S11. Absorption spectra of 1¢ (33 uM) and TBD (10 mM) during photolysis with blue LED (A =
470 nm, 14 mW cm?) in acetonitrile. Inset shows kinetic traces base on the absorbance changes at 552nm

of the sample solution containing 1¢ and TBD (black) and 1¢, TBD, and TEACI (blue)
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Figure S12. Normalized absorption spectra of 1b in TFE (black), water (red, pH = 12), MeCN (blue),
DMSO (cyan) , and MeOH (green).
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Figure S13. Optimized structures of 1a (left), 1b (center), and 1c (right), which were optimized at the
B3LYP level of DFT using LanL2DZ basis set in Gaussian 09.
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Figure S14. Energy level diagram of molecular orbitals (HOMO-12 to LUMO+12) of 1a, 1b, and 1c.

Complex geometries were fully optimized under gaseous conditions using the B3LYP method.
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Figure S15. Frontier molecular orbitals of 1a, 1b, and 1c.
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Table S1. Selected crystallographic parameters

compounds [1a](CF3SOs3), [1b](PFes)
empirical formula RuS2Fs06NgCasH24 RuPFgNgC2sH23
fw 847.74 693.56
radiation Mo Ka Mo Ka
crystal system monoclinic orthorhombic
space group C2/c P21212;

a, A 22.637(10) 11.9435(2)
b, A 11.256(5) 12.3203(2)
c, A 16.144(13) 18.0256(3)
a, deg 90 90

p, deg 128.144(4) 90

y, deg 90 90

Vv, A3 3235(3) 2652.42(8)
z 4 4

u, mm-?t 0.705 0.728

T, K 100 100

deal, g/cm?® 1.741 1.737

Trmin, Tmax 0.5844, 0.7456 0.711, 0.745
Nref 3712 5236

R[F? > 26(F?)] 0.0632 0.0173
WR[F? > 20(F?)] 0.1076 0.0429
GOF 1.0195 1.054
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Table S2 Selected bond distances (A) and angles (°)

[1a](CFsSOs). [1b](PFe)
Ru1-N1ppy 2.057(5) 2.0696(16)
Ru1-N1ppy 2.065(4) 2.0552(16)
Ru1-N3pz+ 2.087(5)

Ru1-N3ppy 2.0482(15)
Ru1-Ndppy 2.0510(16)
Ru1-N5pz+ 2.0917(17)
Ru1-N7p; 2.0960(15)
N1ppy-Ru1-N1ppy 89.9(3)

N1ppy-RU1-N2ppy 79.12(18), 95.02(18) 97.13(17)
N1ppy-Ru1-N3pz+ 176.27(18), 90.26(16)

N2ppy-RU1-N2ppy 171.8(3)

N2ppy-RU1-N3pz+ 88.68(17), 97.15(18)

N3pzH-RUL-N3pz+ 89.8(3)

N 1ppy-RU1-N3ppy 174.66(6)
N Lopy-RuU1-Nppy 98.84(6)
NLpy-RU1-N5pz+ 85.30(6)
N1ppy-RU1-N7,; 97.28(6)
N25py-RU1-N3ppy 96.08(6)
N2bpy-RUL-Nppy 87.62(6)
N2ppy-RU1-N5pzH 91.94(6)
N2bpy-RUL-N7p, 174.70(6)
N3ppy-RUL-Ndppy 174.70(6)
N3ppy-RU1-N5pzH 96.72(6)
N3ppy-RUL-N7p; 87.63(6)
N4ppy-RU1-N5pz+ 175.66(6)
N4ppy-RU1-N7,; 89.38(6)
N5pz1-RU1-N7,; 91.37(6)
Ngzpe+ N 3.180(9)

N6yt =++N8 5o 2.623(2)
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