Supporting Information for

Intramolecular Hydrogen Bonding: A Key Factor Controlling Photosubstitution of Ruthenium Complexes

Masanari Hirahara*a ${ }^{*}$, Hiroyuki Nakano, Kyohei Uchida ${ }^{\text {a }}$, Rei Yamamoto ${ }^{\text {a }}$, and Yasushi Umemura ${ }^{\text {a }}$ Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686

E-mail: hirahara@nda.ac.jp

Supporting Information

Contents

Experimental details for photosubstitution reactions S3
Figure S1—Experimental setup for light irradiation with a blue LED lamp S3
Titration experiments for pKa determination S4
Figure S2—Absorption spectra of 1a during titration with DBU (0-3.0 equivalents) S4
Figure $\mathrm{S} 3-{ }^{1} \mathrm{H}$ NMR spectra during titration experiments with lutidine \quad S5
Determination of $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 a} \quad$ S6
Figure S4—Absorption spectra of $\mathbf{1 b}$ during titration with TBD (1-40 equivalents) S7
Figure S5-Absorption spectra of 1b during titration with DBU (1-50 equivalents) S8
Determination of $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 b} \quad \mathrm{S} 9$
Additional absorption and ${ }^{1} H$ NMR spectra \quad S10
Figure S6-Absorption spectra of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ and cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right]^{2+}$ during photolysis \quad S10
Figure S7— ${ }^{1} \mathrm{H}$ NMR spectra of cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN})_{2}\right]^{2+}$ during photolysis S11
Figure S8—Absorption spectra of $\mathbf{1 c}(37 \mu \mathrm{M})$ and TBD $(16 \mathrm{mM})$ during photolysis with TEACl \quad S12
Figure S9-1 H NMR spectra of $\mathbf{1 b}$ in the absence of TEACl during photolysis S13
Figure S10-Absorption spectra of $\mathbf{1 b}$ in the absence of TEACl during photolysis S14
Figure S11- ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 c}$ in the absence of TEACl during photolysis S15
Figure S12—Normalized absorption spectra of 1b in various solvents S16
DFT calculation results S17
Figure S13-Optimized structures of 1a, 1b, and 1c. S17
Figure S14—Energy level diagram of molecular orbitals of 1a, 1b, and 1c. S18
Figure S15—Frontier molecular orbitals of 1a, 1b, and 1c. S19
Tables for X-ray crystallography S20
Table S1—Selected crystallographic parameters S20
Table S2—Selected bond distances (\AA) and angles $\left({ }^{\circ}\right) \quad$ S21

References

Quartz Cuvette with Quartz to Pyrex Graded Seal Tube
Figure S1. Experimental setup for the photosubstitution experiments with blue LED.

Figure S2. Absorption spectral changes of 1a during the titrtation eximeriments with DBU as a base. Inset shows the changes of absorption at 514 nm upon the addition of DBU. The absorption maxima (500 nm) of mono-deprotonated complex $\mathbf{1 b}$ coincides with the reported value. ${ }^{1}$ Absorption spectra upon addition of excess amount of DBU are shown in Figure S5.

Figure S3. (A) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}(5 \mathrm{mM})$ during the titration experiment with lutidine $\left(\mathrm{p} K_{\mathrm{a}}=14.13\right.$ in acetonitrile ${ }^{2}$) in $90 \% \mathrm{CH}_{3} \mathrm{CN}$ and $10 \% \mathrm{CD}_{3} \mathrm{CN}$. (B) Plots of chemical shift of a singlet peak at 6.36 ppm upon the addition of lutidine. (C) Titration plot for deprotonation of $\mathbf{1 a}$ to $\mathbf{1 b}$ upon addition with lutidine.

Figure S3. (Continued)

In acetonitrile, 1a deprotonated quantitatively with DMAP (see Figure 3). The chemical shift of pyrazole proton at 6.36 ppm shifted to 6.11 ppm . The chemical shift of the pyrazole proton for $\mathbf{1 a}\left(\delta_{\mathbf{1}}\right)$ and $\mathbf{1 b}$ ($\delta_{\mathbf{1 b}}$) were determined as 6.36 and 6.11 ppm , respectively. The proportion of $\mathbf{1 a}$ to the total concentration of ruthenium complexes was calculated from the equation:

$$
\frac{[\mathbf{1 a}]}{[\mathbf{1 a}]+[\mathbf{1 b}]}=\left|\frac{\delta_{\mathrm{obsd}}-\delta_{\mathbf{1 b}}}{\delta_{\mathbf{1 a}}-\delta_{\mathbf{1 b}}}\right|
$$

where $\delta_{\text {obsd }}$ is the observed chemical shift. In the titration experiment with lutidine ($\mathrm{p} K_{\mathrm{a}}=14.13^{2}$) , the $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 a}$ was determined from the linear plot of [1b][lutidineH] / [1a] versus [lutidine]. ${ }^{3}$ The concentrations of lutidine and protonated lutidine (lutidineH) were assumed to be equal. The slope of the line represents an equilibrium constant value of $K=0.076$ where:

$$
K=\frac{[1 \mathrm{~b}][\text { lutidineH }]}{[1 \mathrm{a}][\text { lutidine }]}
$$

The $\mathrm{p} K$ was 1.12 , which corresponds to the difference of $\mathrm{p} K_{\mathrm{a}}$ values of $\mathbf{1 a}$ and lutidine. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 a}$ was determined to be 15.2.

Figure S4. (A) Absorption spectral changes of $\mathbf{1 b}$ during the titration experiments with TBD in MeCN. Inset shows the changes of absorption at 620 nm upon addition of TBD ($\mathrm{p} K_{\mathrm{a}}=26.03$). The absorption maxima (572 nm) of neutral complex is close to the reported value of neutral complex $\mathbf{1 c}(581 \mathrm{~nm})$ in DMF. (B) Titration plot for deprotonation of $\mathbf{1 b}$ to $\mathbf{1 c}$ upon addition with TBD

Figure S5. (A) Absorption spectral changes of $\mathbf{1 b}$ during the titration experiments with DBU in MeCN. Inset shows the changes of absorption at 620 nm upon addition of DBU ($\mathrm{p} K_{\mathrm{a}}=24.34$). (B) Titration plot for deprotonation of $\mathbf{1 b}$ to $\mathbf{1 c}$ upon addition with DBU.

Determination of $\mathrm{p} K_{\mathrm{a}}$ value by absorption spectroscopy
The $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 b}$ was determined from absorption spectroscopy instead of ${ }^{1} \mathrm{H}$ NMR spectroscopy due to the poor solubility of $\mathbf{1 c}$. The proportion of $\mathbf{1 b}$ was calculated from the following equation:

$$
\frac{[\mathbf{1 b}]}{[\mathbf{1 b}]+[\mathbf{1 c}]}=\left|\frac{A_{\mathrm{inf}}-A_{\mathrm{obsd}}}{A_{\mathrm{inf}}-A_{0}}\right|
$$

where $A_{\text {inf }}, A_{\text {obsd }}, A_{0}$ were absorbance of $\mathbf{1 c}$ in the presence of 500 equivalents of $\mathrm{TBD}\left(\mathrm{p} K_{\mathrm{a}}=26.09^{2}\right)$, observed absorbance during the titration experiment, initial absorbance of $\mathbf{1 b}$ before titration. The $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 b}$ was determined from the linear plot of $[\mathbf{1 c}][T B D H] /[\mathbf{1 b}]$ versus [TBD]. ${ }^{3}$ The concentrations of TBD and protonated TBD (TBDH) were assumed to be equal. The slope of the line represents an equilibrium constant value of $K=0.132$ as shown in Figure S4B.
where:

$$
K=\frac{[1 \mathrm{c}][\mathrm{TBDH}]}{[1 \mathrm{~b}][\mathrm{TBD}]}
$$

The $\mathrm{p} K$ was 0.88 , which corresponds to the difference of $\mathrm{p} K$ a values of $\mathbf{1 b}$ and TBD. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 b}$ was determined to be 26.9.

The titration experiments were carried out with $\operatorname{DBU}\left(\mathrm{p} K_{\mathrm{a}}=24.34^{2}\right)$ (Figure S5). In the same manner, The $\mathrm{p} K_{\mathrm{a}}$ value of $\mathbf{1 b}$ was determined from the linear plot of $[\mathbf{1} \mathbf{c}][\mathrm{DBUH}] /[\mathbf{1 b}]$ versus [DBU]. The slope of the line represents an equilibrium constant value of $K^{\prime}=0.00127$ where:

$$
K^{\prime}=\frac{[1 \mathrm{c}][\mathrm{DBUH}]}{[1 \mathrm{~b}][\mathrm{DBU}]}
$$

The $\mathrm{p} K$ was 2.89 , which corresponds to the difference of $\mathrm{p} K_{\mathrm{a}}$ values of $\mathbf{1 b}$ and DBU. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 b}$ was estimated to be 27.2 , which approximately coincides with the $\mathrm{p} K_{\mathrm{a}}$ value of 26.9 estimated from the titration with TBD.

Figure S6. Absorption spectra of (A) $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}(32 \mu \mathrm{M})$ and TEACl $(10 \mathrm{mM})$, (B) $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}(32$ $\mu \mathrm{M})$, (C) cis-[Ru(bpy $\left.)_{2}(\mathrm{py})_{2}\right]^{2+}(0-15 \mathrm{sec})$, and (D) cis-[Ru(bpy $\left.)_{2}(\mathrm{py})_{2}\right]^{2+}(30-60 \mathrm{sec})$ during photolysis with blue LED $\left(\lambda=470 \mathrm{~nm}, 14 \mathrm{~mW} \mathrm{~cm}{ }^{-2}\right)$ in acetonitrile containing 10 mM TEACl at 298 K . Insets in Figure $\operatorname{S7}(\mathrm{C}$) show kinetic traces based on the absorbance changes (black dots) and fitting curves (red line).

Figure S7. (A) ${ }^{1} \mathrm{H}$ NMR spectra of cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN})_{2}\right]^{2+}(1.0 \mathrm{mM})$, during photolysis with polychromatic light ($\lambda>340 \mathrm{~nm}, 70 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) in $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CD}_{3} \mathrm{CN}\left(\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CD}_{3} \mathrm{CN}=1: 1\right)$ containing 10 mM TEACl. Peaks of cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN})_{2}\right]^{2+}$ and cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN}) \mathrm{Cl}\right]^{+}$are highlighted with gray and red, respectively. (B) Kinetic traces of cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN})_{2}\right]^{2+}$ (black) and cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{MeCN}) \mathrm{Cl}\right]^{+}(\mathrm{red})$, where the concentrations of the reactant and product were calculated based on the integrations at 9.33 and 9.38 ppm , respectively.

Figure S8. Absorption spectra of $\mathbf{1 c}(37 \mu \mathrm{M})$ and TBD $(16 \mathrm{mM})$ during photolysis with blue LED $(\lambda=$ $470 \mathrm{~nm}, 14 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) in acetonitrile containing 10 mM TEACl. Insets show kinetic traces based on the absorbance changes (black dots) and fitting curves (red line).

Figure S9. (A) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}(0.4 \mathrm{mM})$, during photolysis with polychromatic light ($\lambda>340$ $\mathrm{nm}, 70 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) in acetonitrile/ $\mathrm{CD}_{3} \mathrm{CN}$ containing 4 mM DMAP. (B) Kinetic traces of $\mathbf{1 b}$ during photolysis in the absence (black) and presence (red) of TEACl. The concentration of $\mathbf{1 b}$ was calculated based on the integrations of the peak at 7.22 ppm .

Figure S10. Absorption spectra of (A) $\mathbf{1 b}(38 \mu \mathrm{M})$ with 4 mM DMAP and (B) $\mathbf{1 b}(38 \mu \mathrm{M})$ with 0.4 M DMAP during photolysis with blue LED ($\lambda=470 \mathrm{~nm}, 14 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) in the absence of TEACl in acetonitrile. The increase of absorbance below 340 nm may be an absorption band of protonated DMAP $\left(\mathrm{DMAPH}^{+}\right),{ }^{4}$ which was formed overtime by the protonation with trace amount of water. (C) Kinetic traces of $\mathbf{1 b}$ based on the absorbance changes at 540 nm in the presence of 0.4 M DMAP (black), 4 mM DMAP (red), and 4 mM DMAP and 0.01 M TEACl (blue).

Figure S11. Absorption spectra of $\mathbf{1 c}(33 \mu \mathrm{M})$ and TBD $(10 \mathrm{mM})$ during photolysis with blue LED $(\lambda=$ $470 \mathrm{~nm}, 14 \mathrm{~mW} \mathrm{~cm}^{-2}$) in acetonitrile. Inset shows kinetic traces base on the absorbance changes at 552 nm of the sample solution containing $\mathbf{1 c}$ and TBD (black) and $\mathbf{1 c}$, TBD, and TEACl (blue)

Figure S12. Normalized absorption spectra of $\mathbf{1 b}$ in TFE (black), water (red, $\mathrm{pH}=12$), MeCN (blue), DMSO (cyan), and MeOH (green).

Figure S13. Optimized structures of $\mathbf{1 a}$ (left), $\mathbf{1 b}$ (center), and $\mathbf{1 c}$ (right), which were optimized at the B3LYP level of DFT using LanL2DZ basis set in Gaussian 09.

Figure S14. Energy level diagram of molecular orbitals (HOMO-12 to LUMO+12) of 1a, 1b, and $\mathbf{1 c}$. Complex geometries were fully optimized under gaseous conditions using the B3LYP method.

$-7.707 \mathrm{eV}$

$-7.731 \mathrm{eV}$

$-11.182 \mathrm{eV}$

-11.244 eV

-4.997 eV

$-5.056 \mathrm{eV}$

$-7.786 \mathrm{eV}$

$-8.007 \mathrm{eV}$

$-2.232 \mathrm{eV}$

$-4.670 \mathrm{eV}$

Figure S15. Frontier molecular orbitals of 1a, 1b, and 1c.

Table S1. Selected crystallographic parameters

compounds	$[\mathbf{1 a}]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$	$[\mathbf{1 b}]\left(\mathrm{PF}_{6}\right)$
empirical formula	$\mathrm{RuS}_{2} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~N}_{8} \mathrm{C}_{28} \mathrm{H}_{24}$	$\mathrm{RuPF} \mathrm{N}_{8} \mathrm{C}_{26} \mathrm{H}_{23}$
fw	847.74	693.56
radiation	$\mathrm{Mo} \mathrm{K} \alpha$	$\mathrm{Mo} \mathrm{K} \alpha$
crystal system	monoclinic	orthorhombic
space group	$C 2 / c$	$P 2_{1} 2_{1} 2_{1}$
a, \AA	$22.637(10)$	$11.9435(2)$
b, \AA	$11.256(5)$	$12.3203(2)$
c, \AA	$16.144(13)$	$18.0256(3)$
α, deg	90	90
β, deg	$128.144(4)$	90
γ, deg	90	90
$V, \AA \AA^{3}$	$3235(3)$	$2652.42(8)$
Z	4	4
$\mu, \mathrm{~mm}$		
$T, \mathrm{~K}$	0.705	0.728
$d_{\text {cal }}, \mathrm{g} / \mathrm{cm}{ }^{3}$	100	100
$T_{\text {min }}, T_{\text {max }}$	1.741	1.737
$N_{\text {ref }}$	$0.5844,0.7456$	$0.711,0.745$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0632	5236
$w R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.1076	0.0173
GOF	1.0195	0.0429
		1.054

Table S2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

	[1a]($\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$	[1b] PF_{6})
Ru1-N1 ${ }_{\text {bpy }}$	2.057(5)	2.0696(16)
Ru1-N1 ${ }_{\text {bpy }}$	2.065(4)	2.0552(16)
Ru1-N3 ${ }_{\text {pzH }}$	2.087(5)	
Ru1-N3 ${ }_{\text {bpy }}$		2.0482(15)
Ru1-N4 ${ }_{\text {bpy }}$		2.0510(16)
Ru1-N5 $5_{\text {pzH }}$		2.0917(17)
Ru1-N7pz		2.0960(15)
$\mathrm{N} 1_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 1_{\text {bpy }}$	89.9(3)	
$\mathrm{N} 1_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 2_{\mathrm{bpy}}$	79.12(18), 95.02(18)	97.13(17)
$\mathrm{N} 1_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 3_{\mathrm{pzH}}$	176.27(18), 90.26(16)	
$\mathrm{N} 2_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 2_{\mathrm{bpy}}$	171.8(3)	
$\mathrm{N} 2_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 3_{\mathrm{pzH}}$	88.68(17), 97.15(18)	
$\mathrm{N} 3_{\mathrm{pzH}}-\mathrm{Ru} 1-\mathrm{N} 3_{\mathrm{pzH}}$	89.8(3)	
$\mathrm{N} 1_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 3_{\mathrm{bpy}}$		174.66(6)
$\mathrm{N} 1_{\text {bpy }}$-Ru1-N $4_{\text {bpy }}$		98.84(6)
$\mathrm{N} 1_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 5_{\mathrm{pzH}}$		85.30(6)
$\mathrm{N} 1_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 7_{\mathrm{pz}}$		97.28(6)
$\mathrm{N} 2_{\text {bpy }}$-Ru1-N3 $3_{\text {bpy }}$		96.08(6)
$\mathrm{N} 2_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 4_{\mathrm{bpy}}$		87.62(6)
$\mathrm{N} 2_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 5_{\mathrm{pzH}}$		91.94(6)
$\mathrm{N} 2_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 7_{\mathrm{pz}}$		174.70(6)
$\mathrm{N} 3_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 4_{\text {bpy }}$		174.70(6)
$\mathrm{N} 3_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 5_{\mathrm{pzH}}$		96.72(6)
$\mathrm{N} 3_{\text {bpy }}-\mathrm{Ru} 1-\mathrm{N} 7_{\mathrm{pz}}$		87.63(6)
$\mathrm{N} 4_{\mathrm{bpy}}-\mathrm{Ru} 1-\mathrm{N} 5_{\mathrm{pzH}}$		175.66(6)
$\mathrm{N} 4_{\text {bpy }}$-Ru1-N7 $7_{\text {pz }}$		89.38(6)
$\mathrm{N} 5_{\mathrm{pzH}}-\mathrm{Ru} 1-\mathrm{N} 7_{\mathrm{pz}}$		91.37(6)
$\mathrm{N} 4_{\mathrm{pzH}} \cdot \bullet \cdot \mathrm{~N} 4_{\mathrm{pzH}}$	$3.180(9)$	
$\mathrm{N} 6_{\mathrm{pzH}} \cdot \cdots \cdot \mathrm{N} 8_{\mathrm{pz}}$		2.623(2)

References

(1) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J.; Peedin, J. Monomeric and dimeric pyrazole and pyrazolyl complexes of ruthenium. Inorg. Chem. 1979, 18, 3369-3374.
(2) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales. The Journal of Organic Chemistry 2005, 70, 1019-1028.
(3) Reed, C. J.; Agapie, T. Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with $\mathrm{Mn}-\mathrm{OH}_{2} / \mathrm{OH}$ Motifs Relevant to $\mathrm{H}_{2} \mathrm{O}$ Activation by the Oxygen Evolving Complex in Photosystem II. J. Am. Chem. Soc. 2018, 140, 1090010908.
(4) Mishina, S.; Takayanagi, M.; Nakata, M.; Otsuki, J.; Araki, K. Dual fluorescence of 4-dimethylaminopyridine and its derivatives: Effects of methyl substitution at the pyridine ring. J. Photochem. Photobiol. A-Chem. 2001, 141, 153-158.

