Supporting Information for

Intramolecular Hydrogen Bonding: A Key Factor Controlling

Photosubstitution of Ruthenium Complexes

Masanari Hirahara*a, Hiroyuki Nakano, Kyohei Uchida a, Rei Yamamoto a, and Yasushi Umemura a

Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686

E-mail: hirahara@nda.ac.jp

Supporting Information

Contents	
Experimental details for photosubstitution reactions	S 3
Figure S1—Experimental setup for light irradiation with a blue LED lamp	S3
Titration experiments for pKa determination	S4
Figure S2—Absorption spectra of 1a during titration with DBU (0-3.0 equivalents)	S 4
Figure S3— ¹ H NMR spectra during titration experiments with lutidine	S5
Determination of pK_a value of $1a$	S 6
Figure S4—Absorption spectra of 1b during titration with TBD (1-40 equivalents)	S 7
Figure S5—Absorption spectra of 1b during titration with DBU (1-50 equivalents)	S 8
Determination of pK_a value of $\mathbf{1b}$	S 9
Additional absorption and ¹ H NMR spectra	S10
Figure S6—Absorption spectra of $[Ru(bpy)_3]^{2+}$ and cis - $[Ru(bpy)_2(py)_2]^{2+}$ during photolysis	S10
Figure S7— ¹ H NMR spectra of <i>cis</i> -[Ru(bpy) ₂ (MeCN) ₂] ²⁺ during photolysis	S11
Figure S8—Absorption spectra of 1c (37 μM) and TBD (16 mM) during photolysis with TEACl	S12
Figure S9— ¹ H NMR spectra of 1b in the absence of TEACl during photolysis	S13
Figure S10—Absorption spectra of 1b in the absence of TEACl during photolysis	S14
Figure S11— ¹ H NMR spectra of 1c in the absence of TEACl during photolysis	S15
Figure S12—Normalized absorption spectra of 1b in various solvents	S16
DFT calculation results	S17
Figure S13—Optimized structures of 1a , 1b , and 1c .	S17
Figure S14—Energy level diagram of molecular orbitals of 1a , 1b , and 1c .	S18
Figure S15—Frontier molecular orbitals of 1a , 1b , and 1c .	S19
Tables for X-ray crystallography	S20
Table S1—Selected crystallographic parameters	S20
Table S2—Selected bond distances (Å) and angles (°)	S21

References S22

Quartz Cuvette with Quartz to Pyrex Graded Seal Tube

Figure S1. Experimental setup for the photosubstitution experiments with blue LED.

Figure S2. Absorption spectral changes of **1a** during the titrtation eximeriments with DBU as a base. Inset shows the changes of absorption at 514 nm upon the addition of DBU. The absorption maxima (500 nm) of mono-deprotonated complex **1b** coincides with the reported value. Absorption spectra upon addition of excess amount of DBU are shown in Figure S5.

Figure S3. (A) ¹H NMR spectra of **1a** (5 mM) during the titration experiment with lutidine (p K_a = 14.13 in acetonitrile²) in 90 % CH₃CN and 10 % CD₃CN. (B) Plots of chemical shift of a singlet peak at 6.36 ppm upon the addition of lutidine. (C) Titration plot for deprotonation of **1a** to **1b** upon addition with lutidine.

Figure S3. (Continued)

In acetonitrile, **1a** deprotonated quantitatively with DMAP (see Figure 3). The chemical shift of pyrazole proton at 6.36 ppm shifted to 6.11 ppm. The chemical shift of the pyrazole proton for **1a** (δ_{1a}) and **1b** (δ_{1b}) were determined as 6.36 and 6.11 ppm, respectively. The proportion of **1a** to the total concentration of ruthenium complexes was calculated from the equation:

$$\frac{[\mathbf{1a}]}{[\mathbf{1a}] + [\mathbf{1b}]} = \left| \frac{\delta_{\text{obsd}} - \delta_{\mathbf{1b}}}{\delta_{\mathbf{1a}} - \delta_{\mathbf{1b}}} \right|$$

where δ_{obsd} is the observed chemical shift. In the titration experiment with lutidine (p K_a = 14.13²), the p K_a value of **1a** was determined from the linear plot of [**1b**][lutidineH] / [**1a**] versus [lutidine].³ The concentrations of lutidine and protonated lutidine (lutidineH) were assumed to be equal. The slope of the line represents an equilibrium constant value of K = 0.076 where:

$$K = \frac{[1b][lutidineH]}{[1a][lutidine]}$$

The pK was 1.12, which corresponds to the difference of p K_a values of **1a** and lutidine. The p K_a of **1a** was determined to be 15.2.

Figure S4. (A) Absorption spectral changes of **1b** during the titration experiments with TBD in MeCN. Inset shows the changes of absorption at 620 nm upon addition of TBD (p $K_a = 26.03$). The absorption maxima (572 nm) of neutral complex is close to the reported value of neutral complex **1c** (581 nm) in DMF. (B) Titration plot for deprotonation of **1b** to **1c** upon addition with TBD

Figure S5. (A) Absorption spectral changes of **1b** during the titration experiments with DBU in MeCN. Inset shows the changes of absorption at 620 nm upon addition of DBU ($pK_a = 24.34$). (B) Titration plot for deprotonation of **1b** to **1c** upon addition with DBU.

Determination of pK_a value by absorption spectroscopy

The p K_a value of **1b** was determined from absorption spectroscopy instead of ¹H NMR spectroscopy due to the poor solubility of **1c**. The proportion of **1b** was calculated from the following equation:

$$\frac{[\mathbf{1b}]}{[\mathbf{1b}] + [\mathbf{1c}]} = \left| \frac{A_{\text{inf}} - A_{\text{obsd}}}{A_{\text{inf}} - A_0} \right|$$

where A_{inf} , A_{obsd} , A_0 were absorbance of **1c** in the presence of 500 equivalents of TBD (p $K_a = 26.09^2$), observed absorbance during the titration experiment, initial absorbance of **1b** before titration. The p K_a value of **1b** was determined from the linear plot of [**1c**][TBDH] / [**1b**] versus [TBD].³ The concentrations of TBD and protonated TBD (TBDH) were assumed to be equal. The slope of the line represents an equilibrium constant value of K = 0.132 as shown in Figure S4B. where:

$$K = \frac{[1c][TBDH]}{[1b][TBD]}$$

The pK was 0.88, which corresponds to the difference of pKa values of **1b** and TBD. The p K_a of **1b** was determined to be 26.9.

The titration experiments were carried out with DBU (p $K_a = 24.34^2$) (Figure S5). In the same manner, The p K_a value of **1b** was determined from the linear plot of [**1c**][DBUH] / [**1b**] versus [DBU]. The slope of the line represents an equilibrium constant value of K' = 0.00127 where:

$$K' = \frac{[1c][DBUH]}{[1b][DBU]}$$

The pK was 2.89, which corresponds to the difference of p K_a values of **1b** and DBU. The p K_a of **1b** was estimated to be 27.2, which approximately coincides with the p K_a value of 26.9 estimated from the titration with TBD.

Figure S6. Absorption spectra of (A) $[Ru(bpy)_3]^{2+}$ (32 μ M) and TEACl (10 mM), (B) $[Ru(bpy)_3]^{2+}$ (32 μ M), (C) cis- $[Ru(bpy)_2(py)_2]^{2+}$ (0-15sec), and (D) cis- $[Ru(bpy)_2(py)_2]^{2+}$ (30-60 sec) during photolysis with blue LED (λ = 470 nm, 14 mW cm⁻²) in acetonitrile containing 10 mM TEACl at 298 K. Insets in Figure S7(C) show kinetic traces based on the absorbance changes (black dots) and fitting curves (red line).

Figure S7. (A) ¹H NMR spectra of cis-[Ru(bpy)₂(MeCN)₂]²⁺ (1.0 mM), during photolysis with polychromatic light ($\lambda > 340$ nm, 70 mW cm⁻²) in CH₃CN and CD₃CN (CH₃CN : CD₃CN = 1:1) containing 10 mM TEACl. Peaks of cis-[Ru(bpy)₂(MeCN)₂]²⁺ and cis-[Ru(bpy)₂(MeCN)Cl]⁺ are highlighted with gray and red, respectively. (B) Kinetic traces of cis-[Ru(bpy)₂(MeCN)₂]²⁺ (black) and cis-[Ru(bpy)₂(MeCN)Cl]⁺ (red), where the concentrations of the reactant and product were calculated based on the integrations at 9.33 and 9.38 ppm, respectively.

Figure S8. Absorption spectra of 1c (37 μ M) and TBD (16 mM) during photolysis with blue LED (λ = 470 nm, 14 mW cm⁻²) in acetonitrile containing 10 mM TEACl. Insets show kinetic traces based on the absorbance changes (black dots) and fitting curves (red line).

Figure S9. (A) 1 H NMR spectra of **1b** (0.4 mM), during photolysis with polychromatic light ($\lambda > 340$ nm, 70 mW cm⁻²) in acetonitrile/CD₃CN containing 4 mM DMAP. (B) Kinetic traces of **1b** during photolysis in the absence (black) and presence (red) of TEACl. The concentration of **1b** was calculated based on the integrations of the peak at 7.22 ppm.

Figure S10. Absorption spectra of (A) **1b** (38 μM) with 4 mM DMAP and (B) **1b** (38 μM) with 0.4 M DMAP during photolysis with blue LED ($\lambda = 470$ nm, 14 mW cm⁻²) in the absence of TEACl in acetonitrile. The increase of absorbance below 340 nm may be an absorption band of protonated DMAP (DMAPH⁺), ⁴ which was formed overtime by the protonation with trace amount of water. (C) Kinetic traces of **1b** based on the absorbance changes at 540 nm in the presence of 0.4 M DMAP (black), 4 mM DMAP (red), and 4 mM DMAP and 0.01 M TEACl (blue).

Figure S11. Absorption spectra of **1c** (33 μ M) and TBD (10 mM) during photolysis with blue LED (λ = 470 nm, 14 mW cm⁻²) in acetonitrile. Inset shows kinetic traces base on the absorbance changes at 552nm of the sample solution containing **1c** and TBD (black) and **1c**, TBD, and TEACl (blue)

Figure S12. Normalized absorption spectra of 1b in TFE (black), water (red, pH = 12), MeCN (blue), DMSO (cyan), and MeOH (green).

Figure S13. Optimized structures of **1a** (left), **1b** (center), and **1c** (right), which were optimized at the B3LYP level of DFT using LanL2DZ basis set in Gaussian 09.

Figure S14. Energy level diagram of molecular orbitals (HOMO–12 to LUMO+12) of **1a**, **1b**, and **1c**. Complex geometries were fully optimized under gaseous conditions using the B3LYP method.

Figure S15. Frontier molecular orbitals of 1a, 1b, and 1c.

 Table S1. Selected crystallographic parameters

compounds	[1a](CF ₃ SO ₃) ₂	$[\mathbf{1b}](PF_6)$
empirical formula	$RuS_{2}F_{6}O_{6}N_{8}C_{28}H_{24}$	RuPF ₆ N ₈ C ₂₆ H ₂₃
fw	847.74	693.56
radiation	Μο Κα	Μο Κα
crystal system	monoclinic	orthorhombic
space group	C2/c	$P2_{1}2_{1}2_{1}$
a, Å	22.637(10)	11.9435(2)
$b, ext{Å}$	11.256(5)	12.3203(2)
c, Å	16.144(13)	18.0256(3)
α , deg	90	90
β , deg	128.144(4)	90
γ, deg	90	90
V, Å ³	3235(3)	2652.42(8)
Z	4	4
μ , mm ⁻¹	0.705	0.728
<i>T</i> , K	100	100
$d_{\rm cal}$, g/cm ³	1.741	1.737
$T_{ m min}$, $T_{ m max}$	0.5844, 0.7456	0.711, 0.745
$N_{ m ref}$	3712	5236
$R[F^2 > 2\sigma(F^2)]$	0.0632	0.0173
$wR[F^2 > 2\sigma(F^2)]$	0.1076	0.0429
GOF	1.0195	1.054

Table S2 Selected bond distances (Å) and angles (°)

	[1a](CF ₃ SO ₃) ₂	[1b](PF ₆)
Ru1-N1 _{bpy}	2.057(5)	2.0696(16)
Ru1-N1 _{bpy}	2.065(4)	2.0552(16)
Ru1-N3 _{pzH}	2.087(5)	
Ru1-N3 _{bpy}		2.0482(15)
Ru1-N4 _{bpy}		2.0510(16)
$Ru1-N5_{pzH}$		2.0917(17)
Ru1-N7 _{pz}		2.0960(15)
$N1_{bpy}$ -Ru1- $N1_{bpy}$	89.9(3)	
$N1_{bpy}$ -Ru1- $N2_{bpy}$	79.12(18), 95.02(18)	97.13(17)
$N1_{bpy}$ -Ru1- $N3_{pzH}$	176.27(18), 90.26(16)	
$N2_{bpy}\text{-}Ru1\text{-}N2_{bpy}$	171.8(3)	
$N2_{bpy}$ -Ru1- $N3_{pzH}$	88.68(17), 97.15(18)	
$N3_{pzH}$ -Ru1- $N3_{pzH}$	89.8(3)	
$N1_{bpy}$ -Ru1-N3 _{bpy}		174.66(6)
$N1_{bpy}$ -Ru1- $N4_{bpy}$		98.84(6)
$N1_{bpy}$ -Ru1- $N5_{pzH}$		85.30(6)
$N1_{bpy}\text{-}Ru1\text{-}N7_{pz}$		97.28(6)
$N2_{bpy}$ -Ru1- $N3_{bpy}$		96.08(6)
$N2_{bpy}$ -Ru1-N4 _{bpy}		87.62(6)
$N2_{bpy}$ -Ru1- $N5_{pzH}$		91.94(6)
$N2_{bpy}$ -Ru1- $N7_{pz}$		174.70(6)
$N3_{bpy}$ -Ru1- $N4_{bpy}$		174.70(6)
$N3_{bpy}$ -Ru1- $N5_{pzH}$		96.72(6)
$N3_{bpy}$ -Ru1- $N7_{pz}$		87.63(6)
$N4_{bpy}$ -Ru1- $N5_{pzH}$		175.66(6)
$N4_{bpy}\text{-}Ru1\text{-}N7_{pz}$		89.38(6)
$N5_{pzH}$ -Ru1-N7 $_{pz}$		91.37(6)
$N4_{pzH} \cdot \cdot \cdot \cdot N4_{pzH}$	3.180(9)	
N6 _{pzH} ••• N8 _{pz}		2.623(2)

References

- (1) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J.; Peedin, J. Monomeric and dimeric pyrazole and pyrazolyl complexes of ruthenium. *Inorg. Chem.* **1979**, *18*, 3369-3374.
- (2) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales. *The Journal of Organic Chemistry* **2005**, *70*, 1019-1028.
- (3) Reed, C. J.; Agapie, T. Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn–OH₂/OH Motifs Relevant to H₂O Activation by the Oxygen Evolving Complex in Photosystem II. *J. Am. Chem. Soc.* **2018**, *140*, 10900-10908.
- (4) Mishina, S.; Takayanagi, M.; Nakata, M.; Otsuki, J.; Araki, K. Dual fluorescence of 4-dimethylaminopyridine and its derivatives: Effects of methyl substitution at the pyridine ring. *J. Photochem. Photobiol. A-Chem.* **2001**, *141*, 153-158.