Supporting Information

An environmentally friendly protocol for 2,3-difunctionlization

of indole derivatives

Wen-Wu Sun,* Na Chen, Ting-Ting Wei, Guo-Jing You, Hao Yang, Ji-Kai Liu,* Bin Wu*

School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China

E-mail: 2016027@mail.scuec.edu.cn (Wen-Wu Sun); jkliu@mail.kib.ac.cn (Ji-kai Liu)

2015084@mail.scuec.edu.cn (Bin Wu)

Contents of Supporting Information

Page S2: Mechanism studies. Page S4: ¹H NMR and ¹³C NMR spectra of compounds.

Mechanism studies

To a 10 mL of round-bottom flask equipped with a stirrer was charged with substrate 1a (19.5 mg, 0.1 mmol), p-MePhI (2.2 mg, 0.1 mmol), Oxone (182.2 mg, 0.3 mmol) and NaCl (29.2 mg, 0.5 mmol). Then, H₂O¹⁸ (0.2 mL) and DCM (1.0 mL) were added to the reaction flask. The reaction mixture was stirred at room temperature for 4 h and monitored by TLC. Then, the reaction mixture was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography (Silica gel, eluent: petroleum ether: ethyl acetate = 10:1) to afford the product **2a** (21.5 mg, 76% yield).

The ESI⁺ spectrum Characterization of 2a-¹⁸O

To a 10 mL of round-bottom flask equipped with a stirrer was charged with substrate **3a** (26.4 mg, 0.1 mmol), *p*-MePhI (2.2 mg, 0.01 mmol), Oxone (122.9 mg, 0.2 mmol) and NaCl (11.7 mg, 0.2 mmol). Then, H₂O (1.0 mL) and DCM (0.2 mL) were added to the reaction flask. The reaction mixture was stirred at room temperature for 4 h and monitored by TLC. Then, the reaction mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography (Silica gel, eluent: petroleum ether: ethyl acetate = 10:1) to afford the product **2a** (24.6 mg, 88% yield).

To a 10 mL of round-bottom flask equipped with a stirrer was charged with substrate **3a** (26.4 mg, 0.1 mmol), Oxone (122.9 mg, 0.2 mmol) and NaCl (11.7 mg, 0.2 mmol). Then, H₂O (1.0 mL) and DCM (0.2 mL) were added to the reaction flask. The reaction mixture was stirred at room temperature for 4 h and monitored by TLC. Then, the reaction mixture was extracted with CH₂Cl₂ (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography (Silica gel, eluent: petroleum ether: ethyl acetate = 10:1) to afford the product **2a** (20.1 mg, 72% yield).

¹H NMR and ¹³C NMR spectra of compounds

-98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 f1 (ppm)

8,9060 8,8979 7,8335 7,8186 7,8186 7,8186 7,8186 7,3551 7,3551 7,3551 7,3551 7,355 7,1590 7,1590 7,1590 7,1297 7,1297 7,1297

S9

130 120 110 100 90 fl (ppm)

80 70 60 50 40 30 20 10

140

150

200 190 180

170 160

8.9243 8.9162 8.9165 7.8454 7.7.8454 7.7.8453 7.7.5567 7.7.3555 7.7.3555 7.7.3684 7.7.3684 7.7.3684 7.7.2683 7.2763 7.2763

-119 -121 -123 -125 -127 -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 f1 (ppm)

8.8239 8.8159 8.8159 7.5264 7.5130 7.2454 7.2454 7.2454 7.2459 7.2252 7.2252 7.2172 7.2259 7.2259 7.261 7.061 7.0638 7.0638

-3.7126

¹H NMR (600 MHz, CDCl₃)

