Supporting Information

Stoichiometry-Controlled Mo_xW_{1-x}Te₂ Nanowhiskers: A Novel Electrocatalyst for Pt-free Dye-Sensitized Solar Cells

Roshan Jesus Mathew,^{†,‡,§,□} Chuan-Pei Lee,^{⊥,□} Chi-Ang Tseng,^{||} Pradyumna Kumar Chand,^{||} Yi-June Huang,[#] Han-Ting Chen,[#] Kuo-Chuan Ho,[#] Aswin kumar Anbalagan,[†] Chih-Hao Lee,[†] and Yit-Tsong Chen^{*,§,||}

- [†] Department of Engineering and System Science, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- ^{*} Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang, Taipei, 11529, Taiwan.
- [§] Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
- [⊥]Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan.
- ^{II} Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
- [#] Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- $^{\Box}$ These authors contributed equally to this work.

*E-mail: <u>ytcchem@ntu.edu.tw</u>

Section S1. Growth of Mo_xW_{1-x}Te₂ Nanowhiskers in APCVD Reactions

The synthesis of $Mo_xW_{1-x}Te_2$ nanowhiskers in APCVD reactions involves three steps: (i) the formation of metal oxychloride at 280 °C, (ii) the decomposition of metal oxychloride and the reduction of metal oxides at 350 °C, and (iii) the tellurization at 760 °C. The temperature profiles during the APCVD synthesis are presented in **Figure S1**. The growth of $Mo_xW_{1-x}Te_2$ nanowhiskers is highly reproducible.

Figure S1. The temporal temperature profiles for the synthesis of $Mo_xW_{1-x}Te_2$ nanowhiskers conducted in APCVD reactions.

Section S2. Scanning Electron Microscopy (SEM)

Figure S2. SEM images show (a) the bare carbon cloth (CC) surface, (b) carbon fibers coated with platinum (Pt/CC) used as a reference electrode, and (c) carbon fibers decorated with randomly oriented vertical $Mo_xW_{1-x}Te_2$ nanowhiskers. In the left panels, the regions marked by red dashed squares are magnified in the right panel for detailed morphologies.

Figure S3. The observed XPS spectra of (a) MoTe₂ nanowhiskers and (b) WTe₂ nanowhiskers exhibit the Mo 3d, W 4f, and Te 3d levels, in which the doublets are caused by the spin-orbit couplings. (a) For MoTe₂ nanowhiskers, the binding energies include Mo: $3d_{5/2}$ (228.69 eV) and $3d_{3/2}$ (231.85 eV) and Te: $3d_{5/2}$ (573.60 eV) and $3d_{3/2}$ (583.96 eV). (b) For WTe₂ nanowhiskers, the binding energies observed are W: $4f_{7/2}$ (32.46 eV) and $4f_{5/2}$ (34.65 eV) and Te: $3d_{5/2}$ (573.90 eV) and $3d_{3/2}$ (584.29 eV).

Section S4. High-Resolution Transmission Electron Microscopy (HR-TEM)

Figure S4. In the left column, the HR-TEM images of (a) T_d -Mo_{0.26}W_{0.73}Te_{2.01} and (b) 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02} nanowhiskers are presented. In the right column, the plot profiles shown in the panels reveal the lattice spacings along the a-axis (top) and b-axis (bottom) of the crystalline structures in the HR-TEM images.

Figure S5. The HR-TEM images and SAED patterns of (a) a MoTe₂ nanowhisker and (b) a WTe_2 nanowhisker were obtained. A TEM image of the single nanowhisker for taking the HR-TEM and SAED examinations is presented in the inset, where the spot marked by a green circle was selected for the HR-TEM and SAED measurements.

Section S5. Electrochemical Experiments

1. Materials and Chemicals

Lithium iodide (LiI, synthetical grade) and iodine (I₂, synthetical grade) were obtained from Merck. Acetone (99+%), tert-butyl alcohol (tBA, 96%), guanidine thiocyanate (GuSCN, 99+%), and 4-tert-butylpyridine (TBP, 96%) were bought from Acros. Titanium(IV) tetraisopropoxide (TTIP, >98%), lithium perchlorate (LiClO₄, \geq 98.0%), ethanol (EtOH, absolute), isopropyl alcohol (IPA, 99.5%), sulfuric acid (H₂SO₄, 95–97%), and 2-methoxyethanol (99.95%) were received from Sigma-Aldrich. Acetonitrile (ACN, 99.99%) was procured from J. T. Baker. 1,2dimethyl-3-propylimidazolium iodide (DMPII) and cis-diisothiocyanato-bis (2,2'-bipyridyl-4,4'dicarboxylato) ruthenium(II) bis(tetra-butylammonium) (N719 dye) were purchased from Solaronix (S.A., Aubonne, Switzerland). Carbon cloth (CC, W0S1002, thickness: 0.36 mm, basic weight: 120 g cm⁻², sheet resistance: 0.63 Ω sq.⁻¹) was obtained from CeTech Co., Ltd., Taiwan.

2. Preparation of Counter Electrodes and Electrochemical Measurements

The as-grown Mo_xW_{1-x} Te₂/CCs with various stoichiometric ratios were used as different counter electrodes (CEs) in a DSSC for tests. Meanwhile, with a direct current (DC) sputtering method, a Pt catalytic layer deposited on a cleaned CC substrate was used as a standard CE (represented by a sputtered Pt/CC).

The surface of the DSSC was covered by a mask, leaving a light-illuminating area of 0.16 cm², and then illuminated by a class-A quality solar simulator (XES-301S, AM 1.5G, SAN-EI ELECTRIC CO., LTD.) with the light intensity of 100 mW cm⁻². Incident light intensity (100 mW cm⁻²) was calibrated with a standard Si cell (PECSI01, Peccell Technologies, Inc.). Photoelectrochemical characteristics of the DSSC were recorded with a potentiostat/galvanostat

(PGSTAT 30, Autolab, Eco-Chemie, Netherlands). The incident photon-to-electron conversion efficiency (IPCE) curves were obtained at the short-circuit condition. The light source was a class-A quality solar simulator (PEC-L11, AM1.5G, Peccell Technologies, Inc.) and the light was focused through a monochromator (74100, Oriel Instrument) onto the photovoltaic cell. Then, the IPCE (λ) can be calculated by using the equation, IPCE (λ) = 1240 ($J_{SC}/\lambda\phi$), in which λ is the wavelength, J_{SC} is the short-circuit photocurrent density (mA cm⁻²) recorded with a potentiostat/galvanostat, and φ is the incident radiative flux (W m⁻²) measured with an optical detector (818-SL, Newport) and a power meter (1916-R, Newport).

CV was performed to investigate the electrocatalytic abilities of the tested CEs. The CV was carried out with a three-electrode electrochemical system (a close system) using one of the tested samples (i.e., bare CC, Mo_xW_{1-x} Te₂/CC, and a sputtered Pt/CC) as the working electrode, a Pt foil as the CE, and a Ag/Ag⁺ electrode as the reference electrode in an acetonitrile (ACN) solution, containing 10 mM I⁻, 1 mM I₂, and 0.1 M LiClO₄.

Electrochemical properties of the tested CEs were also quantified by Tafel polarization curves (Tafel curves) and EIS, where a symmetric cell, consisting of the same catalytic film on both anode and cathode, was used for these measurements. The data were recorded by the abovementioned potentiostat/galvanostat equipped with a FRA2 module. The electrolyte, containing 0.1 M LiI, 0.6 M DMPII, 0.05 M I₂, and 0.5 M TBP in 3-methoxypropionitrile (MPN)/ acetonitrile (ACN) (volume ratio of 1/1), was used for the Tafel analysis (with a scan rate of 50 mV s⁻¹) and EIS measurements. Under the open-circuit condition, the EIS analysis was performed between 10 mHz and 65 kHz with an AC amplitude of ± 10 mV.

Section S6. Comparison of Electrocatalytic Performance

Figure S6. The photocurrent density-voltage (J-V) measurement of a DSSC with a Pt/FTO CE was conducted under AM 1.5G illumination at 100 mW cm⁻².

Table S1. T	The p	ohotovoltaic	parameters	of a	Pt/FTO	counter	electrode
-------------	-------	--------------	------------	------	--------	---------	-----------

Counter Electrode	η (%)	$V_{oc}(mV)$	$J_{sc}(mA \ cm^{-2})$	FF
Pt/FTO	9.43	784	16.21	0.74

Figure S7. The electrocatalytic efficiencies of different stoichiometric $Mo_xW_{1-x}Te_2/CCs$ used as CEs in a DSSC are listed for comparison.

Section S7. Reproducibility Test

Figure S8. The photocurrent density-voltage (*J*–*V*) measurements of three different *1T*'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE-based DSSCs were conducted under AM 1.5G illumination at 100 mW cm⁻² to demonstrate the reproducibility of the material under study.

<i>1T'-</i> & T_d -Mo _{0.66} W _{0.32} Te _{2.02} /CC CE- based DSSCs	η (%)	$V_{oc} (mV)$	J_{sc} (mA cm ⁻²)	FF
Cell 1	9.38	790	16.13	0.74
Cell 2	9.28	794	16.15	0.72
Cell 3	9.33	792	16.14	0.73
Average	9.33 ± 0.05	792 ± 2	16.14 ± 0.01	0.73 ± 0.01

Table S2. The reproducibility test of 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE-based DSSCs

Section S8. Long-Term Stability Tests

Figure S9. The stability tests of the CEs fabricated with (a) 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC and (b) Pt/CC were conducted by continuous 100-cycle CV measurements in the I^-/I_3^- redox reaction. The regions marked by red dashed squares are magnified in the insets.

Figure S10. The long-term stability of the DSSC fabricated with a 1T'- & T_{d} -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE was tested for 15 days to demonstrate the stability of the photovoltaic parameters of (a) efficiency (η), (b) open-circuit voltage (V_{oc}), (c) short-circuit photocurrent density (J_{sc}), and (d) fill factor (*FF*). In this test, the cell was sealed simultaneously with Surlyn and epoxy glue. The cell efficiency was measured once per day after storing the cell in a dark condition at room temperature.

Section S9. Comparison of Photovoltaic Parameters

Counter Electrodes	J_{sc}		<i>FF</i>	R_{ct}	η (%)	Ref.
	(macm)	(\mathbf{v})	(70)		()0)	
MoS ₂ /NGr	15.36	0.77	66	16.73	7.82	S1
WS ₂ /MWCNTs	13.63	0.75	72	2.49	7.36	S2
TiS ₂ /graphene hybrid	17.76	0.72	68.5	0.63	8.80	S3
NiS ₂ /RGO	16.55	0.749	69	2.9	8.55	S4
FeS ₂	15.20	0.79	65	-	7.97	S5
CoS ₂	14.62	0.71	64	7.21	6.78	S6
SnS ₂ /C	17.47	0.745	61.9	5.2	8.06	S7
MoSe ₂	16.71	0.746	72.2	1.39	9.00	S8
NbSe ₂ /C	15.58	0.77	65	3.52	7.80	S9
WSe ₂	15.50	0.73	66	0.78	7.48	S10
TaSe ₂	15.81	0.73	64	1.89	7.32	S10
NiSe ₂	15.94	0.734	74.3	0.81	8.69	S11
FeSe ₂	16.14	0.744	70	0.49	8.39	S12
CoSe ₂ /C	18.16	0.76	71	-	9.87	S13
Bi ₂ Se ₃ /graphene	16.36	0.75	57	-	7.09	S14

Table S3. The measured photovoltaic parameters of the DSSCs with various TMDs-based CEs

WS ₂ /MoTe ₂	15.34	0.74	69.69	3.98	7.99	S15
MoTe ₂	16.00	0.69	65.64	25.97	7.25	S16
$1T'$ - & T_d -Mo _{0.66} W _{0.32} Te _{2.02}	16.29	0.788	73	0.62	9.40	This
						work

In **Table S3**, the photovoltaic parameters of the DSSCs with various TMDs-fabricated CEs were listed to compare with those of a 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE-based DSSC. The photovoltaic parameters include short-circuit photocurrent density (J_{sc}), open-circuit voltage (V_{oc}), fill factor (*FF*), charge-transfer resistance (R_{ct}), and power conversion efficiency (η). All measurements were conducted in the I₃/I redox couple with N719 photosensitizer dye. As can be seen in the Table, the 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE-based DSSC possesses small charge-transfer resistance to enhance the efficiency of 9.4% (despite slightly less than 9.87% of the CoSe₂/C hybrid). The comparative analysis demonstrates that the 1T'- & T_d -Mo_{0.66}W_{0.32}Te_{2.02}/CC CE of small charge-transfer resistance can be used in DSSCs to improve electrocatalytic activity.

References

- S1. Fan, M. S.; Lee, C. P.; Li, C. T.; Huang, Y. J.; Vittal, R.; Ho, K. C. Nitrogen-Doped Graphene/Molybdenum Disulfide Composite as the Electrocatalytic Film for Dye Sensitized Solar Cells. *Electrochim. Acta*, 2016, 211, 164–172.
- S2. Wu, J.; Yue, G.; Xiao, Y.; Huang, M.; Lin, J.; Fan, L.; Lan, Z.; Lin, J. Y. Glucose Aided Preparation of Tungsten Sulfide/ Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interface, 2012, 4, 6530–6536.
- S3. Meng, X.; Yu, C.; Lu, B.; Yang, J.; Qiu, J.; Dual Integration System Endowing Two-Dimensional Titanium Disulfide with Enhanced Triiodide Reduction Performance in Dye-Sensitized Solar Cells. *Nano Energy*, 2016, 22, 59–69.
- S4. Li, Z.; Gong, F.; Zhou, G.; Wang, Z. S. NiS₂/Reduced Graphene Oxide Nanocomposites for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2013, 117, 6561–6566.
- Shukla, S.; Loc, N. H.; Boix, P. P.; Koh, T. M.; Prabhakar, R. R.; Mulmudi, H. K.; Zhang, J.; Chen,
 S.; Ng, C. F.; Huan, C. H. A.; Mathews, N. Iron Pyrite Thin Film Counter Electrodes for Dye-Sensitized Solar Cells: High Efficiency for Iodine and Cobalt Redox Electrolyte Cells. *ACS Nano.* 2014, 8, 10597–10605.
- S6. Jin, J.; Zhang, X.; He, T. Self-Assembled CoS₂ Nanocrystal Film as an Efficient Counter Electrode for Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2014, 118, 24877–24883.
- S7. Bai, Y.; Zong, X.; Yu, H.; Chen, Z. G.; Wang, L. Scalable Low-Cost SnS₂ Nanosheets as Counter Electrode Building Blocks for Dye-Sensitized Solar Cells. *Chem.-Eur. J.*, **2014**, *20*, 8670–8676.
- S8. Lee, L. T. L.; He, J.; Wang, B.; Ma, Y.; Wong, K. Y.; Li, Q.; Xiao, X.; Chen, T. Few-Layer MoSe₂
 Possessing High Catalytic Activity Towards Iodide/Tri-Iodide Redox Shuttles. *Sci. Rep.*, 2014, 4, 4063–4069.

- S9. Guo, J.; Shi, Y.; Zhu, C.; Wang, L.; Wang, N.; Ma, T. Cost Effective and Morphology-Controllable Niobium Diselenides for Highly Efficient Counter Electrodes of Dye Sensitized Solar Cells. J. Mater. Chem. A, 2013, 1, 11874–11879.
- S10. Guo, J.; Liang, S.; Shi, Y.; Hao, C.; Wang, X.; Ma, T. Transition Metal Selenides as Efficient Counter-Electrode Materials for Dye-Sensitized Solar Cells. *Phys. Chem. Chem. Phys.*, 2015, 17, 28985–28992.
- S11. Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z. S. NiSe₂ as an Efficient Electrocatalyst for a Pt-Free Counter Electrode of Dye-Sensitized Solar Cells. *Chem. Commun.*, **2013**, *49*, 1437–1439.
- S12. Huang, S.; He, Q.; Chen, W.; Zai, J.; Qiao, Q.; Qian, X. 3D Hierarchical FeSe₂ Microspheres: Controlled Synthesis and Applications in Dye-Sensitized Solar Cells. *Nano Energy*, 2015, 15, 205–215.
- S13. Chiu, I. T.; Li, C. T.; Lee, C. P.; Chen, P. Y.; Tseng, Y. H.; Vittal, R.; Ho, K. C. Nanoclimbing-Wall-Like CoSe₂/ Carbon Composite Film for the Counter Electrode of a Highly Efficient Dye-Sensitized Solar Cell: A Study on the Morphology Control. *Nano Energy*, **2016**, *22*, 594–606.
- S14. Zhu, L.; Cho, K. Y.; Oh, W. C. Microwave-Assisted Synthesis of Bi₂Se₃/Reduced Graphene Oxide Nanocomposite as Efficient Catalytic Counter Electrode for Dye-Sensitized Solar Cell. *Fullerenes, Nanotubes, Carbon Nanostruct.*, **2016**, *24*, 622–629.
- S15. Hussain, S.; Patil, S. A.; Memon, A. A.; Vikraman, D.; Abbas, H. G.; Jeong, S. H.; Kim, H.-S.; Kim, H.-S.; Jung, J. Development of a WS₂/MoTe₂ Heterostructure as a Counter Electrode for the Improved Performance in Dye-Sensitized Solar Cells. *Inorg. Chem. Front.* 2018, *5*, 3178-3183.

S16. Hussain, S.; Patil, S. A.; Vikraman, D.; Mengal, N.; Liu, H.; Song, W.; An, K.-S.; Jeong, S. H.; Kim, H.-S.; Jung, J. Large Area Growth of MoTe₂ Films as High Performance Counter Electrodes for Dye-Sensitized Solar Cells. *Sci. Rep.* 2018, *8*, 29.