- Supplementary Information -

Toward an Intensified Process of Biomass-Derived Monomers:

The Influence of 5-(Hydroxymethyl)furfural Byproducts on the Gold-Catalyzed

Synthesis of

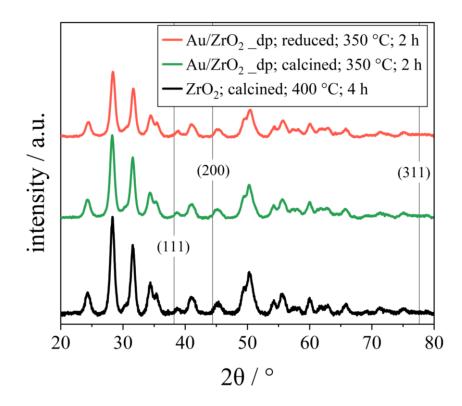
2,5-Furandicarboxylic Acid

Weiss Naim^{†‡}, Oliver R. Schade^{†‡}, Erisa Saraçi^{†‡}, Dominik Wüst[§], Andrea Kruse[§] and Jan-Dierk Grunwaldt^{†‡*}

 Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany

Institute for Catalysis Research and Technology, Karlsruhe Institute of Technology,
 Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

§ Department of Conversion Technologies of Biobased Resources, Institute of Agricultural Engineering, University of Hohenheim, Garbenstraße 9, 70593 Stuttgart, Germany


* grunwaldt@kit.edu

Total number of pages: 7

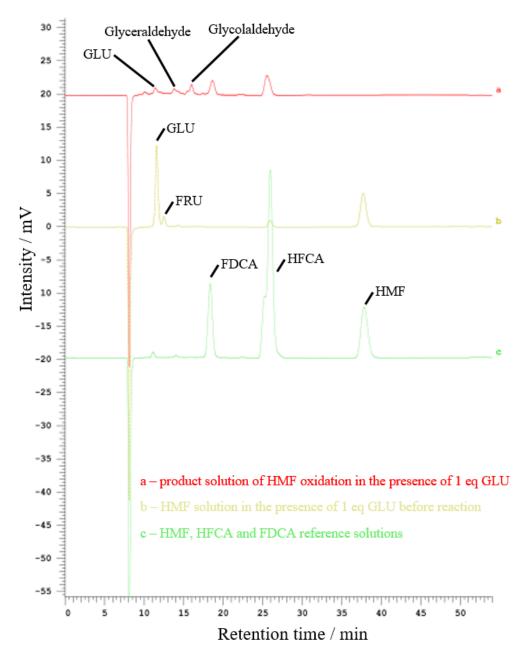

Total number of figures: 6

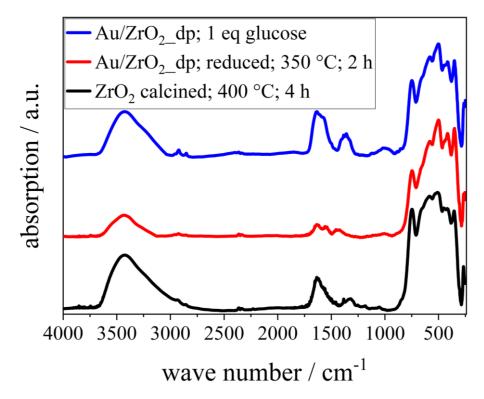
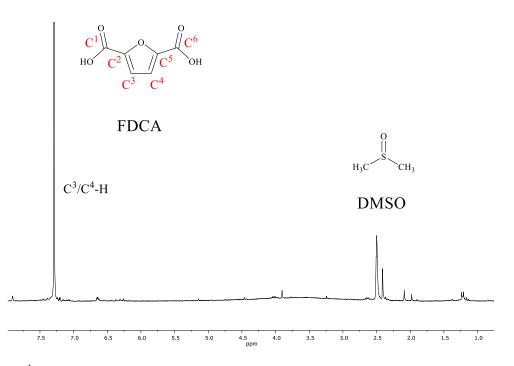
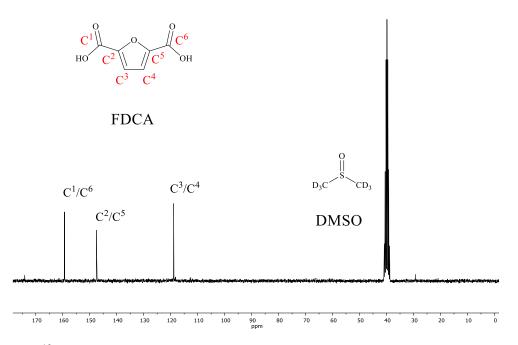
Table of contents

Figure S 1. XRD patterns of the used Au/ZrO ₂ catalyst	. S2
Figure S 2. Representative HPLC chromatograms of a reference solution and HMF solution before and after the reaction in the presence of one equivalent of glucose	
Figure S 3. Normalized IR absorption spectrum of spent Au/ZrO ₂ after the reaction in the presence one equivalent of glucose	
Figure S 4. ¹ H NMR spectrum of the extracted reaction product	. S4
Figure S 5. ¹³ C NMR spectrum of the extracted reaction product	. S5
Figure S 6. Characterization of the spent catalyst at different reaction conditions	. S6
References	. S7

Figure S 1. XRD patterns of Au/ZrO₂ catalysts via deposition-precipitation (dp) in reduced, calcined state and of ZrO₂ support.

Figure S 2. Representative HPLC chromatograms of a reference solution and HMF solution before and after the reaction in the presence of 1 eq. of GLU. Reaction conditions: 100 °C, 4 eq. of NaOH, 10 bar air, 5 h, 98.5 mg of catalyst, 0.1 M HMF in 10 mL.

The degradation of GLU under the chosen reaction conditions is mostly unselective and probably gives mostly humins,¹⁻³ as calibrated degradation products are only observed in low concentrations (Figure S 2).

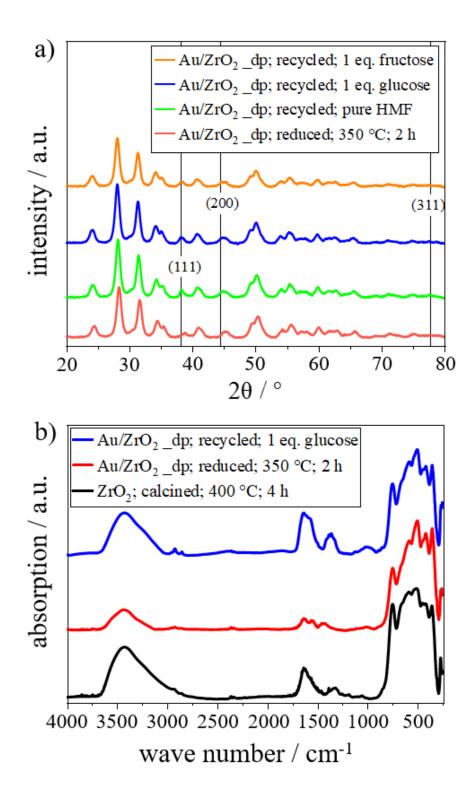

Figure S 3. Normalized IR absorption spectra of recovered Au/ZrO_2 after the reaction in the presence of 1 eq. GLU. Spectra of the calcined ZrO_2 support and the fresh catalyst are given for comparison.

Figure S 4. ¹H NMR spectrum (250 MHz, DMSO-d₆, δ = 2.5 ppm, 298 K) of extracted FDCA: 7.3 ppm (s, 2 H, C³/C⁴-H).

Figure S 5. ¹³C NMR spectrum (63 MHz, DMSO-d₆, $\delta = 39.8$ ppm, 298 K) of extracted FDCA: 118.5 ppm (2 C, C³/C⁴), 147.1 ppm (2 C, C²/C⁵), 159.0 ppm (2 C, C¹/C⁶).

Figure S 6. Catalyst characterization (a) XRD patterns of recovered Au/ZrO₂ after the third run without by-products, added sugars and in reduced state. (b) Normalized IR spectra of recovered Au/ZrO₂ catalysts after third run in the presence of GLU, in reduced state and calcined ZrO₂ support.

The increased absorbance in the IR spectrum of the spent Au/ZrO_2 catalyst in the presence of GLU at around 1370 cm⁻¹ may be attributed to the deposition of humins on the catalyst surface.⁴

References

(1) Wüst, D.; Correa, C. R.; Jung, D.; Zimmermann, M.; Kruse, A.; Fiori, L. Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. *Biomass Conver. Biorefin.* **2019**, 1-24. DOI 10.1007/s13399-019-00488-0.

(2) Kearsley, M. Action of aqueous sodium hydroxide on glucose syrups. *Food Chem.* **1977**, *2*, 27-41. DOI 10.1016/0308-8146(77)90005-X.

(3) Patil, S. K. R.; Hetzel, J.; Lund, C. R. F. Comparison of Structural Features of Humins Formed Catalytically from Glucose, Fructose, and 5-Hydroxymethylfurfuraldehyde. *Energy Fuels* **2012**, *26*, 5281-5293. DOI 10.1021/ef3007454.

(4) Tsilomelekis, G.; Orella, M. J.; Lin, Z.; Cheng, Z.; Zheng, W.; Nikolakis, V.; Vlachos,
D. G. Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. *Green Chem.* 2016, *18*, 1983-1993. DOI 10.1039/C5GC01938A.