Developing PEGylated Reversed D-Peptide as a Novel HER2-Targeted SPECT Imaging Probe for Breast Cancer Detection

Shuaifan Du[†], Chuangwei Luo[†], Guangjie Yang[†], Hannan Gao[†], Yanpu Wang[†], Xiaoda Li[‡], Huiyun Zhao[‡], Qi Luo^{§, ‡}, Xiaotu Ma[§], Jiyun Shi^{*,§}, Fan Wang^{*,†,§, ‡}

[†]Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, and [‡]Medical and Healthy Analytical Center, Peking University, Beijing 100191, China;

[§]Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

⁴Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.

Corresponding Authors

- *E-mail: shijiyun@moon.ibp.ac.cn.
- *E-mail: wangfan@bjmu.edu.cn.

This file includes:

The procedures for synthesis of HYNIC-PEG₄-H6/DH6/RDH6 conjugates, synthesis of HYNIC-PEG₁₂/PEG₂₄-RDH6 conjugates, determination of Log P_{o/w} values and surface plasmon resonance imaging (SPRi), and the Figure S1-S6 and Table S1.

Experimental Section

Synthesis of HYNIC-PEG4-H6/DH6/RDH6 Conjugates

NH₂-PEG₄-COOH and sodium succinimidyl 6-(2-(2-sulfonatobenzaldehyde)) hydrazono)nicotinate (HYNIC-NHS) was dissolved in 500 µL DMF and mixed with 3 µL DIEA. After stirring for 8 h at room temperature, conjugate HYNIC-PEG₄-COOH was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized.

HYNIC-PEG₄-COOH was dissolved in 500 µL DMF and mixed with EDC and NHS. After stirring for 8 h at room temperature, conjugate HYNIC-PEG₄-NHS was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized.

HYNIC-PEG₄-NHS and peptide (H6/DH6/RDH6) was dissolved in 500 μ L DMF and mixed with 3 μ L DIEA. After stirring for 8 h at room temperature, conjugate HYNIC-PEG₄-H6/DH/RDH6 was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized. The purities of products were >95%. The identity of the product was confirmed by mass spectrometry (m/z, 1670.6 for [M+H]⁺).

Synthesis of HYNIC-PEG₁₂/PEG₂₄-RDH6 Conjugates

HYNIC-PEG₁₂-RDH6 and HYNIC-PEG₂₄-RDH6 are synthesized in the same way. Take HYNIC-PEG₂₄-RDH6 as an example.

Fmoc-PEG₂₄-COOH was dissolved in 500 μ L DMF and mixed with EDC and NHS. After stirring for 8 h at room temperature, conjugate Fmoc-PEG₂₄-NHS was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized.

Fmoc-PEG₂₄-NHS and RDH6 was dissolved in 500 μ L DMF and mixed with 3 μ L DIEA. After stirring for 8 h at room temperature, conjugate Fmoc-PEG₂₄-RDH6 was isolated by semi-preparative HPLC. Fractions containing the product was collected

and lyophilized.

Fmoc-PEG₂₄-RDH6 was dissolved in 200 μ L 20% Piperidine-DMF and stirring for 20 min at room temperature. Conjugate NH₂-PEG₂₄-RDH6 was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized.

NH₂-PEG₂₄-RDH6 and HYNIC-NHS was dissolved in 500 μ L DMF and mixed with 3 μ L DIEA. After stirring for 8 h at room temperature, conjugate HYNIC-PEG₂₄-RDH6 was isolated by semi-preparative HPLC. Fractions containing the product was collected and lyophilized. The purity of product was >95%. The identity of the product was confirmed by mass spectrometry (m/z, 2551.9 for [M+H]⁺).

The identity of HYNIC-PEG₁₂-RDH6 was confirmed by mass spectrometry (m/z, 1509.7 for $[M+H]^+$).

Determination of Log Po/w Values

After radiolabeling, 2 μ L of ^{99m}Tc-PEG₄-H6, ^{99m}Tc-PEG₄-DH6, ^{99m}Tc-PEG₄-RDH6, ^{99m}Tc-PEG₁₂-RDH6 and ^{99m}Tc-PEG₂₄-RDH6 was taken respectively and diluted to 50 μ L with PBS. 50 μ L diluent of ^{99m}Tc radiotraces were mixed with 500 μ L octanol and 450 μ L PBS (0.1 M, pH = 7.4), and stirred for 4 h at 4 °C. After centrifugation, 100 μ L liquid of organic phase and aqueous phase was taken respectively, and radioactivity was measured by γ -counter. The above experiment was repeated three times. The log P values were reported as the average of three independent measurements plus the standard deviation.

Calculation formula: Log $P_{o/w} = \log (CPM \text{ of octanol/CPM of PBS})$

Surface Plasmon Resonance Imaging

Surface plasmon resonance imaging (SPRi) analysis was performed on a Plexera PlexArray HT system (Plexera LLC, Bothell, WA) using a bare gold SPR chip (Nanocapture gold chips, with a gold layer of 47.5 nm thickness). All Sulfydryl-peptides (Cys-H6, Cys-DH6 and Cys-RDH6) were printed onto the gold

chip surface by the thiol group of the cysteine residue. The printed chip was then incubated in 4 °C overnight in a humid box. The SPR chip was washed and blocked using 5% nonfat milk in PBS overnight before use. The SPR analysis procedure follows the following cycle of injections: running buffer (PBST, baseline stabilization); sample (six concentrations of the protein, binding); running buffer (PBST, washing); and 0.5% (v/v) H₃PO₄ in deionized water (regeneration). HER2 protein was diluted with PBST to concentrations of 704 nM, 352 nM, 176 nM, 88 nM, 44 nM, 22 nM. Real-time binding signals were recorded and analyzed by PlexArray HT software.

Figure S1. The synthesis process, typical HPLC chromatogram and MALDI-TOF mass spectrometry of HYNIC-PEG₄-peptide.

Synthesis of HYNIC-PEG₂₄-RDH6

Figure S2. The synthesis process, typical HPLC chromatogram and MALDI-TOF mass spectrometry of HYNIC-PEG₂₄-RDH6.

Figure S3. SPR detection of the binding affinity of DH6 and RDH6 toward HER2, respectively.

Figure S4. Radio-HPLC chromatograms of 99m Tc-PEG₄-H6, 99m Tc-PEG₄-RDH6 and 99m Tc-PEG₂₄-RDH6 in urine at 0.5 and 2 h p.i. Two normal mice were used, and each was administered with ~10 MBq of tracer, respectively.

Figure S5. The tumor/non-tumor ratios of ^{99m}Tc-PEG₂₄-RDH6 and ^{99m}Tc-PEG₄-RDH6.

Figure S6. Representative nanoScanSPECT/CT images of ^{99m}Tc-PEG₂₄-RDH6 in NCI-N87 (HER2⁺) gastric cancer model (A) at 0.5 and 1 h post-injection, (B) blocking with excess cold RDH6 peptide at 0.5 h post-injection. (C) Biodistribution of ^{99m}Tc-PEG₂₄-RDH6 in NCI-N87 gastric cancer model at 0.5 h post-injection.

Peptide	Log P _{o/w}
^{99m} Tc-PEG ₄ -H6	2.56 ± 0.03
99mTc-PEG ₄ -DH6	2.69 ± 0.02
99mTc-PEG ₄ -RDH6	2.61 ± 0.02
99mTc-PEG12-RDH6	1.95 ± 0.01
99mTc-PEG24-RDH6	-0.93 ± 0.02

Table S1. Lipo-hydro partition coefficient of 99m Tc-PEG_n-H6/RDH6 (n = 4, 12, 24).