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A. Comparison to Absolute Asymmetric (Chemical) Synthesis

Absolute asymmetric synthesis refers to chemical reactions starting from achiral or racemic reactants but yield chiral
products with a net enantiomeric excess. Generally, it requires the presence of a truly chiral external influence, which,
according to Barron [S1], is a physical quantity that can appear in two degenerate forms (e.g. opposite signs of one
physical quantity, or parallel and anti-parallel alignments of two vectors), which are interconverted by space-inversion
but not by time-reversal. Following this, the lone influence of a magnetic field, which reverses sign under time-reversal
but not space-inversion, is not truly chiral, and therefore should not induce absolute asymmetric synthesis.

Just like Onsager reciprocity, this true-chirality consideration is based on microscopic reversibility, and therefore
is strict only in the linear response regime (in the vicinity of thermodynamic equilibrium). Barron later pointed out
that [S2], in a chemical reaction that would yield a racemic mixture (of enantiomers), the presence of a magnetic
field allows different reaction rates toward opposite enantiomers. This creates an enantiomeric excess away from
equilibrium, which should eventually disappear as the system returns to equilibrium. However, if the nonequilibrium
enantiomeric excess is amplified, for example by self-assembly or crystallization, absolute asymmetric synthesis can
be induced, and this was later demonstrated experimentally [S3, S4].

This shows that a time-reversal-breaking influence (the magnetic field), albeit not being truly chiral, can still
distinguish and separate enantiomers away from thermodynamic equilibrium. By the same token, in the 2T circuit
that we discuss, the FM breaks time reversal symmetry and can therefore indeed distinguish enantiomers away from
equilibrium, i.e. in the nonlinear regime. Therefore, the nonlinear conductance of the 2T circuit may depend on the
chirality of the circuit component, as well as the magnetization direction of the FM.

B. Beyond the Landauer Formula

The Landauer formula describes the electrical conductance of a conductor using its scattering properties [S5].
Particularly, it expresses conductance in terms of transmission probabilities between electrodes, but does not require
the use of reflection probabilities. Moreover, it considers that the charge (and spin) transport are solely driven by
charge biases, and neglects possible spin accumulations in the circuit [S6]. For a 2T device, it allows two independent
parameters (charge and spin transmission probabilities) for the description of coupled charge and spin transport.

We point out here that a full description of the coupled charge and spin transport must extend beyond the con-
ventional (spin-resolved) Landauer formula, and include also the (spin-flip) reflection terms and the buildup of spin
accumulations, which also act as driving forces of the transport. This point was earlier raised for an FM–normal metal
system [S7]. Following this, we need to characterize the (twofold rotationally symmetric) chiral component using four
independent parameters, see the matrix in eq. S13, contrasting to the two parameters mentioned earlier.

Using this extended Landauer formula that is similar to a Büttiker multiterminal analysis, we can fully (in terms
of charge and spin) account for how a generic spin–charge converter responds to charge and spin driving forces. This
response can be described using the transport matrices that our main text focuses on. Note that although in this
work we derive these transport matrices using the extended Landauer formula, it does not limit the general validity
of the transport matrix formalism. The transport matrices can be alternatively derived using other methods, and
can be extended to the nonlinear regime by including energy or bias dependences. The symmetry/asymmetry of
the transport matrix in the linear/nonlinear response regime is fundamentally related to the (breaking of) Onsager
reciprocity, and does not depend on how the transport matrix itself is derived.

C. Nonunitarity for Generating CISS and Energy Relaxation for Generating MR

The generation of CISS requires the presence of nonunitary effects inside the chiral component, because the Kramers
degeneracy would otherwise require equal transmission probabilities for opposite spin orientations [S8, S9]. These
nonunitary effects break the phase information of a transmitting electron, but does not necessarily alter its energy.

The presence of these nonunitary effects only allows the generation of CISS, but does not guarantee the generation
of a 2T MR. These nonunitary effects do not (necessarily) break the Onsager reciprocity, and therefore a 2T MR
is still forbidden in the linear response regime. Even when considering energy-dependent transport in the nonlinear
regime, since at each energy level the Onsager reciprocity still holds, a 2T MR cannot arise.

The emergence of MR, as we discussed, requires energy relaxation in the device. These relaxation processes not only
break the phase information, but also alter the energy of the electrons, and rearrange them according to Fermi–Dirac
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distribution. We have assumed that they do not change the spin orientation of the electrons. In principle, we can
also include spin relaxation in the node, which we expect to reduce the MR without changing its sign.

D. Spin and Charge Transport in a Nonmagnetic Chiral Component

In the main text we introduced the spin-space transmission and reflection matrices for the right-moving electrons
in a (nonmagnetic) chiral component (eq. 1)

TB =

(
t→→ t←→
t→← t←←

)
, RB =

(
r→→ r←→
r→← r←←

)
. (S1)

For the left-moving electrons, the matrices are the time-reversed forms of the above

TC =

(
t←← t→←
t←→ t→→

)
, RC =

(
r←← r→←
r←→ r→→

)
. (S2)

Note that these matrices are not suitable for describing magnetic components where time-reversal symmetry is not
preserved. Also, we have assumed the chiral component to be symmetric (i.e. a twofold rotational symmetry with
axis perpendicular to the electron pathway, this ensures that for oppositely moving electrons, the spin polarization
only changes sign).

We use spin-space column vector to describe electrochemical potentials and currents on both sides of the molecule,
and following ref. S10 we have (

IL→
IL←

)
= −Ne

h

[
(I− RB)

(
µL→
µL←

)
− TC

(
µR→
µR←

)]
, (S3a)

−
(
IR→
IR←

)
= −Ne

h

[
(I− RC)

(
µR→
µR←

)
− TB

(
µL→
µL←

)]
, (S3b)

where N is the number of spin-degenerate channels.

We define charge electrochemical potential µ = (µ→ + µ←)/2 and spin accumulation µs = (µ→ − µ←)/2, as well
as charge current I = I→ + I← and spin current Is = I→ − I←. We describe here both charge and spin in electrical
units.

Following these definitions, we have

I = IL→ + IL← = IR→ + IR←, (S4a)

IsL = IL→ − IL←, (S4b)

IsR = IR→ − IR←, (S4c)

µL = (µL→ + µL←)/2, (S4d)

µR = (µR→ + µR←)/2, (S4e)

µsL = (µL→ − µL←)/2, (S4f)

µsR = (µR→ − µR←)/2. (S4g)

Combining eq. S3 and S4, we derive I
−IsL
IsR

 = −Ne
h

 t s s
Prr γr γt
Ptt γt γr

µL − µRµsL
µsR

 , (S5)

which is eq. 2 in the main text, and µL − µR = −eV is induced by a bias voltage V .
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The matrix elements are

t = t→→ + t→← + t←→ + t←←, (S6a)

r = r→→ + r→← + r←→ + r←← = 2− t, (S6b)

γt = t→→ − t→← − t←→ + t←←, (S6c)

γr = r→→ − r→← − r←→ + r←← − 2, (S6d)

Pt = (t→→ − t→← + t←→ − t←←)/t, (S6e)

Pr = (r→→ − r→← + r←→ − r←←)/r, (S6f)

s = t→→ + t→← − t←→ − t←← (S6g)

= −r→→ − r→← + r←→ + r←←. (S6h)

For r = 2− t and the two expressions of s, we have used the condition of charge conservation

t→→ + t→← + r→→ + r→← = 1, (S7a)

t←→ + t←← + r←→ + r←← = 1. (S7b)

Among the above matrix elements, Pt, Pr, and s change sign when the chirality is reversed. For achiral components
where there is no spin selective transport, we have Pt = Pr = s = 0, and the transport matrix is symmetric.

Note that in eq. 2 we have defined the vector of currents (thermodynamic response) using −IsL and IsR, so that
the transport matrix is symmetric in the linear response regime. Following this, as shown in Figure 1, the chiral
component acts as a source (or sink) of spin currents when biased.

We can rewrite γt and γr as transmission-dependent quantities

γr = r − (Prr + s)/ηr − 2 = −t− (Prr + s)/ηr, (S8a)

γt = −t+ (Ptt+ s)/ηt, (S8b)

where

ηr =
r←→ − r→←
r←→ + r→←

, (S9a)

ηt =
t→→ − t←←
t→→ + t←←

, (S9b)

are quantities between ±1 and change sign under chirality reversal.
Next, for chiral components where Pt, Pr, and s are nonzero, the Onsager reciprocity requires the 3× 3 matrix to

be symmetric [S11], which gives

Ptt = Prr = s, (S10)

and therefore

t→← = t←→, (S11a)

r→→ = r←←, (S11b)

t→→ − t←← = r←→ − r→←. (S11c)

These expressions show that, for any finite Pt (spin polarization of transmitted electrons), Pr (spin polarization
of reflected electrons) must also be nonzero and have the same sign, which then requires the presence of spin-flip
reflections [S10]. This is again in agreement with the fundamental considerations based on zero charge and spin
currents in electrodes at equilibrium.

Further, we obtain

γr = −(1 + 2Pt/ηr)t, (S12a)

γt = −(1− 2Pt/ηt)t. (S12b)

which allows us to rewrite the transport matrix equation in terms of t I
−IsL
IsR

 = −Ne
h

 t Ptt Ptt
Ptt −(1 + 2Pt/ηr)t −(1− 2Pt/ηt)t
Ptt −(1− 2Pt/ηt)t −(1 + 2Pt/ηr)t

µL − µRµsL
µsR

 . (S13)
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Note that Pt, ηt, and ηr all change sign when the chirality is reversed, and t, Pt/ηt, and Pt/ηr are always positive.
In later discussions we connect the right-hand side of the nonmagnetic component to an electrode (see Figure 2a)

where the spin accumulation µsR is zero and the spin current IsR is irrelevant. This reduces the matrix equation to(
I
−IsL

)
= −Ne

h

(
t Ptt
Ptt −(1 + 2Pt/ηr)t

)(
µL − µR
µsL

)
, (S14)

which is equivalent to eq. 3 in the main text.

E. Spin and Charge Transport at an Achiral Ferromagnetic Tunnel Junction/Interface (FMTJ)

In an FM, time-reversal symmetry is broken and the Kramers degeneracy is lifted. The FMTJ provides a spin
polarization to any current that flows through, and reciprocally, it generates a charge voltage upon a spin accumulation
at its interface. In terms of spin and charge transport, the FMTJ effectively allows different conductances for electrons
with opposite spins, and the difference depends on its spin polarization PFM . Inside the FM, spin relaxation is strong
and spin accumulation is negligible. For our discussions, the FM is always connected to the left-hand side of a node,
we thus only consider the R interface of the FM with a spin accumulation µsR (in the node). Following the discussion
provided in ref. S12, the spin-specific currents on the R-side are therefore

I→ = −1

e
G→[µL − (µR + µsR)], (S15a)

I← = −1

e
G←[µL − (µR − µsR)], (S15b)

where G→(←) is the spin-specific tunnel conductance. We define the total conductance GFM = G→ + G← and FM
spin-polarization PFM = (G→ − G←)/(G→ + G←). We also introduce a transmission coefficient T (0 6 T 6 2) to
distinguish GFM from ideal transmission. The charge and spin currents on the R interface of the FM can thus be
written as (

I
IsR

)
= −N

′e

h

(
T −PFMT

PFMT −T

)(
µL − µR
µsR

)
, (S16)

where N ′ is the number of spin-degenerate channels in the FMTJ.
This matrix gives the spin and charge response of the FMTJ, and unlike for a chiral molecule, this matrix ful-

fills the Onsager reciprocity by being antisymmetric (opposite off-diagonal terms), because upon magnetic field and
magnetization reversal, PFM changes sign [S11].

F. Spin and Charge Transport in a Generic 2T Circuit

We consider a generic 2T circuit like the one shown in Figure 2a. Our goal here is to derive the quantities I, µ,
and µs as a function of 2T bias µL − µR, by adapting eq. 3 and 4 in accordance with the notations in Figure 2a. We
rewrite the transport matrices into conductance matrices, and obtain for the left and right side of the node(

I
Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (S17a)(

I
−Is

)
= −1

e

(
g1 g2

g3 g4

)(
µ− µR
µs

)
. (S17b)

At steady state the continuity condition requires the currents I and Is are equal in both subequations. This
condition allows us to derive

µ = µR +
G3(G2 − g2)−G1(G4 + g4)

f
(µL − µR)

= µL −
g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR) ,

(S18a)

µs =
(G3/G1 + g3/g1)G1g1

f
(µL − µR) , (S18b)

I =
G1g2g3 + g1G2G3 −G1g1(G4 + g4)

f
(µL − µR) , (S18c)
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where the coefficient f is

f = (G3 − g3)(G2 − g2)− (G1 + g1)(G4 + g4). (S19)

Notably, f depends on (G3−g3)(G2−g2), and for our linear-regime example using an FM withG2 = −G3 and a chiral
component with g2 = g3, f only depends on g2

3 − G2
3, which remains unchanged when either the FM magnetization

or the chirality is reversed. Moreover, the charge current I only depends on g2
3 and G2

3, and therefore also remains
unchanged under magnetization or chirality reversal. In contrast, the spin accumulation µs depends on G3 and g3,
and the charge distribution indicated by µ depends on G3g2 or g3G2. Both µs and µ therefore indeed change upon
magnetization or chirality reversal, and can be detected using three-terminal or four-terminal measurements.

If the two circuit components would both be FM (antisymmetric G and g matrices) or both be chiral (symmetric
G and g matrices), then the coefficient f contains the cross products G3g2 and G2g3, and therefore gives rise to a 2T
current that does change upon magnetization or chirality reversal.

G. Reciprocity Breaking by Energy-Dependent Tunneling

Here we derive the energy dependence of the charge and spin tunneling through the FMTJ following the discussion
by Jansen et al. [S12], and derive the subsequent nonlinear coupled charge and spin transport equations.

We consider a biased symmetric rectangular tunnel barrier with height Φ and width w between the FM and the
node, as shown in Figure S1. The reference energy ε = 0 is chosen as the average of µL and µ, so that the average
barrier height does not change with bias. The bias voltage V = −∆µ/e is applied, so that µL = ∆µ/2, µ = −∆µ/2,
µ→ = −∆µ/2 + µs, and µ← = −∆µ/2 − µs. For simplicity, we assume the barrier height (evaluated at the center
of the tunnel barrier) is constant, the tunneling is one dimensional, and the electrostatic potential drop across the
tunnel barrier is exactly −eV .

𝜇𝐿 

𝜇 
𝜇→ 

𝜇← 

𝜖 = 0 

Φ 

𝜖 

Δ𝜇

2
 

𝜇𝑠 

−
Δ𝜇

2
 

FM Node Barrier 

Figure S1. Energy diagram of the tunnel barrier at the ferromagnet interface. Details see text.

The energy-dependent electron tunnel transmission function is

T (ε) = 2 exp
(
−β (Φ− ε)1/2

)
, (S20)

where β = 2w
√

2m/~2, with m being the (effective) electron mass and ~ the reduced Planck’s constant.
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The total transmitted current is an energy-integral of two energy-dependent functions: (1). the transmission
function T (ε), and (2) the voltage-dependent Fermi–Dirac distribution functions in both electrodes. The two parts
dominate at different bias regimes with respect to the thermal activation energy kBT , where kB is the Boltzmann
constant and T is temperature. For tunneling, typically we have |eV | � kBT , and therefore we assume zero temper-
ature for convenience. The Fermi–Dirac distribution function then becomes a Heaviside step function with the step
at µL for the left electrode and at µ→ and µ← for the two spin species in the node.

Assuming PFM does not depend on energy, the energy-integrated tunnel current for each spin species through the
FMTJ is

I→(∆µ, µs) = −N
′e

h

1 + PFM
2

∫ µL

µ→

T (ε) dε, (S21a)

I←(∆µ, µs) = −N
′e

h

1− PFM
2

∫ µL

µ←

T (ε) dε. (S21b)

The range of the integrals can be rewritten as

for I→ :

∫ µL

µ→

dε =

∫ µL

µ

dε−
∫ µ→

µ

dε, (S22a)

for I← :

∫ µL

µ←

dε =

∫ µL

µ

dε+

∫ µ

µ←

dε. (S22b)

We denote the two integrals on the right-hand side of the expressions I
(1)
→(←) and I

(2)
→(←) respectively, so that we have

I→ = I(1)
→ + I(2)

→ and I← = I(1)
← + I(2)

← . The first integral I
(1)
→(←) depends on the electrochemical potential difference

across the barrier, ∆µ, and thus describes the bias-induced transport. In contrast, the second integral I
(2)
→(←) depends

on µ and µs in the node, and it vanishes when µs = 0, and therefore it describes the spin-accumulation-induced
correction to the first integral. We will treat the two integrals separately.

The bias-induced charge and spin currents are

I(1) = I(1)
→ + I(1)

←

= −N
′e

h

∫ µL

µ

T (ε) dε

= −N
′e

h

(
T |µL
µ

)
∆µ,

(S23a)

I(1)
s = I(1)

→ − I(1)
←

= −N
′e

h
PFM

∫ µL

µ

T (ε) dε

= −N
′e

h

(
PFM T |µL

µ

)
∆µ,

(S23b)

where the averaged transmission within the bias window is defined as

T |µL
µ =

1

∆µ

∫ µL

µ

T (ε) dε. (S24)

Note that when ∆µ changes sign, the integral changes sign too, and therefore T |µL
µ is an even function of ∆µ.

For the spin-accumulation-induced currents, we have

I(2) = I(2)
→ + I(2)

←

= −N
′e

h

[
−1 + PFM

2

∫ µ→

µ

T (ε)dε+
1− PFM

2

∫ µ

µ←

T (ε)dε

]
≈ −N

′e

h
(−PFMT |ε=µ) · µs,

(S25a)
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I(2)
s = I(2)

→ − I(2)
←

= −N
′e

h

[
−1 + PFM

2

∫ µ→

µ

T (ε)dε− 1− PFM
2

∫ µ

µ←

T (ε)dε

]
≈ −N

′e

h
(−T |ε=µ) · µs,

(S25b)

where the approximation is taken under the assumption that µs � ∆µ, so that T (ε) is approximately a constant
within the energy range from µ← to µ→, and thus they are evaluated at ε = µ = −∆µ/2. The energy dependence of

I(2) and I
(2)
s follows that of T (ε) (eq. S20).

We can now rewrite eq. S23 and S25 into matrix form I

Is

 = −N
′e

h

 T |µL
µ −PFMT |ε=µ

PFMT |µL
µ −T |ε=µ

µL − µ
µs

 , (S26)

which is eq. 6 in the main text. The different off-diagonal terms demonstrate the breaking of Onsager reciprocity in
the nonlinear regime, since one of them depends on the integral of the transmission function, while the other depends
on the transmission function itself. In the linear response regime (µL ≈ µ), the two terms differ only by sign.

We rewrite the above into (
I
Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (S27)

so that the matrix elements represent conductance, where G2 = (N ′e2/h) · (−PFMT |ε=µ) and G3 = (N ′e2/h) ·
(PFMT |µL

µ ). In Figure S2, we plot G2 and G3 as a function of bias across the FMTJ [(µL − µ)/e] for PFM = −0.5
and N ′ = 1000, values that are used to calculate the I–V curves in Figure 2d (for other parameters see later in SI.I).

Figure S2. Bias dependence of the off-diagonal elements of the conductance matrix describing tunneling through the FMTJ.

Note that G2 = −G3 at zero bias, as required by Onsager reciprocity in the linear response regime. The breaking of
reciprocity in the nonlinear regime is exhibited by the unequal absolute values of G2 and G3 away from zero bias. Here
G2 is increases monotonically with decreasing bias, while G3 is symmetric in bias and obtains minimum (absolute
value) at zero bias.

H. Reciprocity Breaking by Thermally Activated Resonant Transmission Through Molecular Orbitals

We discuss here the effect of the Fermi–Dirac distribution of electrons using resonant transmission through discrete
molecular orbitals (MOs), specifically the lowest-unoccupied molecular orbital (LUMO) and the highest-occupied
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molecular orbital (HOMO). This is illustrated in Figure S3. We assume here the LUMO and HOMO levels are
fixed at energies εLU and −εHO respectively (εLU , εHO > 0), with ε = 0 defined as the average of the two (charge)
electrochemical potentials on both sides of the molecule. The nonlinearity is now assumed to be fully due to the
Fermi–Dirac distribution F (ε, µ), which is different for the node and the electrode, and is also different for the two
spin species in the node when a spin accumulation is considered.

𝜇 
𝜇 + 𝜇𝑠 

𝜖 = 0 

Node Molecule Electrode 

𝜇𝑅 

LUMO 

HOMO 

𝜖𝐿𝑈 

−𝜖𝐻𝑂 

Δ𝜇

2
 

−
Δ𝜇

2
 

𝐼 
−𝐼𝑠𝐿 𝐼𝑠𝑅 

𝜇𝐿→ 

𝜇𝐿← 

𝜇𝑅→ 

𝜇𝑅← 

𝜖 
𝐹(𝜖, 𝜇) 

𝜇 − 𝜇𝑠 

Figure S3. Energy diagram of the electron transmission through molecular orbitals.

Consider the geometry in Figure S3, at a given bias ∆µ and a spin accumulation µs in the node, the spin-specific
Fermi–Dirac functions for the two spin species in the node are

FL→(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2−µs

kBT

)
+ 1

, (S28a)

FL←(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2+µs

kBT

)
+ 1

, (S28b)

where we used subscript L to denote the node because its located on the left side of the molecule.

The Fermi–Dirac function in the node (neglecting the spin accumulation) and in the right electrode are

FL(ε,∆µ) =
1

exp
(
ε−∆µ/2
kBT

)
+ 1

, (S29a)

FR(ε,∆µ) =
1

exp
(
ε+∆µ/2
kBT

)
+ 1

. (S29b)

We model the resonant transmission through the MOs as energy-dependent transmission probability t(ε) that is
only nonzero at the LUMO and the HOMO levels, which it is described by

t(ε) = tLUδ(ε− εLU ) + tHOδ(ε+ εHO), (S30)

where tLU and tHO are the transmission probabilities through the LUMO and the HOMO, respectively, and δ(ε) is a
Dirac delta function.

An exact calculation should separately address the two spin orientations separately, but for our assumption of
µs � ∆µ, we will directly start from the linear-regime equation of coupled charge and spin transport (eq. S14)(

I
−IsL

)
= −Ne

h

(
t Ptt
Ptt −(1 + 2Pt/ηr)t

)(
µ− µR
µs

)
. (S31)
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This gives the charge current I

I = −Ne
h

[t(µL − µR) + Ptt(µL→ − µL←)/2] , (S32)

where we used µL→ = µ+ µs and µL← = µ− µs.
At finite temperature, the two terms in the square bracket on the right-hand side of the equation should each

be replaced by an energy-integral of the electron transmission function modified by the voltage- and temperature-
dependent Fermi–Dirac distributions in both electrodes. We denote the two terms I(1) and I(2), and the first term
is

I(1) =

∫ ∞
−∞

t(ε) [FL(ε,∆µ)− FR(ε,∆µ)] dε

= tLU [FL(εLU ,∆µ)− FR(εLU ,∆µ)]

+ tHO [FL(−εHO,∆µ)− FR(−εHO,∆µ)] .

(S33)

We denote

Fε(∆µ) =
1

∆µ
[FL(ε,∆µ)− FR(ε,∆µ)] , (S34)

to highlight the transmission at energy ε and under bias ∆µ. In this manner, we can write

I(1) = [tLU FεLU
(∆µ) + tHO F−εHO

(∆µ)] ∆µ. (S35)

Similarly, at finite temperature, the second term I(2) becomes

I(2)

=
Pt
2

(tLU [FL→(εLU ,∆µ, µs)− FL←(εLU ,∆µ, µs)]

+ tHO [FL→(−εHO,∆µ, µs)− FL←(−εHO,∆µ, µs)]).

(S36)

We define

F ′L,ε(∆µ)

=
1

2µs
[FL→(ε,∆µ, µs)− FL←(ε,∆µ, µs)]

≈∂[FL(ε,∆µ)]

∂∆µ
,

(S37)

where the approximation is taken under the assumption of µs � ∆µ.
With this, we have

I(2) = Pt
[
tLU F ′L,εLU

(∆µ) + tHO F ′L,−εHO
(∆µ)

]
µs. (S38)

Similarly, the expression of −IsL at finite temperature can also be derived from the linear regime expression. The
nonlinear coupled spin and charge transport equation, due to the thermally activated resonant transmission via the
LUMO and the HOMO levels, is therefore(

I
−IsL

)
= −Ne

h

(
tLU FεLU

(∆µ) + tHO F−εHO
(∆µ) Pt[tLU F ′L,εLU

(∆µ) + tHO F ′L,−εHO
(∆µ)]

Pt[tLU FεLU
(∆µ) + tHO F−εHO

(∆µ)] −(1 + 2Pt/ηr) [tLU F ′L,εLU
(∆µ) + tHO F ′L,−εHO

(∆µ)]

)(
µ− µR
µs

)
,

(S39)
where we have assumed Pt, ηr do not depend on energy.

The breaking of reciprocity arises from the different forms of the off-diagonal terms of the transport matrix. While
the bottom-left term scales with the electron occupation function, the top-right terms scales with its derivative. In
the linear response regime, the two terms are equal and the matrix is symmetric.

If required, this nonlinear transport equation can be easily extended to the 3× 3 matrix for a generalized situation
considering also a spin accumulation µsR on the right-hand side of the molecule. Then the third column will be
modified in a similar way as the second column, but instead using the derivative of the electron occupation function
in the right electrode FR(ε,∆µ).
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Similar to the case of FMTJ, we can rewrite the above equation into(
I
−Is

)
= −1

e

(
g1 g2

g3 g4

)(
µ− µR
µs

)
, (S40)

where the matrix elements represent conductances. We plot the off-diagonal terms as a function of bias across the
molecule [(µ− µR)/e] for transmission through the LUMO level (tLU = 1, tHO = 0, εLU = 0.6 eV) for Pt = 0.85 and
N = 1000, as shown in Figure S4.

Figure S4. Bias dependence of the off-diagonal elements of the conductance matrix describing thermally activated conduction
through the LUMO.

Note that g2 = g3 at zero bias, as required by Onsager reciprocity in the linear response regime. The reciprocity is
broken as bias shifts away from zero, and the two conductances are no longer equal. Here g2 increases monotonically
with bias, while g3 is bias-symmetric and reaches minimum at zero bias.

I. Parameters for Example I–V Curves

(1) For calculating the I–V curves in Figure 2d we have used the following parameters: Energy dependent FM
tunnel transmission T (ε) for a tunnel barrier with height Φ = 2.1 eV, and width w = 1.0 nm. The number of channels
are set as N ′ = 1000 and N = 5000, the values are chosen taking into account the device length scale. For example,
if using Ni as FM, when assuming each atom provides one channel, N ′ = 1000 corresponds to roughly an area of
100 nm2. The transmission through the chiral component is set linear and uses the same transmission value as the
FM tunnel barrier at zero bias. The polarization values are PFM = ±0.5, Pt = 0.85, and the quantity ηr is set as
ηr = 0.9. The same parameters are used to obtain the conductances in Figure S2.

(2) For calculating the I–V curves in Figure 3b and 3c we have used the following parameters: Temperature at
300 K, the LUMO level at εLU = 0.6 eV, and the HOMO level at −εHO = −0.6 eV. For Figure 3b, the LUMO
transmission tLU = 1 and the HOMO transmission tHO = 0, while for Figure 3c the two values are interchanged.
The number of channels are set as N ′ = 1000 and N = 200. The transmission through the FM tunnel barrier is set
linear and uses the same transmission value as the FM tunnel barrier in case (1) at zero bias. The polarization values
are PFM = ±0.5, Pt = 0.85, and the quantity ηr is set as ηr = 0.9. The same parameters are used to obtain the
conductances in Figure S4.

(3) For the chiral spin valve in Figure 4f, we use the same tunnel transmission function and the same barrier
parameters as in case (1) for both chiral components (both nonlinear), and do not consider the thermally activated
molecular level transmission. The number of channels are set as N ′ = 1000 and N = 20000. The first chiral component
has polarization ±0.5, and the second one 0.85, both have ηr = 0.9.
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(d) For the example in Figure 4g, the tunnel barrier uses the same parameters as the FMTJ in case (1), but has
zero spin polarization. The chiral component transmission is set linear and uses the same set of parameters as in case
(1). The dashed curve is obtained by forcing µs = 0 for all bias values.

J. Sign of the Nonlinear 2T MR

We summarize here, separately for the two nonlinear mechanisms, how the sign of the MR depends on chirality,
charge carrier type, and bias direction. First of all, we define the MR for the device in Figure 2a following

MR =
I+ − I−
I+ + I−

× 100%, (S41)

where I+ represents the charge current measured with the FM polarization PFM > 0, which corresponds to a spin-
right polarization of the injected electrons, and I− corresponds to the current measured when the FM generates a
spin-left polarization.

For the bias direction, we describe it in terms of electron movement direction (opposite to charge current) with
respect to the circuit components. For example, in Figure 2a, the positive bias voltage corresponds to an electron
movement from the chiral component (CC) to the FMTJ.

For the (sign of) chirality, we label it as d and l. Here we (arbitrarily) assume that a d-chiral component favors the
transmission of electrons with spins parallel to the electron momentum, while an l-chiral component favors the anti-
parallel. The exact correspondence between the chirality and the favored spin orientation depends on the microscopic
details of the spin orbit interaction.

According to these definitions, the sign of the MR is summarized in the following tables.

TABLE SI. Summary of the sign of MR for nonlinear tunneling through FMTJ

chirality electron direction carrier type MR

d CC to FMTJ electron +

l CC to FMTJ electron -

d FMTJ to CC electron -

l FMTJ to CC electron +

TABLE SII. Summary of the sign of MR for nonlinear transmission through molecular orbitals

chirality electron direction carrier type MR

d CC to FMTJ electron +

l CC to FMTJ electron -

d FMTJ to CC electron -

l FMTJ to CC electron +

d CC to FMTJ hole -

l CC to FMTJ hole +

d FMTJ to CC hole +

l FMTJ to CC hole -

K. Beyond Noninteracting-Electron Picture

We analyzed two elementary sources of energy dependence to illustrate the onset of MR in nonlinear regime: (a)
energy-dependent tunnelling through the FMTJ (Figure 2), and (b) energy-dependent Fermi–Dirac distribution for res-
onant transmission through MOs(Figure 3). For convenience, both examples concentrated the role of electron–electron
or electron–phonon interactions in the node for inducing energy relaxation, and considered a noninteracting-electron
picture for transport through each individual circuit component. In practice, however, electron transport through
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chiral molecules could also involve other many-body effects such as Coulomb blockade, Kondo effects, molecular
deformation, and transport-induced chemical reactions [S13, S14].

We emphasize here, in three aspects, that our qualitative conclusions are not restricted by the noninteracting-
electron picture that we use. Moreover, our quantitative results can in principle be improved by including the
many-body effects when deriving the transport matrices.

First, the transport matrix formalism we introduced is generally valid. It describes the coupled charge and spin
transport in generic spintronic nanodevices, which is (thermodynamically) driven by charge and spin chemical poten-
tials. The symmetry/asymmetry of the transport matrices in the linear/nonlinear response regime is fundamentally
related to the (breaking of) Onsager reciprocity. It does not depend on specific microscopic mechanisms. Based on
this, we derived our main conclusion that MR signals can only arise in the nonlinear regime, and it requires energy-
dependent transport and energy relaxation. This conclusion is therefore also fundamental and does not depend on
detailed transport mechanisms.

Second, we identified how key factors such as bias direction, electron/hole transport, and chirality, codetermine the
sign of the MR. These factors are also related to fundamental symmetry and the nature of electron transport, and do
not depend on microscopic mechanisms.

Third, considering our two examples, the first one is also unaffected by electron–electron or electron–phonon inter-
actions in the chiral component because it operates in the linear response regime. In the second example where we
consider energy-dependent transport through the chiral component, potential many-body effects may indeed change
the energy and bias dependence of the nonlinear transport, and thereby quantitatively affect the MR in the nonlinear
regime.

We point out here that our formalism can be extended to include the role of many-body effects or other nonlinear
mechanisms by deriving the transport matrices accordingly [S15, S16]. We encourage future studies to address these
mechanisms to help identify their signatures in experimental results of the electrical detection of CISS.
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