§ Supporting Information §

Ionic liquid (1-ethyl-3-methylimidazolium acetate) plasticization of chitosan-based bionanocomposites

Pei Chen^{a,b}, Fengwei Xie^{b,c,*,†}, Fengzai Tang^d, Tony McNally^{b,**}

^a College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China

^b International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry

CV4 7AL, United Kingdom

^c School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia

^d WMG, University of Warwick, Coventry CV4 7AL, United Kingdom

* Corresponding author. Email addresses: d.xie.2@warwick.ac.uk, fwhsieh@gmail.com (F. Xie)

** Corresponding author. Email address: t.mcnally@warwick.ac.uk (T. McNally)

[†] This author leads the research.

Table of Content

1	Tables	S2
2	Figures	
3	Notes to figures	S5
Ref	erences	S5

1 Tables

Table S1. Bulk resistance (R_b) and ionic conductivity (σ_{dc}) calculated from the Nyquist plots of impedance, and real relative permittivity (ε'_r) at 1 kHz, of the different biopolymer and

Sample	$R_{ m b}\left(\Omega ight)$	$\sigma_{ m dc}~(m S\cdot m^{-1})$	$\varepsilon'_{ m r}$ at 1 kHz
AE2-F	$(2.05\pm0.48)\times10^4$	(7.70±1.93)×10 ⁵	236±55
AE2/GO-F	$(3.27\pm0.24)\times10^4$	$(4.48\pm0.32)\times10^{5}$	134±23
AE2/rGO-F	$(3.70\pm0.66)\times10^4$	$(4.16\pm0.68)\times10^5$	84±14
AE4-F	$(1.24\pm0.49)\times10^4$	$(13.33 \pm 4.26) \times 10^5$	365±115
AE4/GO-F	$(0.82\pm0.33)\times10^4$	$(17.77\pm0.72)\times10^{5}$	432±49
AE4/rGO-F	$(1.70\pm0.67)\times10^4$	$(9.59 \pm 3.05) \times 10^5$	181±65
BE2-F	$(2.42\pm0.33)\times10^4$	$(5.98\pm0.76)\times10^5$	157±25
BE2/GO-F	$(2.53\pm0.65)\times10^4$	$(5.89 \pm 1.73) \times 10^5$	117±43
BE2/rGO-F	$(3.01\pm0.70)\times10^4$	$(4.44 \pm 1.23) \times 10^5$	104±29
BE4-F	$(2.09\pm0.89)\times10^4$	$(7.30\pm2.91)\times10^{5}$	249±99
BE4/GO-F	$(1.36\pm0.53)\times10^4$	$(10.40\pm2.91)\times10^{5}$	380±130
BE4/rGO-F	$(3.72\pm0.77)\times10^4$	$(3.70\pm0.69)\times10^5$	82±33

bionanocomposite films at RT.

2 Figures

Figure S1. SEM images of cryo-fractured surfaces of the different biopolymer and bionanocomposite films (magnification: 10k×).

Figure S2. a) Chemical structure and FTIR spectrum and b) derivative-weight profile of 1-ethyl-3-methylimidazolium acetate.

Figure S3. Representative stress-strain curves for the different biopolymer and bionanocomposite films: a) chitosan matrix; b) chitosan/CMC matrix.

Figure S4. Shore D hardness of the different biopolymer and composite films.

3 Notes to figures

Figure S1 shows the cryo-fractured surfaces of the different biopolymer and bionanocomposite films examined by scanning electron microscopy (SEM). All the samples displayed a cohesive surface morphology, suggesting successful processing of the biopolymers.

Figure S2 (a) shows the Fourier-transform infrared (FTIR) spectrum of $[C_2mim][OAc]$. The bands at 536 cm⁻¹, 633 cm⁻¹, 1381 cm⁻¹, and 1580 cm⁻¹ can be ascribed to the different vibration modes of the carboxylate (COO⁻) on the acetate and that at 1179 cm⁻¹ is attributed to the bending vibration of the carbon atoms and N–C=N on the imidazolium ring.¹

Figure S3 shows that the stress–strain profiles of the biopolymer matrices were strongly affected by [C₂mim][OAc] content. Excess (40 wt%) IL made the A-samples behave more like elastomeric materials whereas the other samples still behaved like hard and tough plastics.

Figure S4 shows the Shore D hardness for the different samples, which generally match the trends observed for *E* and σ_t . The Shore D hardness is mainly influenced by the IL content while the effect of GO/rGO was negligible. The B-samples with 20 wt% [C₂mim][OAc] had the highest Shore D hardness. It appears that PEC between the two biopolymers resulted in higher hardness.

References

Marekha, B. A.; Bria, M.; Moreau, M.; De Waele, I.; Miannay, F.-A.; Smortsova, Y.; Takamuku,
 T.; Kalugin, O. N.; Kiselev, M.; Idrissi, A., Intermolecular interactions in mixtures of
 1-n-butyl-3-methylimidazolium acetate and water: Insights from IR, Raman, NMR spectroscopy and
 quantum chemistry calculations. *J. Mol. Liq.* 2015, *210*, 227-237.