Supporting Information for Anisotropic Charge Transport in Nanoscale DNA Wire

Saientan Bag#, Tathagata Biswas#, Manish Jain and Prabal K Maiti*

Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012

Section I: Internal Reorganization Energy between the DNA bases

DNA Base 1	DNA Base 2	Internal Reorganization Energy (eV)
Guanine	Guanine	0.68
Cytosine	Cytosine	0.43
Guanine	Cytosine	0.50
Cytosine	Guanine	0.61

Table S1: Computed internal reorganization energy between different DNA bases.

Section II: Fixing the value of chemical potential of gold electrode in hopping calculation

The value of chemical potential (μ) can be set by ensuring that there is no net flow of charge at the interface when no voltage is applied. This condition can be mathematically written as

$$\int_{-\infty}^{\infty} exp\left[-\frac{(E-E_b-\lambda)^2}{4\lambda k_B T}\right] f_{FD}(E,\mu) dE = \int_{-\infty}^{\infty} exp\left[-\frac{(E_b-E-\lambda)^2}{4\lambda k_B T}\right] (1-f_{FD}(E,\mu)) dE$$

The equation above is numerically solved to find out the value of μ relative to the DNA base energy level E_b .

*<u>maiti@iisc.ac.in</u>

equal contribution

Fig. S1. Hopping rates from the electrode to the DNA base and DNA base to the electrode as a function chemical potential of gold electrode. Two curves intercepts at a value of chemical potential equal to 3.65 eV.

Section III: Fixing the value of chemical potential of gold electrode in tunneling calculation

The value of chemical potential μ can be found by demanding zero net current between the gold and the DNA interface when no voltage is applied. For the current due to hole transport, the above condition turns out to be the following

$$\int_{-\infty}^{\infty} f(E,\mu) T(E,E_{homo}) dE = \int_{-\infty}^{\infty} (1 - f(E,\mu)) T(E_{homo},E) dE$$

 E_{homo} is the HOMO energy of the DNA base and f is the fermi function. Here $T(E, E_{homo})$ is the transmittance of the electron form the energy state E to the energy state E_{homo} .

Since,
$$T(E, E_{homo}) = T(E_{homo}, E) = \delta(E - E_{homo})$$

 $f(E_{homo}, \mu) = 1 - f(E_{homo}, \mu)$
 $E_{homo} = \mu$

Section IV: Choice of the parameters in the hopping model

Parameter	λ_{eb} and λ_{be}	λ_{ext}	μ	С	arphi
Value	0.5 eV	0 eV	3.65 eV	0.05	0.8

Table S2: Value of parameter used in the semi-classical hopping calculations.

The hopping model was analysed for the ranges of the parameters value and robustness of the model was verified with respect to change of the parameter in that range. Here, we briefly describe the philosophy behind the choice of parameters used.

The parameter φ related to the voltage drop across the junction, has to be between 0 and 1. "1" means no voltage drop and "0" means complete drop. We have chosen "0.8" which means 20% drop over two junctions. We checked the electrode to base rate (and also base to electrode) for different φ in that range and observed just decay (increases) in rate with the increase in φ and nothing else. Similarly, the parameter λ_{ext} also decreases in current as we have found earlier[1]. λ_{be} is also known to fall within 0 to 1 eV and previously taken to be ~0.5 eV in the work of Livshits et al.[2]. So, the φ , λ_{ext} , and λ_{be} , together set the magnitude of the electrode to base rate which is later normalized by parameter "C" to get the experimental observed ratio between the base to base and base to electrode right as mentioned in the main text.

Fig S2: Electrode to DNA base and DNA base to electrode rates for different φ 's with the specific choice of

other parameters.

The electrode-base transfer rate works as a bottleneck of the transport (for semi-classical case) as long as the electrode-base transfer rate is less efficient than the base-base transfer rate. The relative values of the conductance for different DNA attachments with the electrode remain unchanged even if the exact value of the charge transport efficiency ratio (between base-base and base-electrode) is not exactly 40. Therefore, the experimental observation of less efficient electrode-base transfer rate is important rather than the exact empirically derived number. So, the assumption regarding the density of state and the interaction energy is justified when one is looking for the relative conductance between different kinds of electrode attachment.

Section V: Average value of the parameters in the Tight Binding Hamiltonian

Parameter	$\langle \varepsilon_{11} \rangle$	$\langle \varepsilon_{12} \rangle$	$\langle \varepsilon_{21} \rangle$	$\langle \varepsilon_{22} \rangle$	$\langle \alpha_{12}^1 \rangle$	$\langle \alpha_{12}^2 \rangle$	$\langle \beta_1 \rangle$	$\langle \beta_2 \rangle$	$\langle \gamma_1 \rangle$	$\langle \delta_1 \rangle$
Average	-5.92	-5.93	-5.93	-5.92	0.08	0.08	0.03	0.03	0.01	0.01
Value	eV	eV	eV	eV	eV	eV	eV	eV	eV	eV

Table S3: Average value of parameters used for the tight binding Hamiltonian.

Section VI: Orbital-resolved density of states (DOS)

Orbital-resolved DOS for electrode-base system is calculated where of 3' end of the Guanine base is connected with the electrode. In the following figure, we have shown the contributions coming from the different parts of the electrode-base system to different eigenstates that are close to the Fermi level (FL).

Figure S3: Orbital-resolved Density of States (DOS) for the 3' connection of the Guanine base with Gold electrode. Guanine base (black), Thiol linker (red), Deoxyribose sugar (blue) and Gold electrode (yellow) contributions to the eigenstates close to the FL has been shown.

In Fig. S3, we have resolved the Density of States (DOS) into contributions coming from Guanine base, Thiol linker, Deoxyribose sugar and Gold electrode parts of the system. It is evident from Fig. S3 that the HOMO and LUMO states of the system doesn't have any contribution from the Guanine base molecular orbitals. Those orbitals only have significant contribution to the eigenstates that lies ~1 eV below the FL, hence doesn't play any significant role in the electrode-base transfer. These findings are in perfect agreement with the conclusions already mentioned in the manuscript.

Section VII: Sample Input Files

sample_input_siesta: Sample input file for structural relaxation calculation, performed using SIESTA code

SystemName graphene SystemLabel graphene 241 NumberOfAtoms NumberOfSpecies 6 %block ChemicalSpeciesLabel 1 79 Au 2 16 S 3 8 0 4 7 N 5 6 C 6 1 H %endblock ChemicalSpeciesLabel XC.functional GGA XC.authors PBE PAO.BasisSize DZP MD.NumCGsteps 150 MD.TypeOfRun CG MD.MaxCGDispl 0.2 Bohr MD.MaxForceTol 0.06 eV/Ang MD.VariableCell Т MD.TargetPressure 0.5 GPa %block MD.TargetStress -1.0 -1.0 -1.0 0.0 0.0 0.0 %endblock MD.TargetStress LatticeConstant 1.00 Ang %block LatticeVectors

22.049733401	0.356140034	-0.094634083
0.356140034	22.068673917	0.012424667
-0.182046610	0.023901205	44.949870996
%endblock LatticeVectors		

AtomicCoordinatesFormat Fractional

%block AtomicCoordinatesAndAtomicSpecies

STOCK HCOMITCOODT	armacconnarcomreope	.0100	
0.497501678	0.436038898	0.301480207	5
0.453123564	0.444594222	0.272968740	5
0.487687151	0.438688941	0.241837683	5
0.416370288	0.406543005	0.274441112	6
0.426481323	0.492035936	0.274212690	6
0.435522247	0.418826494	0.208646425	2
0.526154180	0.399846586	0.244907577	6
0.513952671	0.484244468	0.237548993	6
0.533258910	0.395723993	0.295587609	6
0.525720165	0.480726658	0.305996363	6
0.497114213	0.577031506	0.414982550	6
0.486000999	0.548519295	0.396134874	3
0.472030404	0.488545753	0.409669375	5
0.431285390	0.491165896	0.427461792	6
0.515044015	0.464907679	0.422348818	6
0.448981057	0.442258080	0.384084745	5
0.476836540	0.395054179	0.386663828	6
0.381917019	0.430519758	0.388899544	3
0.348415155	0.462501437	0.363008217	5
0.326890350	0.425506095	0.346475345	6
0.293495626	0.498173176	0.374348256	4
0.286944876	0.561192391	0.384146283	5
0.328213066	0.593677027	0.384172934	6
0.227610462	0.577576979	0.392624535	4
0.194998209	0.521305128	0.387948333	5
0.128904129	0.509648955	0.393383483	5
0.083366870	0.541690153	0.403934134	3
0.117275647	0.444032265	0.385251385	4
0.069509886	0.433041274	0.389596547	6
0.161202013	0.399424055	0.375414864	5
0.141087587	0.339421313	0.370567471	4
0.094527163	0.325578386	0.373792229	6
0.176808463	0.307622215	0.363519843	6
0.223244725	0.409493467	0.370208008	4
0.234601717	0.471860053	0.377025526	5
0.457683147	0.468783952	0.350854228	5
0.498157649	0.504265575	0.351743160	6
0.394698657	0.505862276	0.347152333	5
0.400949078	0.550610753	0.361394715	6
0.380899331	0.517279277	0.322184466	6
0.465167150	0.416602697	0.329675319	3
0.000423878	0.001464840	0.001663243	1
0.100608452	0.101478019	0.001998792	1
0.100730673	0.000426091	0.052187512	1
0.000255627	0.100/15815	0.052308078	Ţ
0.000772477	0.000433033	0.103300299	1
0.100454920	0.100484301	0.103462204	1
U.LUU8//546	0.000120910	U.154336192	1
0.000915956	0.1006/0619	0.154323192	1
-0.0002/2503	0.200356965	0.001007750	1
U.1UU445/44	0.30025/226	U.UUI80//52	\perp

0.101000175	0.201159166	0.052423793	1
0.000206727	0.300393262	0.052274675	1
0.000812777	0.200608853	0.103470475	1
0.101115902	0.300878182	0.103398618	1
0.101571793	0.201015816	0.154054115	1
0.001077377	0.300636447	0.154193670	1
-0.000214712	0.399656574	0.001569244	1
0.100331772	0.499770605	0.001496567	1
0.101133108	0.400540475	0.052320372	1
0.000090137	0.499749604	0.051994449	1
0.000497505	0.400019348	0.103309179	1
0 100631281	0 500118327	0 103321792	1
0 101307228	0 400336708	0.153990718	1
0 001314035	0 499826496	0 154128808	1
-0 000312364	0 599868904	0 001378409	1
0 100255811	0 699593053	0.001582639	1
0.100233011	0 599389344	0.001302039	1
0 000213373	0 699319186	0.052085113	1
0.000213375	0 600034508	0.002000110	1
0.100443070	0 699701206	0.103227171	1
0.100139611	0.600051400	0 153928559	1
0.000446993	0 699617869	0.153918385	1
-0.000297050	0.70000129	0.100910000	⊥ 1
0.000297030	0.000101684	0.001403023	⊥ 1
0.099594050	0 700235373	0.001752920	⊥ 1
0.100099547	0.799233373	0.05210911	⊥ 1
0.000248243	0.099755052	0.032147010	⊥ 1
0.100340024	0.000103413	0.103306954	⊥ 1
0.100340024	0.900424952	0.152025110	⊥ 1
0.100310797	0.000313033	0.153925110	⊥ 1
0.000000010 0.100715007	0.900020382	0.134040003	⊥ 1
0.199/1309/	0.000303849	0.001000922	⊥ 1
0.299921129	0.101135501	0.001819981	⊥ 1
0.300330077	0.000209031	0.052275404	⊥ 1
0.200691374	0.100915121	0.052575494	⊥ 1
0.200695108	0.000535043	0.103495956	1
0.300/61513	0.100847460	0.103320251	1
0.301322994	0.000375225	0.154139682	1
0.201008116	0.100316994	0.154029192	1
0.2006//6/8	0.201317760	0.001835696	1
0.300820872	0.301510165	0.001533383	1
0.3016/2104	0.201/88215	0.052577732	1
0.201858703	0.301688291	0.052673842	1
0.201316322	0.201222706	0.103558821	1
0.303056439	0.302745913	0.104549055	1
0.300268481	0.199969927	0.154539231	Ţ
0.201386626	0.300/33558	0.154380324	Ţ
0.200946805	0.400433890	0.001734137	1
0.301042961	0.499816410	0.001644661	1
0.302551018	0.401730765	0.053394591	1
0.201641614	0.500313456	0.052541655	1
0.201966707	0.401067508	0.103877513	1
0.303415848	0.499556490	0.106834820	1
0.299882722	0.400148113	0.156790632	1
0.199451574	0.500177195	0.155290670	1
0.201076126	0.599291308	0.001571284	1
0.299904675	0.698491502	0.001767823	1
0.301962916	0.598350559	0.053551225	1
0.201019675	0.698620593	0.052517483	1

0.201526333	0.599133136	0.104144577	1
0.301492920	0.698437402	0.104129831	1
0.299903216	0.600268576	0.156291184	1
0.200114656	0.700206646	0.154188659	1
0.199908077	0.799474799	0.001582510	1
0.299363728	0.899772182	0.001516160	1
0 300553690	0 798946036	0 052175451	1
0 200633656	0 899514011	0 052326537	1
0.200055050	0 700827877	0 103563749	1
0.200009241	0.00015926	0.102241020	1
0.300220020	0.900013828	0.103341939	1
0.300390218	0.800158529	0.154146895	1
0.200892975	0.900108146	0.154066872	1
0.399330814	0.000348610	0.001509733	Ţ
0.499209653	0.100984603	0.001485054	1
0.499526994	0.000161672	0.052067875	1
0.400448843	0.101098884	0.052326977	1
0.400190248	0.000328150	0.103493077	1
0.500009068	0.100822200	0.103379858	1
0.500873746	0.000849995	0.154199351	1
0.400764810	0.100523711	0.154166572	1
0.399991908	0.201501671	0.001426460	1
0.499301390	0.301232309	0.001466783	1
0 499690560	0 201831136	0 052584253	1
0.401263240	0 301933013	0 053251111	1
0.401203240	0 201850257	0 104235078	1
0.400500504	0.201030237	0.104233078	1
0.300090040	0.302106401	0.100049024	⊥ 1
0.499948386	0.199387331	0.155118789	1
0.399906723	0.299647460	0.157088115	1
0.400044347	0.400652776	0.002141138	1
0.498553483	0.499040763	0.001988897	1
0.498676602	0.400295062	0.053881914	1
0.401186575	0.498928147	0.054306303	1
0.403236566	0.401996501	0.108433534	1
0.500223502	0.498963269	0.108195319	1
0.510259510	0.397153218	0.160886883	1
0.403431597	0.502491202	0.162389888	1
0.399111812	0.598426396	0.001571090	1
0.498407589	0.698186481	0.001704184	1
0.497875070	0.597430252	0.053485818	1
0.399752865	0.698161473	0.052898280	1
0.400825864	0.595816262	0.107962240	1
0.499637982	0.699247988	0.103493660	1
0.503557591	0.603992670	0.156347901	1
0.400730077	0.701640877	0.155376179	1
0 399269613	0 799032363	0 001608986	1
0.499239730	0 899764392	0 001418665	1
0.499255750	0.700417542	0.052110305	1
0.499007137	0.000000000	0.052110505	1
0.399030097	0.099902004	0.002100097	⊥ 1
0.399938444	0./99/88/3/	0.103499660	1
0.499938850	0.899946227	0.103308727	1
0.500920317	0./99843818	0.153991319	1
0.401103392	0.900015553	0.154070820	1
0.599172967	0.000410961	0.001313408	1
0.698783069	0.100979596	0.001520436	1
0.699004268	0.000303211	0.052091536	1
0.599027674	0.100908173	0.051959710	1
0.599843814	0.000144866	0.103286372	1
0.700119674	0.099821599	0.103270021	1

0.699692110	0.000228800	0.153978488	1
0.600191976	0.100643627	0.154038583	1
0.598617795	0.201546829	0.001338969	1
0.698097319	0.300342347	0.001507479	1
0.698801268	0.200986730	0.052380443	1
0.598510525	0.301549873	0.053160179	1
0.599879404	0.200260427	0.103572994	1
0 699941690	0 300552617	0 103981862	1
0 703829428	0 196627091	0.154296390	1
0.605308547	0 29//18266	0.155/38078	1
0.507072972	0.200391260	0.001342459	⊥ 1
0.597972072	0.399301200	0.001542458	⊥ 1
0.69/389939	0.498636422	0.001392107	1
0.69/9963/3	0.399646970	0.052901220	1
0.59/103698	0.497875285	0.0533/3161	1
0.59/19/9/8	0.399417780	0.10/150101	Ţ
0.699322582	0.499533267	0.103528380	1
0.701203610	0.400294392	0.155244445	1
0.604641095	0.503766036	0.155867504	1
0.597736403	0.598258208	0.001418502	1
0.698553709	0.699213309	0.001695221	1
0.698497103	0.598503323	0.052139220	1
0.598513732	0.698607989	0.051987745	1
0.599373672	0.599705720	0.103597224	1
0.699973834	0.699857266	0.102862957	1
0.702086172	0.601674819	0.153995107	1
0.602083471	0.701546678	0.153936456	1
0.598969616	0.799260170	0.001543919	1
0.699217125	0.900016260	0.001337425	1
0.699120183	0.799713058	0.052060198	1
0.599356341	0.899943512	0.051934619	1
0.599791971	0.799974840	0.102931633	1
0.699766214	0.900066444	0.103227534	1
0.700886331	0.800590721	0.153893514	1
0.599875584	0.899810622	0.153998596	1
0.799041901	0.000879396	0.001461056	1
0.899451659	0.100633541	0.001653885	1
0.899767299	0.000522291	0.052092892	1
0.799230333	0.100705337	0.052157645	1
0.800396027	-0.000387705	0.103150005	1
0.900914567	0.100125805	0.103396279	1
0.901090736	-0.000597528	0.154121200	1
0.802405654	0.097989537	0.153996911	1
0.798762743	0.200509426	0.001603086	1
0.899228020	0.300008025	0.001521076	1
0.899688911	0.200844178	0.052271898	1
0.798998179	0.300683406	0.052212270	1
0.800726596	0.200092075	0.103287199	1
0.900091420	0.300129464	0.103589369	1
0.900429162	0.200322634	0.154176860	1
0.800420704	0.300167561	0.154251295	1
0.798427289	0.399699793	0.001710320	1
0.899185345	0.499773723	0.001495787	1
0.899908778	0.399877643	0.052211918	1
0.799107652	0.499137717	0.052087685	1
0.799924158	0.399987956	0.103519911	1
0.899922391	0.499643552	0.103400191	1
0.900713256	0.400303786	0.154143026	1
0.800424676	0.500056746	0.154170328	1
			-

0.798302566	0.599252946	0.001681026
0.899035496	0.699846978	0.001471741
0.899764167	0.599482586	0.052138705
0.799394866	0.699274788	0.051937315
0.800023544	0.599665583	0.103038915
0.899799026	0.699765923	0.103268034
0.900499258	0.599309183	0.153970739
0.800832153	0.700248910	0.153950261
0.799061764	0.799953628	0.001551548
0.899267908	0.900527015	0.001534370
0.899813244	0.799708935	0.052138092
0.799594841	0.899930536	0.052022640
0.800230570	0.800233751	0.103185298
0.900227273	0.900064812	0.103240762
0.900501607	0.799864026	0.154010124
0.800181938	0.900205279	0.154100875
%endblock AtomicCod	ordinatesAndAtomic	Species
%block kgrid Monkho	orst Pack	
$1 0 \overline{0} 0.0$) —	
0 1 0 0.0)	
0 0 1 0.0)	
%endblock Kgrid_Mor	nkhorst_Pack	
MeshCutoff	200 Ry	
MaxSCFIterations	500	
DM.MixingWeight	0.1	

5

1.d-4

sample_input_qe: Sample input file for obtaining Kohn-Sham wavefunction, performed using Quantum Espresso code.

```
&control
   calculation = 'scf',
   restart mode='from scratch',
   prefix= DNA',
   pseudo dir = '../pp',
   outdir='./temp',
/
&system
       ibrav = 0,
        nat = 241,
       ntyp = 6,
     ecutwfc = 50,
occupations = 'smearing',
   smearing = 'fd',
    degauss = 0.001,
  celldm(1) = 1.88972687777,
/
&electrons
   mixing mode = 'plain'
```

DM.NumberPulay

DM.Tolerance

	mixing_beta = 0.3		
	electron_maxstep=3	00	
	conv thr = $1.0d-1$	0	
/	—		
CEI	LL PARAMETERS (alat=	1.88972687777)	
	21 435878560 -	0 168228072	-0 146103223
	-0 168421603 2	1 433603860	-0 142969503
	-0 289469136 -	0 293765035	12 301700137
<u>л</u> п (-0.200409130 -	0.263703033	42.301/0013/
ATC	MIC_SPECIES	-	
Au	82.94 Au_oncv.UP	, Е ,	
S	16.94 S_oncv.UPF	1	
0	8.94 O_oncv.UPF	1	
С	6.94 C_oncv.UPF	1	
Ν	7.94 N_oncv.UPF	1	
Н	1.94 H oncv.UPF	1	
ATC	OMIC POSITIONS {crvs	tal}	
С	0.488249033	0.435184149	0.293690254
С	0 440415329	0 432178623	0 266224300
C	0 472446461	0 426971429	0 234186491
с ц	0 409570004	0 390672037	0 269806508
11	0.40901250	0.330072037	0.265205110
н	0.409891359	0.4/3/22892	0.200385118
S	0.416309501	0.4103/5616	0.200865992
Η	0.506563530	0.388389/88	0.234219852
Η	0.498679258	0.470474613	0.228418699
Η	0.523375120	0.398007778	0.289986663
Η	0.514352606	0.480738795	0.294034780
Η	0.480013577	0.578411940	0.412694262
0	0.460916652	0.549988230	0.397294777
С	0.478684351	0.487743974	0.403738729
Н	0.460828011	0.472079685	0.427015419
н	0 530530264	0 482502732	0 403762394
C	0 448768303	0 446551025	0 377902137
с u	0 470537115	0.300666002	0 377430332
П	0.470537115	0.120026064	0.377439332
0	0.303740000	0.439838084	0.304109390
C	0.34/191629	0.465469235	0.359355160
Н	0.325866891	0.426520593	0.344800375
Ν	0.295389457	0.498187666	0.372655661
С	0.292697116	0.557704721	0.386139157
Η	0.335353579	0.586374404	0.389469025
Ν	0.236411090	0.572644668	0.395382958
С	0.199898784	0.520362602	0.388310120
С	0.134116526	0.507165006	0.392840456
0	0.091358171	0.539137610	0.402433098
Ν	0.120674694	0.443008282	0.383646231
Н	0.074811141	0.431456232	0.386492599
С	0 161306826	0 400707512	0 371235178
N	0 138922942	0 341940067	0 363462685
IJ	0 100534361	0 324633594	0.374143243
п	0.172000252	0.324033304	0 250241720
п	0.172889233	0.311104124	0.336241726
IN ~	0.220352660	0.413986414	0.365694142
C	0.23615/055	U.4/3118969	0.3/4606893
С	0.454347863	0.474385420	0.344515521
Η	0.494628835	0.507916477	0.343064861
С	0.391746029	0.507136945	0.340518016
Н	0.395506890	0.554001595	0.351840358
Η	0.377172907	0.511888644	0.315516252
0	0.461223850	0.423177626	0.323507920
Aι	-0.000353071	-0.000654450	-0.000584959

Au	0.099620047	0.099563992	-0.000433110
Au	0.100367787	0.000494109	0.051222765
Au	0.000673933	0.100262997	0.051191415
Au	0.001606484	0.001443455	0.103892612
Au	0.101991974	0.101820741	0.104674113
Au	0.102437751	0.002896349	0.156075130
Au	0.002905808	0.102244478	0.155986850
Au	-0.000837808	0.199216162	-0.000188976
Au	0.099636544	0.299335614	0.000466483
Au	0.100709843	0.200160869	0.051490967
Au	0.000505068	0.300032152	0.051751330
Au	0.002121868	0.201413882	0.104668492
Au	0.102144421	0.301092377	0.105019609
Au	0.103106707	0.202357319	0.156653477
Au	0.003110245	0.302483952	0.156438982
Au	-0.001288047	0.398810458	0.000510571
Au	0.099464712	0.498085793	0.000713542
Au	0.100829040	0.399930436	0.052299968
A11	0.000319738	0.499900009	0.052024467
Au	0.001559911	0.401190056	0.105311382
A11	0.101530497	0.501600393	0.105371756
A11	0.103115667	0 402534451	0 156775935
A11	0 002808847	0 503080489	0 156463121
Au	-0.000970027	0.598091034	0.000077725
A11	0 099445792	0 697850318	-0.000356247
Δ11	0 100350550	0 599788415	0 051607738
A11	0.000612019	0 699546589	0 051391700
Δ11	0 001664744	0 601914797	0 104798913
Δ11	0 101912397	0 701399572	0 104817127
Δ11	0 102800199	0 603295831	0 156716085
Δ11	0.002688327	0 703332532	0 156179268
Δ11	-0.000233684	0 797910543	-0 000458090
Δ11	0.0002330001	0 898533739	-0 000380514
Δ11	0.100592883	0 799397347	0 051286344
Δ11	0 000488997	0 899943308	0 050752836
Δ11	0 001677513	0 801359156	0 104314009
Δ11	0.101728597	0 901480065	0 104371468
Δu	0.101720557	0.803018013	0.156281662
Δ11	0.002778653	0 903071144	0.155787547
Δ11	0.199364116	-0 000897454	-0 000075472
Δ11	0.299539989	0 099534977	0 000545704
Δu	0.2002000	0 000472075	0.051933105
Δ11	0.200307100	0 100615772	0 051558386
Δ11	0.200507100	0 001973597	0 104747102
Δu	0.201505255	0 102131075	0.105147352
Au	0.302826844	0.002967539	0.156/190/5
Au	0.202702607	0.103173966	0.156754717
Au	0.202792097	0 199837407	0.130734717
Au	0.199941554	0 299379056	0.000/35765
Au	0.299010995	0.201103675	0.052497970
Λu Δu	0.300093119	0.201103073	0.05240/9/0
лu Δu	0.201234031	0.3004/3302 0 201861371	0.0JZ4J00JZ A 1A5A21136
лu Лu	0.202090333	0.2010013/1	0.106407100
Au	0.302303147	0.302023031	0.10040/100 0 157007051
AU	0.3023142/3	0.202052022 0.202052022	0.157140405 0.157140405
AU	U.ZUZ000023 0 200002222	U.JUZUJJYZZ A 200527207	0.13/14/403
Au	0.200002323	0.330331201	0.0005/040/
ни 7	0.29939/00/	U,490UZ9001 0,400105190	0.000344806
AU	0.30089340/	U.4UUIU3I30	0.0272AAT00

Au	0.201173056	0.499367718	0.052536776
Au	0.202368964	0.401616176	0.105807417
Au	0.302736568	0.501173743	0.106229384
Au	0.300938446	0.403360919	0.158597004
Au	0.202410146	0.504065649	0.156977780
Au	0.199745473	0.597298949	0.000318251
Au	0.299215834	0.697468296	0.000364068
Au	0.300777479	0.599098725	0.052398662
Au	0.200083774	0.699547123	0.051468028
Au	0.201545655	0.601685949	0.105008721
Au	0.301402862	0.701457094	0.104951861
Au	0.302304369	0.603882640	0.156990702
Au	0.202655941	0.702876269	0.156784320
Au	0.199260461	0.798126353	-0.000275761
Au	0.299142239	0.898695665	0.000328808
Au	0.299840130	0.799614399	0.051810345
Au	0.200150273	0.899954395	0.051480531
Au	0.201550279	0.801125205	0.104811341
Au	0.301354731	0.901161120	0.104985558
Au	0.302721062	0.802723621	0.156418547
Au	0.202550601	0.902999073	0.156266485
Au	0.398921821	-0.001345201	0.000647623
Au	0.498282250	0.098893256	0.000545440
Au	0.500014989	-0.000012455	0.052166021
Au	0.400092503	0.100861542	0.052418169
Au	0.401674595	0.001293228	0.105513545
Au	0.501802606	0.101381805	0.105417455
Au	0.503597808	0.002606633	0.156727625
Au	0.403193342	0.102882920	0.156947234
Au	0.398871549	0.199737847	0.000566860
Au	0.498197083	0.299414845	0.000545660
Au	0.499748013	0.200555554	0.052267535
Au	0.400294983	0.300775068	0.052629196
Au	0.401929535	0.202935870	0.106141714
Au	0.501765402	0.301851013	0.105779183
Au	0.504223573	0.202443433	0.157005393
Au	0.404380907	0.303017777	0.159457738
Au	0.398977932	0.398828992	0.000645529
Au	0.498271189	0.498261749	0.000348971
Au	0.499805854	0.400265192	0.052634373
Au	0.400459654	0.499637152	0.052615011
Au	0.402001929	0.401930030	0.106337177
Au	0.501873004	0.501816429	0.105816617
Au	0.507024647	0.402892852	0.157773871
Au	0.403444328	0.504696756	0.159223537
Au	0.398906216	0.597589937	0.000400043
Au	0.498248313	0.698211601	0.000165292
Au	0.500341796	0.599803562	0.051799700
Au	0.400152221	0.699328197	0.052118417
Au	0.402230559	0.600673675	0.106029089
Au	0.501952246	0.701435301	0.104940748
Au	0.504333451	0.603803997	0.157045734
Au	0.403084849	0.702797289	0.156796377
Au	0.398507685	0.798658209	0.000472467
Au	0.498373617	0.898736434	0.000344296
Au	0.500463693	0.799642275	0.051707675
Au	0.400058694	0.899913676	0.052338593
Au	0.401522132	0.801120393	0.105113539

Au	0.502118186	0.900766059	0.104917980
Au	0.503409706	0.802623901	0.156550893
Au	0.403195154	0.902792055	0.156586813
Au	0.598152107	-0.001161913	0.000100229
Au	0.697994035	0.099077505	-0.000338812
Au	0.699802521	0.000091694	0.051313159
A11	0.599829064	0 100033461	0 051630323
Δ11	0 602043804	0 001343935	0 104908493
Δ11	0.701660020	0 101487984	0 104658108
71u 711	0.701060020	0 002521263	0 15503/355
Au Au	0.602650661	0.102750826	0.156650102
Au	0.003039001	0.100/00/00	0.130039103
Au	0.597686465	0.199069686	-0.000030723
Au	0.69//90/59	0.298950411	0.000120739
Au	0.699689781	0.1998/6943	0.051410601
Au	0.599833297	0.300245220	0.051937707
Au	0.601939459	0.201381221	0.104922371
Au	0.701691999	0.301124067	0.104889405
Au	0.703367019	0.202077723	0.156689982
Au	0.604446614	0.301860673	0.156949535
Au	0.597699134	0.398851892	0.000335656
Au	0.698327821	0.498216675	0.000107395
Au	0.699517397	0.400201841	0.051994648
Au	0.599870474	0.500285535	0.051778609
Au	0.601507392	0.401847537	0.105627300
Au	0.701624848	0.501962692	0.104912052
Au	0.703003213	0.402981755	0.156777736
Au	0.604193222	0.504398943	0.157067238
Au	0.598325907	0.598146375	-0.000209866
Au	0.698392922	0.698316551	-0.000489197
Au	0.699866832	0.600224939	0.051417089
Au	0.600306721	0.699746444	0.051409146
Au	0.602029850	0.601982688	0.104931469
Au	0.701725968	0.701584865	0.104812902
Au	0.703219680	0.603674986	0.156845170
Au	0.603755667	0.703076612	0.156827856
Au	0.598437155	0.798346815	-0.000247508
Au	0.698379646	0.898604866	-0.000451539
Au	0.699957831	0.799460756	0.051268895
Au	0.600252330	0.899802755	0.051527726
Au	0.602118834	0.800904496	0.104836829
Au	0.702041014	0.900876049	0.104569414
Au	0.703514076	0.802944574	0.156464167
Au	0.603591155	0.902660825	0.156339533
Au	0.798235604	-0.000872723	-0.000515167
Au	0.898820235	0.099317891	-0.000467169
Au	0.900363028	0.000162829	0.050656815
Au	0.799575691	0.100378494	0.051226621
Au	0.802332038	0.001068661	0.103823484
Au	0.901950052	0.101528233	0.104097328
Au	0.903333860	0.002513763	0.155757443
Au	0.803762000	0.102022781	0.155927410
Au	0.798148609	0.198971528	-0.000307694
Au	0.898607953	0.299020303	0.000234425
Au	0.900197449	0.199943027	0.051294494
Au	0.799724530	0.299710326	0.051754367
Au	0.801341791	0.201382166	0.104766850
Au	0.901292007	0.301071789	0.104960372
Au	0.903275408	0.202219442	0.156238422
-			

Au	0.802822113	0.302440946	0.156470880
Au	0.798876130	0.398512124	0.000484701
Au	0.898911701	0.498270805	0.000341111
Au	0.899960024	0.399974279	0.052310010
Au	0.799923657	0.500367655	0.051750072
Au	0.801299660	0.401266337	0.105114111
Au	0.901283552	0.501636592	0.105127142
Au	0.902883571	0.402793418	0.156614116
Au	0.802852028	0.503120937	0.156520959
Au	0.798674004	0.598423622	-0.000011416
Au	0.898973690	0.698424044	-0.000323889
Au	0.900134806	0.600074443	0.051572389
Au	0.799665317	0.699907409	0.051362268
Au	0.801201745	0.601917780	0.104857898
Au	0.901090313	0.701773164	0.104625474
Au	0.902763744	0.603291561	0.156383896
Au	0.803073251	0.703553965	0.156433472
Au	0.798346826	0.798168211	-0.000597402
Au	0.898819405	0.898408883	-0.000357531
Au	0.900313968	0.799509044	0.050940116
Au	0.800034222	0.899604183	0.050690490
Au	0.801589682	0.801497574	0.104479651
Au	0.901840693	0.901518787	0.103766872
Au	0.903148252	0.803533462	0.155955520
Au	0.803749157	0.903025768	0.155877192
K_POI	NTS {automatic}		

1 1 1 0 0 0

References

- 1. Bag, S., et al., *Dramatic changes in DNA conductance with stretching: structural polymorphism at a critical extension*. Nanoscale, 2016. **8**(35): p. 16044-16052.
- 2. Livshits, G.I., et al., *Long-range charge transport in single G-quadruplex DNA molecules*. Nature nanotechnology, 2014. **9**(12): p. 1040.