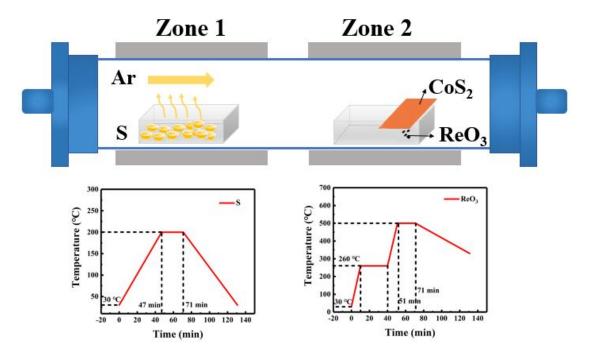
Supporting Information

Surface-induced 2D/1D Hetero-structured Growth of ReS₂/CoS₂ for High Performance Electro-catalyst

Yuanwu Liu¹, Jing Li¹, Wentian Huang¹, Ying Zhang¹, Minjie Wang¹, Xingsen Gao¹, Xin Wang², Mingliang Jin², Zhipeng Hou^{1*}, Guofu Zhou², Zhang Zhang^{1,2*}, Junming Liu^{1,3}

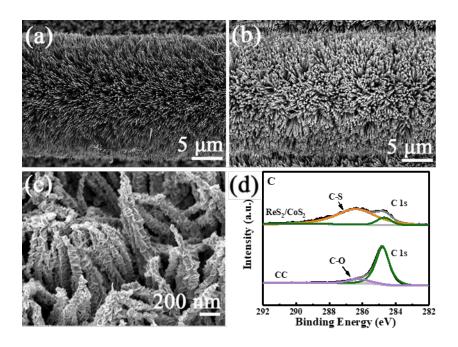
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, P.
 R. China

Corresponding Author


*E-mail: <u>zzhang@scnu.edu.cn</u> (Zhang Zhang)

*E-mail: <u>houzp@m.scnu.edu.cn</u> (Zhipeng Hou)

Calculation of lattice mismatch of ReS_2/CoS_2


The cell parameters of CoS_2 and ReS_2 are shown below: CoS_2 (JCPDS 41-1471; space group *Pa3*; a = 5.5376 Å), ReS_2 (JCPDS 52-0818; space group *P1*; a = 6.45 Å). According to the calculation formula of lattice mismatch degree of semiconductor heterojunction¹, the mismatch degree is 15.22%.

$$\delta = \frac{2|a_{CoS_2} - a_{ReS_2}|}{a_{CoS_2} + a_{ReS_2}} = 15.22\%$$

Supplementary figures

Figure S1. Schematic of the controlled synthesis of ReS₂ via CVD method.

Figure S2. (a) Low-magnification SEM image of large scale CoS_2 nanowire arrays. (b) Low-magnification SEM image of ReS_2/CoS_2 . (c) High-magnification SEM image of high density ReS_2 nanosheets distributed on CoS_2 nanowires. (d) High-resolution XPS spectrum of C 1s in ReS_2/CoS_2 and bare carbon cloth.

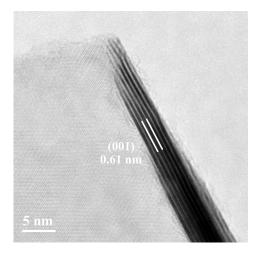
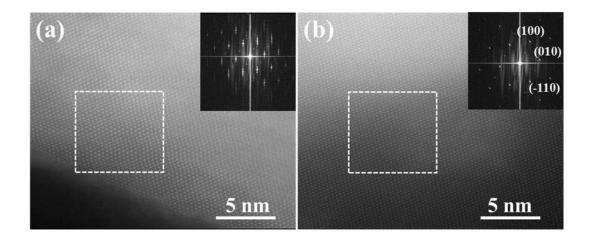



Figure S3. TEM image of a ReS_2 nanosheet.

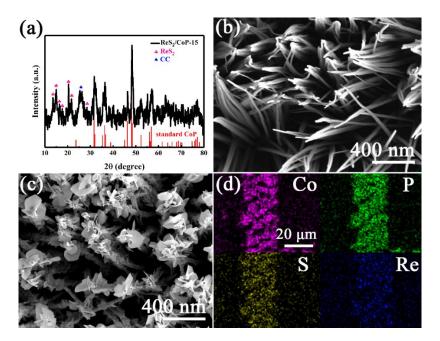
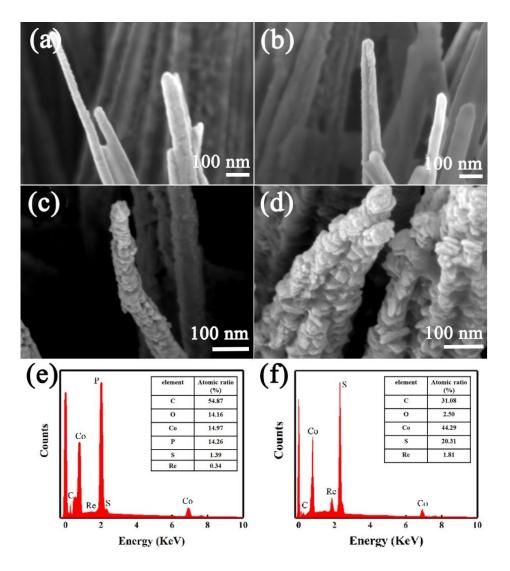


Figure S4. (a) STEM image of ReS_2 at the interface of $\text{ReS}_2/\text{CoS}_2$. (b) STEM image of ReS_2 away from the interface $\text{ReS}_2/\text{CoS}_2$. Inset in Figure a and b are corresponding FFT images.


S5. Morphology and structure characterization of ReS₂/CoP

As shown in Figure S5a, the crystal structures were investigated by X-ray diffraction (XRD). The characteristic peaks at 14.4°, 15.9°, 16.1°, 16.7°, 20.4°, 21.9° and 28.5° were ascribed to the (002), (010), (-110), (100), (-112), (003) and (110) of ReS₂ (PDF No. 89-0341). Other peaks were consistent with standard CoP, confirming that the composite was ReS₂/CoP². High density 1D CoS₂ nanowires were uniformly distributed on the pure CC (Figure S3b). As displayed in Figure S3c, irregular ReS₂ manosheets with a diameter of 200 nm are observed. However, the density of ReS₂ wasn't large and it was nearly grown at the tip of CoP nanowire. In Figure S3d, the element mapping of ReS₂/CoP manifested that the intimate contact between ReS₂ and CoP in ReS₂/CoP with uniform distribution of the S element. But S content wasn't high, indicating that S could only be replaced with a part of phosphorus in the same

time. All of these confirm that ReS_2/CoP was successfully synthesized.

Figure S5. (a) XRD pattern of ReS₂/CoP. (b) SEM image of high-density CoP nanowires. (c) Low-magnification SEM image of ReS₂/CoP. (d) EDX elemental mapping images of Co, P, S and Re element distribution.

Figure S6. High-magnification SEM image of (a) CoP nanowires, (b) $\text{ReS}_2/\text{CoP-5}$, (c) CoS_2 nanowires and (d) $\text{ReS}_2/\text{CoS}_2$ -5. (e, f) EDX spectra of $\text{ReS}_2/\text{CoP-5}$ and $\text{ReS}_2/\text{CoS}_2$ -5, respectively. Insets in e and f are the atomic ratio of each element.

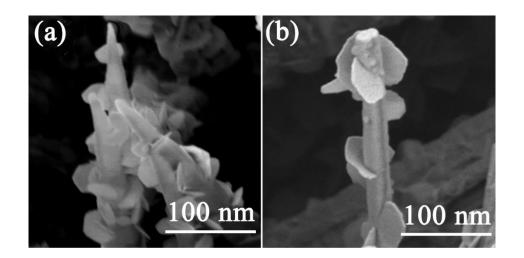


Figure S7. High-magnification SEM images of (a) ReS_2/CoS_2-10 and (b) $ReS_2/CoP-10$.

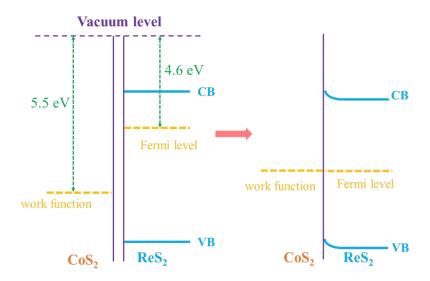


Figure S8. Band alignment diagram between CoS₂ and ReS₂.

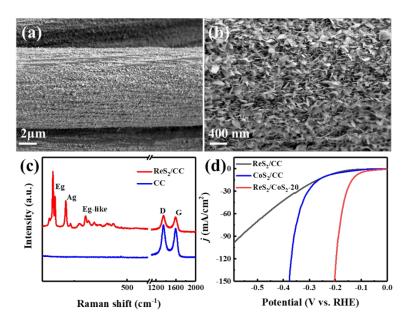


Figure S9. (a, b) SEM images of ReS₂/CC. (c) Raman spectrum of ReS₂/CC and CC.

(d) HER polarization curves of ReS_2/CC , CoS_2/CC and ReS_2/CoS_2 -20.

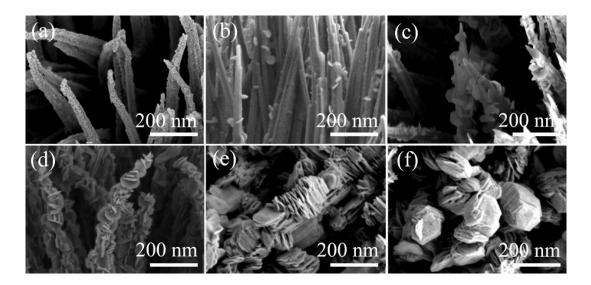


Figure S10. SEM image of ReS_2 with different growth time (a) 0 min, (b) 10 min, (c) 15 min, (d) 20 min and (e) 25 min on CoS_2 nanowires. (f) high-magnification SEM image in c.

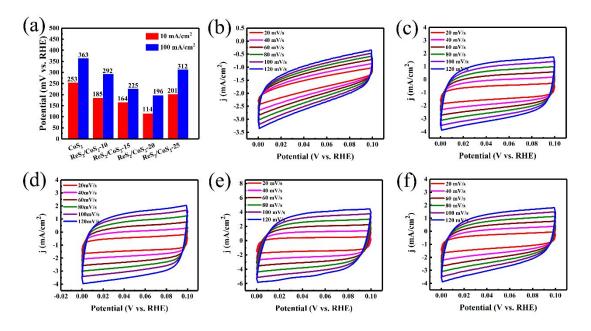


Figure S11. (a) The overpotential of CoS_2 , ReS_2/CoS_2 -10, ReS_2/CoS_2 -15, ReS_2/CoS_2 -20 and ReS_2/CoS_2 -25 at 10 mA/cm² and 100 mA/cm², respectively. (b) CoS_2 , (c) ReS_2/CoS_2 -10, (d) ReS_2/CoS_2 -15, (e) ReS_2/CoS_2 -20 and (f) ReS_2/CoS_2 -25 are the CV curves at different scan rates.

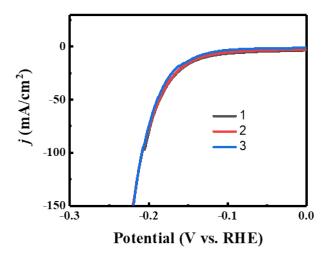
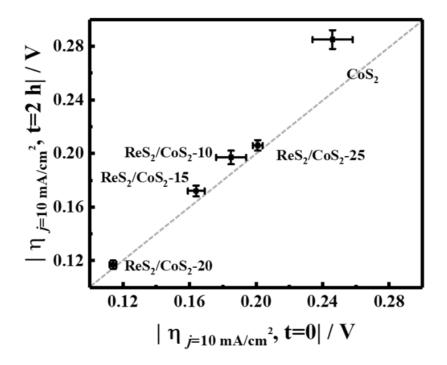



Figure S12. HER polarization curves of different batches of ReS_2/CoS_2 -20.

samples	η(mV vs RHE) for j=10 mA/cm ²	Tafel slope (mV/dec)	Refs
Pt/C	50	34	3
Pt/C	48	44	10
Pt/C	62	33	8
Pt/C	33	30	11
Pt/C	78	42	12
Pt/C	49	42	13
Pt/C	28	43	This work

Tab	le S	1. I	lecti	och	emica	l per	forma	ances	of I	Pt/C.
-----	------	------	-------	-----	-------	-------	-------	-------	------	-------

Figure S13. Plots of catalytic activity, stability, and electrochemically-active surface area for HER electrocatalysts in acidic solutions. The x-axis is the overpotential required to achieve 10 mA cm⁻² per geometric area at time t = 0. The y-axis is the overpotential required to achieve 10 mA cm⁻² per geometric area at time t = 2 h. The diagonal dashed line is the expected response for a stable catalyst that does not change in activity during 2 h constant polarization.

Table S2. Electrochemical performances of CoS2-based and ReS2-based catalysts.

samples	η(mV vs RHE) for j=10 mA/cm ²	Tafel slope (mV/dec)	Refs
CoS _{2x} Se _{2(1-x)} nanowire array	129.5	68.7	3
CoS2-C@MoS2	173	67	4
MoO ₂ /MoS ₂ /CoS ₂	123	133	5
V _{Re} -ReS ₂	147	69	6
Sunflower-shaped ReS ₂	270	76	7
NiS ₂ /CoS ₂ /C	165	72	8
Li-vertical ReS2@Au	201	84	9
ReS ₂ /CoS ₂	114	63.7	This work

References

- Jacques, A.; Diologent, F.; Bastie, P. In Situ Measurement of the Lattice Parameter Mismatch of a Nickel-Base Single-Crystalline Superalloy under Variable Stress. *Mater. Sci. Eng. A* 2004, *1*, 387–389.
- (2) Tian, J.; Chen, J.; Liu, J.; Tian, Q.; Chen, P. Graphene Quantum Dot Engineered Nickel-Cobalt Phosphide as Highly Efficient Bifunctional Catalyst for Overall Water Splitting. *Nano Energy* 2018, 48, 284–291.
- (3) Liu, K.; Wang, F.; Xu, K.; Shifa, T. A.; Cheng, Z.; Zhan, X.; He, J. CoS_{2x}Se_{2(1-x)} Nanowire Array: An Efficient Ternary Electrocatalyst for the Hydrogen Evolution Reaction. *Nanoscale* **2016**, *8*, 4699–4704.
- (4) Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. Bifunctional and Efficient CoS₂-C@MoS₂ Core-Shell Nanofiber Electrocatalyst for Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 2899–2905.
- (5) Wang, Y.; Zhu, Y.; Afshar, S.; Woo, M. W.; Tang, J.; Williams, T.; Kong, B.;

Zhao, D.; Wang, H.; Selomulya, C. One-Dimensional CoS₂-MoS₂ Nano-Flakes Decorated MoO₂ Sub-Micro-Wires for Synergistically Enhanced Hydrogen Evolution. *Nanoscale* **2019**, *11*, 3500–3505.

- (6) Zhou, Y.; Song, E.; Zhou, J.; Lin, J.; Ma, R.; Wang, Y.; Qiu, W.; Shen, R.;
 Suenaga,K.; Liu, Q. Auto-Optimizing Hydrogen Evolution Catalytic Activity of ReS₂ through Intrinsic Charge Engineering. *ACS Nano* 2018, *12*, 4486–4493.
- Huang, J.; Gao, H.; Xia, Y.; Sun, Y.; Xiong, J.; Li, Y.; Cong, S.; Guo, J.; Du, S.; Zou, G. Enhanced Photoelectrochemical Performance of Defect-Rich ReS₂ Nanosheets in Visible-Light Assisted Hydrogen Generation. *Nano Energy* 2018, 46, 305–313.
- Xin, W.; Jiang, W. J.; Lian, Y.; Li, H.; Hong, S.; Xu, S.; Yan, H.; Hu, J. S. NiS₂
 Nano dotted Carnation-like CoS₂ for Enhanced Electrocatalytic Water Splitting.
 Chem. Commun. 2019, 55, 3781–3784.
- (9) Gao, J.; Li, L.; Tan, J.; Sun, H.; Li, B.; Idrobo, J. C.; Singh, C. V.; Lu, T.-M.;
 Koratkar, N. Vertically Oriented Arrays of ReS₂ Nanosheets for Electrochemical Energy Storage and Electrocatalysis. *Nano Lett.* 2016, *16*, 3780–3787.
- (10) Zhang, H.; Li, Y.; Xu, T.; Wang, J.; Huo, Z.; Wan, P.; Sun, X. Amorphous
 Co-Doped MoS₂ Nanosheet Coated Metallic CoS₂ Nano cubes as an Excellent
 Electrocatalyst for Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 15020–

15023.

- (11) Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. Accelerated Hydrogen Evolution Reaction in CoS₂ by Transition-Metal Doping. ACS Energy Lett. 2018, 3, 779–786.
- (12) Zhang, Q.; Ye, C.; Li, X. L.; Deng, Y. H.; Tao, B. X.; Xiao, W.; Li, L. J.; Li, N. B.; Luo, H. Q. Self-Interconnected Porous Networks of NiCo Disulfide as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Appl. Mater. Interfaces* 2018, *10*, 27723–27733.
- (13) Wen, L.; Sun, Y.; Zhang, C.; Yu, J.; Li, X.; Lyu, X. Cu-Doped CoP Nanorod Arrays : Efficient and Durable Hydrogen Evolution Reaction Electrocatalysts at All PH Values. ACS Appl. Energy Mater. 2018, 1, 3835-3842.