SUPPORTING INFORMATION

Dinuclear $\mathbf{C u}(\mathrm{I})$ Halides with Terphenyl Phosphines: Synthesis, Photophysical Studies and Catalytic Applications in CuAAC Reactions

Álvaro Beltrán, ${ }^{\dagger}$ Inmaculada Gata, ${ }^{\dagger}$ Celia Maya, ${ }^{\ddagger}$ João Avó, ${ }^{\S}$ João Carlos Lima, ${ }^{\#}$ César A. T. Laia, ${ }^{\#}$ Riccardo Peloso,*,* Mani Outis*, ${ }^{*}$ and M. Carmen Nicasio ${ }^{*, \dagger}$
\dagger Departamento de Quimica Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
\ddagger Instituto de Investigaciones Quimicas (IIQ), Departamento de Quimica Inorgánica and Centro de Innovación en Quimica Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
§IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001
Lisboa, Portugal.
\#LAQV-REQUIMTE, Departamento de Quimica, Faculdade Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal.
rpeloso@us.es, m.hosseinzadeh@campus.fct.unl.pt, mnicasio@us.es

TABLE OF CONTENTS:

1. General methods S2-S3
2. Synthesis and characterization of $\mathrm{Cu}(\mathrm{I})$ complexes S3-S9
3. General catalytic procedures S10-S21
4. NMR spectra of compounds. S22-S59
5. DOSY NMR Experiments S60
6. X-ray data of $\mathrm{Cu}(\mathrm{I})$ complexes S61-S68
7. Photophysical studies and DFT calculations S69-S71

1. General methods.

All preparations and manipulations were carried out under oxygen-free nitrogen, using conventional Schlenk techniques. Solvents were rigorously dried and degassed before use. Ligands L1-L5, ${ }^{1}$ organic azides ${ }^{2}$ and the iodide alkynes ${ }^{3}$ were synthesized following previously reported procedures. Reagents were purchased from commercial suppliers and used without further purification.

NMR spectra were recorded on Bruker Avance DPX-300, Avance DRX-400, Avance DRX-500, and 400 Ascend/R spectrometers. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances of the solvent were used as the internal standard and the chemical shifts are reported relative to TMS while ${ }^{31} \mathrm{P}$ was referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$. Elemental analyses were performed by the Servicio de Microanálisis of Instituto de Investigaciones Químicas (IIQ). CITIUS. X-ray diffraction studies were accomplished at Centro de Investigación Tecnología e Innovación, CITIUS (Universidad de Sevilla) and Centro de Investigación en Química Sostenible, CIQSO (Universidad de Huelva).

Diffuse reflectance spectra were acquired in a Shimad-zu UV-2501PC equipped with an integrating sphere. The powdered samples were smashed between two quartz lamellae, accommodated on a BaSO4 filled sup-port and the spectra run using an identical BaSO4 filled support as blank. The remission function, $\mathrm{F}(\mathrm{R})$, was calculated using the Kubelka-Munk equation for optically thick samples. UV-vis absorbance spectra were acquired on a UV-vis-NIR Varian Cary 5000 spectro-photometer and emission spectra were recorded on a SPEX Fluorolog-3 Model FL3-22 spectrofluorimeters. Time-resolved emission spectra were acquired in the same apparatus, using a pulsed xenon lamp with a full-width of $3 \mu \mathrm{~s}$. Spectra and decays were collected with a minimum 50μ s delay to remove any interference from the lamp. Luminescence quantum efficiencies were measured by the absolute method with an Integrated Sphere. Films for optical characterization were prepared in zeonex (10% in toluene) matrix by drop-casting onto a quartz substrate with an emitter concentration of

[^0]$1 \%(\mathrm{~m} / \mathrm{m})$. The Raman analysis was carried out using a Labram 300 Jobin Yvon spectrometer, equipped with a HeNe laser 17 mW operating at 633 nm . The laser beam was focused with a 50x Olympus objective lens. The laser power at the surface of the samples was varied with the aid of a set of neutral density filters (D 0.6).

DFT calculations have been carried out with the program Gaussian 09 using the B3LYP functional, $6-31 \mathrm{G}^{* *}$ basis set for C, H and a standard double- ζ polarized basis set, namely, the LANL2DZ set for Cu , I and P augmented with polarization functions on P (a d orbital with exponent 0.364 for P , upon EMSL basis set ex-change database). For Cu, P and I we applied also Effective Core Potentials. Geometry optimization and TDDFT calculations were performed in cyclohexane with the PCM solvation method. Molecular Orbital visualization for all the complexes was performed using Avogadro 1.2.0.

2. General procedure for the synthesis of $\left[\mathrm{Cu}(\mu-X)\left(\mathrm{PR}_{2} \mathrm{Ar}^{\prime}\right)\right]_{2}$ complexes, 1-5.

Dichloromethane ($c a .5 \mathrm{~mL}$) was added to an equimolar mixture ($c a .0 .1-0.3$ $\mathrm{mmol})$ of the ligand (L1-L5) and the copper halide. The reaction mixture was stirred at room temperature for 12 h . After filtration, the resulting solution was evaporated to dryness affording a colorless or pale yellow solid, which was washed with petroleum ether (ca. 5 mL) and dried under vacuum. In most cases, the crude product was pure enough for subsequent use; otherwise, analytically pure samples were obtained by recrystallization as detailed below.
$\left[\mathbf{C u C l}\left(\mathbf{P M e}_{2} \mathbf{A r}^{\mathbf{X y l}}\right)\right]_{2}, \mathbf{1 a}$. Colourless solid. Yield: 98%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}$), $7.30(\mathrm{t}, 2 \mathrm{H}, p-\mathrm{Xyl}), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, 4 \mathrm{H}, m$-Xyl), $7.07\left(\mathrm{dd},{ }^{3} J_{H H}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}\right.$
$\left.\sim 1 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 2.05\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right)$, $1.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.1$ (br s, o-
$\mathrm{C}_{6} \mathrm{H}_{3}$), 140.2 (br s, ipso-Xyl), 135.4 ($o-\mathrm{Xyl}$), $131.8\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.5$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}, m-$ $\mathrm{C}_{6} \mathrm{H}_{3}$), ipso- $\mathrm{C}_{6} \mathrm{H}_{3}$ masked by more intense signals, 128.7 (m - Xyl), 128.6 (p-Xyl), 21.5 $\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right), 14.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=23 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ - 34.3 (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClPCu}$: C 64.71 (64.5), H 6.11 (6.2) \%.
$\left[\operatorname{CuBr}\left(\mathbf{P M e}_{2} \mathbf{A r}^{\mathrm{Xyl}}\right)\right]_{2}, \mathbf{1 b}$. Colourless solid. Yield: 92%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.30(\mathrm{t}, 2 \mathrm{H}, p-\mathrm{Xyl}), 7.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Xyl}), 7.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} \mathrm{Hz}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 2.08\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right),\left(\mathrm{d},{ }^{2} J_{\mathrm{HP}}=6.8 \mathrm{~Hz}\right.$, $6 \mathrm{H}, \mathrm{P}-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=\right.$ $\left.13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 140.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, ipso-Xyl), $135.5(o-\mathrm{Xyl}), 131.5\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.5$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.2\left(\mathrm{~d},{ }^{1} J_{C P}=24 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 128.6(m-\mathrm{Xyl}), 128.4(p-$ $\mathrm{Xyl}), 21.6\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right), 14.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=24 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-34.8$ (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CuBrP}$: C 58.84 (58.8), H 5.56 (5.6).
$\left[\mathbf{C u I}\left(\mathbf{P M e}_{2} \mathbf{A r}^{\mathbf{X y l}_{2}}\right)\right] \mathbf{2}, \mathbf{1 c}$. Colourless solid. Yield: 93%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right.$
$\left.\mathrm{Hz},{ }^{4} J_{\mathrm{HP}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.21-7.10(\mathrm{~m}, 6 \mathrm{H}$,
$\left.H_{\mathrm{ar}}\right), 6.99\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{3} J_{\mathrm{HP}}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\right.$
$\mathrm{C}_{6} \mathrm{H}_{3}$), 2.07 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}$), $1.01\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=5.2\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=\right.$ $\left.13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 141.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, ipso-Xyl), $135.7(o-\mathrm{Xyl}), 130.8\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.3$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=24 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 128.4(m-\mathrm{Xyl}), 128.0(p-$ $\mathrm{Xyl}), 22.0\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right), 14.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=21 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-40.0(\mathrm{br} \mathrm{s})$.

Elemental analysis calculated (found) for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CuIP}$: C 53.69 (54.0), H 5.07 (5.3).
$\left[\mathbf{C u C l}\left(\mathbf{P M e}_{2} \mathrm{Ar}^{\mathrm{Dipp}_{2}}\right)\right]$, 2a. Pale-yellow crystals obtained by recrystallization at $5^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 84%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right.$ and p-Dipp), $7.31\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, m\right.$-Dipp), $7.21\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right)$, 2.47 (sept, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}-i \operatorname{Pr}\right), 1.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{iPr}\right), 1.19\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=6.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{P}^{-} \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{iPr}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=15 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right.$), 145.8 (o-Dipp), $137.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$, ipso-Dipp), $131.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.7\left(\mathrm{~s}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right)$, 129.6 (s, p-Dipp), 124.1 (s, m-Dipp), ipso- $\mathrm{C}_{6} \mathrm{H}_{3}$ masked by more intense signals, 31.2 (s, $C H-i \mathrm{Pr}$), 25.4 ($\mathrm{s}, \mathrm{CH}_{3}-i \mathrm{Pr}$), 22.8 (s, $\mathrm{CH}_{3}-i \mathrm{Pr}$), $13.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=26 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-35.7$ (br s).

Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{CuClP}: b \mathrm{C} 68.92$ (68.9), H 7.77 (7.5).
$\left[\mathbf{C u B r}\left(\mathbf{P M e}_{2} \mathbf{A r}^{\mathrm{Dipp}_{2}}\right)_{2}\right.$, 2b. Pale-yellow crystals obtained by recrystallization at $5^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 85%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right.$ and p-Dipp), 7.32 ($\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, m$-Dipp), $7.20\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right)$, 2.49 (sept, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{iPr}\right), 1.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH} H_{3}-\mathrm{iPr}\right), 1.18\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=6.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{P}-\mathrm{CH}_{3}\right), 1.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-i \mathrm{Pr}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=15 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}$), 145.7 (o-Dipp), $137.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$, ipso-Dipp), $131.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.6\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.6$ (p-Dipp), 124.3 (m-Dipp), ipso- $\mathrm{C}_{6} \mathrm{H}_{3}$ masked by more intense signals, 31.2 ($\mathrm{CH}-\mathrm{iPr}$), $25.4\left(\mathrm{CH}_{3}-i \mathrm{Pr}\right), 22.8\left(\mathrm{CH}_{3}-i \mathrm{Pr}\right), 13.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=25 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ - 34.9 (br s).

Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{CuBrP}$: C 63.83 (63.5), H 7.20 (7.6).
[$\left.\mathbf{C u I}\left(\mathbf{P M e}_{2} \mathbf{A r}^{\text {Dipp }} \mathbf{2}\right)\right]$, 2c. Pale-yellow solid. Yield: 93%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$): $\delta 7.52\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right.$ and p-Dipp), $7.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, m\right.$-Dipp), $7.20\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right)$, 2.49 (sept, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}-i \mathrm{Pr}\right), 1.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{iPr}\right), 1.17\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=6.2 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{P}-\mathrm{CH}_{3}\right), 1.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{iPr}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ - 32.9 (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{CuIP}$: C 59.21 (59.0), H 6.68 (6.7).
$\left[\mathbf{C u C l}\left(\mathbf{P E t}_{2} \mathbf{A r}^{\text {Mes }_{2}}\right)\right]_{2}, \mathbf{3 a}$. Colorless solid. Yield: 98%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{td},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.7\right.$, $\left.{ }^{4} J_{\mathrm{HP}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.07\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.7\right.$, $\left.{ }^{3} J_{\mathrm{HP}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.03(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{Mes})$, $2.40\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3}\right), 1.67-1.51$ ($\mathrm{ABX}_{3} \mathrm{Y}$ system, $2 \mathrm{H}, \mathrm{CHH}-\mathrm{Et}$), 1.46-1.30 ($\mathrm{ABX}{ }_{3} \mathrm{Y}$, $2 \mathrm{H}, \mathrm{CH} H-\mathrm{Et}), 1.05\left(\mathrm{dt},{ }^{3} J_{\mathrm{HP}}=21.6,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right.$), 138.7 (p-Mes), 137.3 (d, ${ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}$, ipso-Mes), 135.3 (o-Mes), $131.7\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, m - $\mathrm{C}_{6} \mathrm{H}_{3}$), 129.5 (m-Mes), $127.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=31 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 21.3\left(p-\mathrm{CH}_{3}\right), 18.9\left(\mathrm{~d},{ }^{1} J_{C P}\right.$ $\left.=22 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.9\left(\mathrm{~d},{ }^{2} J_{C P}=9 \mathrm{~Hz}, \mathrm{CH}_{2} C H_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.6(\mathrm{br} \mathrm{s})$.
Elemental analysis calculated (found) for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{CuClP}$: C 67.05 (67.4), H 7.03 (7.4).
$\left[\mathbf{C u B r}\left(\mathbf{P E t}_{2} \mathbf{A r}^{\text {Mes }} \mathbf{)}\right)\right]$, 3b. Colourless solid. Yield: 90%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{td},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.7\right.$, $\left.{ }^{4} J_{\mathrm{HP}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.07\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.7\right.$,
$\left.{ }^{3} J_{\mathrm{HP}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.03(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{Mes})$, $2.40\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3}\right), 1.70-1.51$ ($\mathrm{ABX}_{3} \mathrm{Y}$ system, $2 \mathrm{H}, \mathrm{C} H \mathrm{H}-\mathrm{Et}$), 1.48-1.29 ($\mathrm{ABX}_{3} \mathrm{Y}$ system, $2 \mathrm{H}, \mathrm{CH} H-\mathrm{Et}), 1.06\left(\mathrm{dt},{ }^{3} J_{\mathrm{HP}}=21.6,{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right.$), 138.8 (p-Mes), 137.3 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}$, ipso-Mes), 135.5 (o-Mes), $131.7\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.7$ (m-Mes), $128.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=31 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 21.4\left(p-\mathrm{CH}_{3}\right), 18.9\left(\mathrm{~d},{ }^{1} J_{C P}\right.$ $\left.=22 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.8\left(\mathrm{~d},{ }^{2} J_{C P}=9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.1$ (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{CuBrP}$: C 61.59 (61.6), H 6.46 (6.7).
$\left[\mathbf{C u I}\left(\mathbf{P E t}_{2} \mathbf{A r}^{\mathrm{Mes}_{2}}\right)_{2}, \mathbf{3 c}\right.$. Colourless solid. Yield: 98%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{td},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.7\right.$, $\left.{ }^{4} J_{\mathrm{HP}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.08-7.02\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{ar}}\right)$, 2.40 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$-Mes), 2.00 (s, $12 \mathrm{H}, \mathrm{CH}_{3}$-Mes), 1.69-1.52 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.50-1.33 (m, 2 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.08\left(\mathrm{dt},{ }^{2} J_{\mathrm{HP}}=21.3 ;{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{C P}=\right.$ $13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}$), 138.4 (p-Mes), 137.3 ($\mathrm{d},{ }^{3} J_{C P}=6 \mathrm{~Hz}$, ipso-Mes), 135.0 (o-Mes), 131.3 $\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 129.8(m-\mathrm{Mes}), 128.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=31 \mathrm{~Hz}\right.$, ipso$\left.\mathrm{C}_{6} \mathrm{H}_{3}\right)$, 21.4, $21.3\left(\mathrm{CH}_{3}\right.$-Mes), $18.6\left(\mathrm{~d},{ }^{1} J_{C P}=22 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{CH}_{3}\right), 12.2\left(\mathrm{~d},{ }^{2} J_{C P}=9 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.7$ (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{CuIP}$: C 56.71 (56.4), H 5.95 (6.5).
$\left[\mathbf{C u I}\left(\mathbf{P i P r}_{2} \mathbf{A r}^{\mathrm{Xyl}_{2}}\right)\right] \mathbf{2}, \mathbf{4 c}$. Pale-yellow crystals obtained by recrystallization at $5^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 90%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7\right.$

$\left.\mathrm{Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.35\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{Xyl}\right)$, $7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Xyl}), 7.12\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.6\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HP}}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 2.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-$ $i \operatorname{Pr}), 2.08\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right), 1.13\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HP}}=21.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} H_{3}-\mathrm{iPr}\right), 0.75\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.7.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=15.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{iPr}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.7(\mathrm{br} \mathrm{s})$.
Elemental analysis calculated (found) for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{CuIP}$: C 56.71 (56.7), H 5.95 (5.8).
$\left[\mathbf{C u C l}\left(\mathbf{P C y p} 2 \mathbf{A r}^{\mathrm{Xyl}}\right)\right]$ 2, 5a. Pale-yellow crystals obtained by recrystallization at $5^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 89%.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, p\right.$-Xyl), $7.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, m\right.$-Xyl), $7.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{3}$), 2.03 (s, $\left.12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right), 1.99-$ 1.10 (m, 18H, Сyp).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=\right.$ $\left.13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 140.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, ipso-Xyl), $135.6(o-\mathrm{Xyl}), 131.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{HP}}=1 \mathrm{~Hz}\right.$, $\left.p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=24 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 128.7(p-\mathrm{Xyl}), 128.5(m-\mathrm{Xyl}), 35.7-35.2$ various signals $\left(C H_{2 C y p}\right), 31.5\left(\mathrm{~d},{ }^{1} J_{C P}=9 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Cyp}}\right), 25.4-25.1$ various signals $\left(\mathrm{CH}_{2 \mathrm{Cyp}}\right), 21.5\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9$ (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{CuClP}$: C 69.42 (69.6), H 7.10 (7.0).
$\left[\mathbf{C u B r}\left(\operatorname{PCyp} \mathbf{2 A r}^{\mathbf{X y l}}\right)\right]$ 2, 5b. Pale-yellow crystals obtained by recrystallization at $5^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 91%.

Following the general procedure, the synthesis was
 carried out in CHCl_{3}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6\right.$
$\left.\mathrm{Hz}, 1 \mathrm{H}, H_{\mathrm{ar}}\right), 7.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{ar}}\right), 7.19$
$\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, H_{\mathrm{ar}}\right), 7.11\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.6\right.$,
${ }^{3} J_{\mathrm{HP}}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{ar}}$), $2.07\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right)$, 2.04-0.80 (m, 18H, Сур).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 140.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, ipso-Xyl), 135.5 (o-Xyl), $131.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{HP}}=1 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 131.2\left(m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$ $=24 \mathrm{~Hz}$, ipso- $\mathrm{C}_{6} \mathrm{H}_{3}$), 128.9 (p-Xyl), 128.6 (m - Xyl), 35.7-35.3 various signals $\left(\mathrm{CH}_{2} \mathrm{Cyp}\right)$, $31.4\left(\mathrm{~d},{ }^{1} J_{C P}=9 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Cyp}}\right)$, 25.7-25.4 various signals $\left(\mathrm{CH}_{2 \mathrm{Cyp}}\right)$, $21.6\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right)$.
${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.4$ (br s).
Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{CuBrP}$: C 64.26 (64.1), H 6.57 (6.6).
$\left[\mathbf{C u I}\left(\mathbf{P C y p}_{2} \mathbf{A r}^{\mathrm{Xyl}_{2}}\right)\right] 2$, 5c. Pale-yellow crystals obtained by recrystallization at $5{ }^{\circ} \mathrm{C}$ from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) mixtures. Yield: 90%.

Following the general procedure, the synthesis was
 carried out in CHCl_{3}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0\right.$, $\left.\mathrm{Hz}, 1 \mathrm{H}, H_{\mathrm{ar}}\right), 7.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{ar}}\right), 7.20$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, H_{\mathrm{ar}}\right), 7.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}, H_{\mathrm{ar}}$) 2.07 ($\left.\mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Xyl}\right), 1.78-1.31$ (m, 18H, Сур).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 140.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, ipso-Xyl), 135.4 (o-Xyl), $131.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HP}}=1 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 131.2\left(m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$ $=24 \mathrm{~Hz}$, ipso- $\mathrm{C}_{6} \mathrm{H}_{3}$), 129.3 (p-Xyl), 128.6 (m - Xyl), 35.6-35-3 various signals $\left(\mathrm{CH}_{2 \mathrm{Cyp}}\right)$, $31.1\left(\mathrm{~d},{ }^{1} J_{C P}=9 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Cyp}}\right)$, 25.8-25.5 various signals $\left(\mathrm{CH}_{2 \mathrm{Cyp}}\right)$, $21.6\left(\mathrm{CH}_{3}-\mathrm{Xyl}\right)$.
${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.8 .{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.8$.
Elemental analysis calculated (found) for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{CuIP}$: C 59.21 (59.0), H 6.68 (7.0).

3. Catalytic procedures and characterization of triazoles.

3.1. General catalytic procedure for the [3+2] cycloaddition of azides and terminal alkynes. Procedure A.

A vial fitted with a screw cap was loaded with the alkyne (1.2 mmol), the azide $(1 \mathrm{mmol})$, the copper complex $(0.5 \mathrm{~mol} \% \mathrm{Cu})$ and water $(3 \mathrm{~mL})$ under air. The reaction mixture was stirred at room temperature for $5-12 \mathrm{~h}$. The product was extracted with ethyl acetate, the combined organic layers were washed with brine, dried over anhydrous MgSO_{4} and the solvent was removed under vacuum. When required, the product was purified by flash column chromatography.

3.2. General catalytic procedure for the [3+2] cycloaddition of in situ generated azides and terminal alkynes. Procedure B.

A vial fitted with a screw cap was loaded with the alkyne (1 mmol), the aryl halide (1 mmol), sodium azide (1.3 mmol), the copper complex ($0.5 \mathrm{~mol} \% \mathrm{Cu}$) and water (3 mL) under air. The reaction mixture was stirred at room temperature for 5-12 h. The product was extracted with ethyl acetate, the combined organic layers were washed with brine, dried over anhydrous MgSO_{4} and the solvent was removed under vacuum. When required, the product was purified by flash column chromatography.

3.3. Characterization data for compounds shown in Tables 4 , and 5.

Most of triazoles products have already been described in the literature. However, ${ }^{1} \mathrm{H}$ NMR spectra of these compounds used to identify them have been included herein, along with the references to their full spectroscopic characterization. For novel compounds, all relevant spectroscopic and analytical data are provided.

1-Benzyl-4-phenyl-1H-1,2,3-triazole ${ }^{4}$ (Table 4 and Table 5, 14a)

Following the general catalytic procedure A, phenylacetylene ($0.110 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl azide ($133.1 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL)

[^1]for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $226.3 \mathrm{mg}, 96 \%$ (1c); 221,6mg, 94\% (3c).

Following the general catalytic procedure B: phenylacetylene ($0.110 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl bromide ($0.120 \mathrm{~mL}, 1 \mathrm{mmol}$), $\mathrm{NaN}_{3}(84.2 \mathrm{mg}, 1.3 \mathrm{mmol})$ and the catalyst 3 c (0.005 mol of Cu) were reacted for 12 h at room temperature. Yield: $233.4 \mathrm{mg}(99 \%)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.29$ (m, 3H), $5.58(\mathrm{~s}, 2 \mathrm{H})$.

1-Benzyl-4-(n-butyl)-1H-1,2,3-triazole ${ }^{5}$ (Table 4 and Table 5, 14b)

Following the general catalytic procedure A, 1-hexyne (0.115 $\mathrm{mL}, 1 \mathrm{mmol}$), benzyl azide ($133.1 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $209.9 \mathrm{mg}, 97 \%$ (1c); 203,4 mg, 94\% (3c).

Following the general catalytic procedure B: 1-hexyne ($0.115 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl bromide $(0.120 \mathrm{~mL}, 1 \mathrm{mmol}), \mathrm{NaN}_{3}(84.2 \mathrm{mg}, 1.3 \mathrm{mmol})$ and the catalyst $\mathbf{3 c}(0.005 \mathrm{~mol}$ of Cu) were reacted for 12 h at room temperature. Yield: 204 mg (95%).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H})$, $2.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

(1-Benzyl-1H-1,2,3-triazol-4-yl)methanol ${ }^{6}$ (Table 4 and Table 5 14c)

Following the general catalytic procedure A, propargyl alcohol ($0.058 \mathrm{~mL}, 1 \mathrm{mmol}$) benzyl azide ($133 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder

[^2]after purification by flash chromatography (petroleum ether : ethyl acetate $=1: 1$). Yield: $175 \mathrm{mg}, 92 \%$ (1c); $173 \mathrm{mg}, 91 \%$ (3c).

Following the general catalytic procedure B: propargyl alcohol ($0.058 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl bromide ($0.120 \mathrm{~mL}, 1 \mathrm{mmol}$), $\mathrm{NaN}_{3}(84.2 \mathrm{mg}, 1.3 \mathrm{mmol})$ and the catalyst $3 \mathbf{c}$ (0.005 mol of Cu) were reacted for 12 h at room temperature. Yield: $179 \mathrm{mg}(95 \%)$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.52$ $(\mathrm{s}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$.

1-Benzyl-4-cyclopropyl-1H-1,2,3-triazole ${ }^{7}$ (Table 4, 14d) ${ }^{\text {d }}$

Following the general catalytic procedure A, cyclopropyl acetylene ($0.085 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl azide ($133 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $3 \mathbf{c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $180 \mathrm{mg}, 90 \%$ (1c); $176 \mathrm{mg}, 88 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H})$, $1.92(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H})$.

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate ${ }^{4}$ (Table 4, 14e)

Following the general catalytic procedure A , ethyl propiolate ($0.099 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl azide ($133 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate =5:1). Yield: 218 mg , 94% (1c); $213 \mathrm{mg}, 92 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H})$, $4.37(\mathrm{q}, J=7.0,2 \mathrm{H}), 1.36(\mathrm{t}, J=7.0,3 \mathrm{H})$.

[^3]
2-(1-Benzyl-1H-1,2,3-triazol-4-yl)pyridine ${ }^{8}$ (Table 4, 14f)

Following the general catalytic procedure A, 2-ethynylpyridine ($0.101 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl azide ($133 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate = 2 : 1). Yield: $220 \mathrm{mg}, 93 \%$ (1c); $227 \mathrm{mg}, 96 \%$ (3c).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53$ (ddd, $J=4.9,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 (dt, $J=7.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04$ (s, 1H), 7.76 (td, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (m, 5H), 7.21 (ddd, $J=7.8$, $4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H})$.

1-Benzyl-4-(trimethylsilyl)-1H-1,2,3-triazole ${ }^{4}$ (Table 4, 14g)

Following the general catalytic procedure A, ethynyltrimethylsilane ($0.141 \mathrm{~mL}, 1 \mathrm{mmol}$), benzyl azide (133 $\mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 6 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $210 \mathrm{mg}, 91 \%(1 c) ; 206 \mathrm{mg}, 89 \%(3 c)$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H})$, 0.30 ($\mathrm{m}, 9 \mathrm{H}$).

1,4-Diphenyl-1H-1,2,3-triazole ${ }^{5}$ (Table 4, 14h)

Following the general catalytic procedure A, phenylacetylene ($0.024 \mathrm{~mL}, 0.221 \mathrm{mmol}$), azidobenzene ($26 \mathrm{mg}, 0.221 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $44 \mathrm{mg}, 91 \%$ (1c); $46 \mathrm{mg}, 94 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7$
$\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

[^4]
4-(n-Butyl)-1-phenyl-1H-1,2,3-triazole (Table 4, 14i)

Following the catalytic general procedure A, 1-hexyne (0.035 $\mathrm{mL}, 0.301 \mathrm{mmol}$), azidobenzene ($36 \mathrm{mg}, 0.301 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $3 \mathbf{c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water $(3 \mathrm{~mL})$ for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (ethyl petroleum ether : ethyl acetate $=5: 1$). Yield: $56 \mathrm{mg}, 92 \%$ (1c); $57 \mathrm{mg}, 93 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 2.79$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(1-Phenyl-1H-1,2,3-triazol-4-yl)pyridine ${ }^{9}$ (Table 4, 14j)

Following the general catalytic procedure A, 2-ethynylpyridine ($0.030 \mathrm{~mL}, 0.298 \mathrm{mmol}$), azidobenzene ($36 \mathrm{mg}, 0.298 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (ethyl petroleum ether : ethyl acetate $=5: 1$). Yield: $61 \mathrm{mg}, 92 \%(\mathbf{1 c}) ; 63 \mathrm{mg}, 95 \%(3 \mathbf{c})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61(\mathrm{~m}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 3 \mathrm{H})$, $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H})$.

1-Cinnamyl-4-phenyl-1H-1,2,3-triazole ${ }^{10}$ (Table 4, 14k)

Following the general catalytic procedure A, phenylacetylene ($0.110 \mathrm{~mL}, 1 \mathrm{mmol}$), cinnamyl azide (159 $\mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}$ or $3 \mathrm{c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate =5:1). Yield: $249 \mathrm{mg}, 95 \%$ (1c); 244 mg, 93% (3c).

[^5]${ }^{1}{ }^{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dt}, J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(n-Butyl)-1-cinnamyl-1H-1,2,3-triazole ${ }^{11}$ (Table 4, 141)

Following the general catalytic procedure A, 1-hexyne ($0.115 \mathrm{~mL}, 1 \mathrm{mmol}$), cinnamyl azide ($159 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $227 \mathrm{mg}, 94 \%$ (1c); $222 \mathrm{mg}, 92 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.26(\mathrm{~m}, 6 \mathrm{H}), 6.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J$ $=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.37(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(1-Cinnamyl-1H-1,2,3-triazol-4-yl)pyridine (Table 4, 14m)

Following the general catalytic procedure A, 2ethynylpyridine ($0.101 \mathrm{~mL}, 1 \mathrm{mmol}$), cinnamyl azide (159 $\mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=2: 1$). Yield: $242 \mathrm{mg}, 92 \%$ (1c); 252 mg, 96% (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{td}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.69(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, \mathrm{J}=15.8,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16$ (dd, $J=6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,149.4,148.7,137.0,135.9,135.5,128.8,128.6$, 126.8, 122.9, 121.8, 121.6, 120.3, 52.5.

IR (nujol): 3123, 2953, 2853, 1460, 1376, 1222, 1196, 1062, 979, 741, 722, $665 \mathrm{~cm}^{-1}$.

[^6]Elemental analysis calculated (found) for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4}$: C 73.26 (73.2), H 5.38 (5.5), N 21.36 (21.2).

1-Cinnamyl-4-(trimethylsilyl)-1H-1,2,3-triazole (Table 4, 14n)

Following the general catalytic procedure A, ethynyltrimethylsilane ($0.141 \mathrm{~mL}, 1 \mathrm{mmol}$), cinnamyl azide ($159 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of $\mathrm{Cu})$ were stirred in water (3 mL) for 5 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate =5:1). Yield: $232 \mathrm{mg}, 90 \%$ (1c); 240 mg , 93\% (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56$ (s, 1H), 7.40-7.25 (m, 5H), 6.67 (d, $J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35(\mathrm{dt}, \mathrm{J}=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.8,135.3,128.9,128.8,128.7,126.9,122.5,51.9,-$ 0.92 . IR (nujol): 3118, 3027, 2956, 2854, 1488, 1450, 1376, 1250, 1193, 1109, 967, $843,759,691,668 \mathrm{~cm}^{-1}$.

Elemental analysis calculated (found) for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Si}$: C 65.32 (65.6), H 7.44 (7.3), N 16.32 (16.0).

1-(n-Octyl)-4-phenyl-1H-1,2,3-triazole ${ }^{9}$ (Table 4, 14o)

Following the general catalytic procedure A, phenylacetylene ($0.110 \mathrm{~mL}, 1 \mathrm{mmol}$), 1-azidooctane $(155 \mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005$ mmol of Cu) were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $242 \mathrm{mg}, 94 \%$ (1c); $239 \mathrm{mg}, 93 \%$ (3c).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H})$, $4.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(n-Butyl)-1-(n-octyl)-1H-1,2,3-triazole ${ }^{12}$ (Table 4, 14p)

Following the general catalytic procedure procedure A, 1-hexyne ($0.115 \mathrm{~mL}, 1 \mathrm{mmol}$), 1azidooctane ($155 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=2: 1$). Yield: $221 \mathrm{mg}, 93 \%$ (1c); $219 \mathrm{mg}, 92 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{dt}, J=13.5,7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

2-(1-(n-Octyl)-1H-1,2,3-triazol-4-yl)pyridine ${ }^{13}$ (Table 4, 14q)

Following the general catalytic procedure A, 2ethynylpyridine ($0.101 \mathrm{~mL}, 1 \mathrm{mmol}$), 1-azidooctane $(155 \mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst 1 c or $3 \mathrm{c}(0.005$ mmol of Cu) were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=2: 1$). Yield: $243 \mathrm{mg}, 94 \%$ (1c); $243 \mathrm{mg}, 93 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=7.8,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.17(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 1-(n-octyl)-1H-1,2,3-triazole-4-carboxylate ${ }^{14}$ (Table 4, 14r)

Following the general catalytic procedure A, ethyl propiolate ($0.099 \mathrm{~mL}, 1 \mathrm{mmol}$), 1-azidooctane (155 $\mathrm{mg}, 1 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}$ or $\mathbf{3 c}(0.005 \mathrm{mmol}$

[^7]of Cu) were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate $=5: 1$). Yield: $125 \mathrm{mg}, 99 \%$ (1c); $123 \mathrm{mg}, 97 \%$ (3c).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.8,3 \mathrm{H})$.

1-(4-Methylbenzy) $)$-4-phenyl-1H-1,2,3-triazole ${ }^{15}$ (Table 5, 14s)

Following the general catalytic procedure B, phenylacetylene ($0.110 \mathrm{~mL}, 1 \mathrm{mmol}$), 4-methylbenzyl bromide (185 mg , 1 mmol), sodium azide ($84.1 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the catalyst $\mathbf{3 c}$ $(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water $(3 \mathrm{~mL})$ for 12 h at room temperature. The title compound was isolated as a white powder after washing with hexane. Yield: $243 \mathrm{mg}, 98 \%$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.71$ (br s, 1H), 7.40-7.27 (m, 3H), j 7.23-7.16 (m, 4H), 5.49 (s, 2H), 2.35 (s, 3H).

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole ${ }^{16}$ (Table 5, 14t)

Following the general catalytic procedure B, phenylacetylene ($0.110 \mathrm{~mL}, \quad 1 \mathrm{mmol}$), 4-nitrobenzyl bromide ($216 \mathrm{mg}, 1 \mathrm{mmol}$), sodium azide ($84.1 \mathrm{mg}, 1.3$ $\mathrm{mmol})$ and the catalyst $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after washing with hexane. Yield: $203 \mathrm{mg}, 72 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.32$ (m, 5H), 5.70 (s, 2H).

[^8]
1-Methyl-4-phenyl-1H-1,2,3-triazole ${ }^{4}$ (Table 5, 14u)

Following the general catalytic procedure B, phenylacetylene (0.055 mL , 0.5 mmol), iodomethane ($0.031 \mathrm{~mL}, 0.5 \mathrm{mmol}$), sodium azide $(22 \mathrm{mg}$, $0.65 \mathrm{mmol})$ and the catalyst $\mathbf{3 c}(0.005 \mathrm{mmol}$ of Cu$)$ were stirred in water (3 mL) for 12 h at room temperature. The title compound was isolated as a white powder after washing with hexane. Yield: $62 \mathrm{mg}, 78 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 5 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H})$.

3.4. General procedure for the $[3+2]$ cycloaddition of azides and iodoalkynes.

In a vial fitted with a screw cap, the catalyst $\mathbf{1 c}(1-2 \mathrm{~mol} \% \mathrm{Cu})$ was added to a mixture of iodoalkyne (1 mmol), 2,6-lutidine ($4 \mathrm{~mol} \%$) and azide (1 mmol) in water (3 mL) under air. The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched by adding aqueous $\mathrm{NH}_{4} \mathrm{OH}(1 \mathrm{~mL}, 10 \%$ solution). The volatile components were removed by evaporation, and the crude residue was extracted with diethyl ether and washed with water. The solvent was removed under vacuum and the product was purified by flash column chromatography.

3.5. Characterization of iodo-triazoles.

Most of iodotriazoles products have already been described in the literature. However, ${ }^{1} \mathrm{H}$ NMR spectra of these compounds used to identify them have been included herein, along with the references to their full spectroscopic characterization. For novel compounds, all relevant spectroscopic and analytical data are provided.

1-Benzyl-5-iodo-4-phenyl-1H-1,2,3-triazole ${ }^{17}$ (Table 7, 15a)

Following the general catalytic procedure, iodoethynylbenzene ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$), benzyl azide ($66.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}(1 \mathrm{~mol} \% \mathrm{Cu})$ afford the title compound as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate 5:1). Yield: $176 \mathrm{mg}, \mathbf{9 8 \%}$.

[^9]${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.30(\mathrm{~m}, 8 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H})$.

1-Cinnamyl-5-iodo-4-phenyl-1H-1,2,3-triazole ${ }^{18}$ (Table 7, 15b)

Following the general procedure from iodoethynylbenzene ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$) and cinnamyl azide ($80 \mathrm{mg}, 0.5$ mmol) and the catalyst $\mathbf{1 c}(2 \mathrm{~mol} \% \mathrm{Cu})$, the title compound was isolated as a white powder after purification by flash chromatography (petroleum ether). Yield: $132 \mathrm{mg}, 68 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.29(\mathrm{~m}, 8 \mathrm{H}), 6.68(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37(\mathrm{dt}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$.

1-Octyl-5-iodo-4-phenyl-1H-1,2,3-triazole (Table 7, 15c)

Following the general procedure from iodoethynylbenzene ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$), octyl azide ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}(2 \mathrm{~mol} \% \mathrm{Cu})$, the title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate 20:1). Yield: 126 $\mathrm{mg}, 65 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.99-7.92 (m, 2H), 7.53-7.40 (m,3H), 2.01-1.91 (m, 2 H), 1.48-1.22 (m, 10H), 0.95-0.85 (m, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.8,130.3,128.7,127.6,76.3,50.9,31.8,30.0,29.1$, 29.0, 26.4, 22.6, 14.1.

HR-MS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{IN}_{3}{ }^{+}[\mathrm{MH}]^{+}$384.0931, found 384.0924.

1-Benzyl-5-iodo-4-cyclopropyl-1H-1,2,3-triazole ${ }^{3}$ (Table 7, 15d)

Following the general procedure from iodoethynylcyclopropane (96 $\mathrm{mg}, 0.5 \mathrm{mmol}$), benzyl azide ($67 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}$ $(1 \mathrm{~mol} \% \mathrm{Cu})$, the title compound was isolated as a white powder

[^10]after purification by flash chromatography (petroleum ether : ethyl acetate 15:1). Yield: $141 \mathrm{mg}, 87 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.10-0.95 (m, 4H).

1-Cinnamyl-5-iodo-4-cyclopropyl-1H-1,2,3-triazole (Table 7, 15e)

Following the general procedure from
iodoethynylcyclopropane $(96 \mathrm{mg}, 0.5 \mathrm{mmol})$, cinnamyl azide
$(80 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the catalyst $\mathbf{1 c}(1 \mathrm{~mol} \% \mathrm{Cu})$, the title compound was isolated as a white powder after purification by flash chromatography (petroleum ether). Yield: $167 \mathrm{mg}, 95 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J$ $=15.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.97(\mathrm{~m}$, 4H).
${ }^{13}{ }^{13}$ NMR (300 MHz, CDCl_{3}): $\delta 153.1,135.7,134.9,128.7,128.4,126.7$ 122.0, 77.8 , 52.6, 7.6, 7.3.

HR-MS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}[\mathrm{MH}]^{+} 352.0305$, found 352.0301.

1-Octyl-5-iodo-4-cyclopropyl-1H-1,2,3-triazole (Table 7, 15f)

Following the general procedure from iodoethynylcyclopropane ($96 \mathrm{mg}, 0.5 \mathrm{mmol}$), octyl azide ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the catalyst $\mathbf{1 c}(1 \mathrm{~mol} \% \mathrm{Cu})$, the title compound was isolated as a white powder after purification by flash chromatography (petroleum ether : ethyl acetate 20:1). Yield: $78 \mathrm{mg}, 45 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.99-7.92 (m, 2H), 7.53-7.40 (m,3H), 2.01-1.91 (m, $2 \mathrm{H}), 1.48-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 4 \mathrm{H})$.
4. NMR spectra of compounds.
${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}{ }_{\mathbf{2}}\right)\right]_{2}$, 1 a

${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right]{ }_{2}$, 1a

${ }^{31} \mathrm{P}\left[{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right]$, 1 a manmen
${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right]$, $\mathbf{1 b}$

${ }^{13} \mathbf{C}\left[{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P M e}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right]$, $\mathbf{1 b}$

${ }^{31} \mathbf{P}\left[{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P M e}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right] \mathbf{2}, \mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right] 2,1 \mathrm{c}$

${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right]{ }_{2}$, 1 c

${ }^{31} \mathbf{P}\left[{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right]$, 1 c

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\text {Dipp }}{ }^{2}\right)\right]$, 2 a

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\text {Dipp }} \mathbf{2}\right)\right]$, 2 a

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\text {Dipp } 2}\right)\right]$, 2a

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Dipp}_{2}}\right)\right] \mathbf{2}$, 2b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Dipp}_{2}}\right)\right]$, $\mathbf{2 b}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathbf{P M e}_{2} \mathrm{Ar}^{\text {Dipp } 2}\right)\right] \mathbf{2}, \mathbf{2 b}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Dipp}}{ }^{2}\right)\right]$, 2 c
癹

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes} 2}\right)\right]$, 3a

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes}_{2}}\right)\right]$, 3a

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ spectrum of $\left[\mathbf{C u C l}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes}_{2}}\right)\right]$, 3a

${ }^{1} \mathbf{H}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes}_{2}}\right)\right] \mathbf{2}, \mathbf{3 b}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P E t}_{2} \mathbf{A r}^{\text {Mes }_{2}}\right)\right]_{2}, \mathbf{3 b}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P E t}_{2} \mathbf{A r}^{\text {Mes }_{2}}\right)\right] \mathbf{2}, \mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes}_{2}}\right)\right]$, 3c

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes} 2}\right)\right]$, 3c

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P E t}_{2} \mathrm{Ar}^{\mathrm{Mes}_{2}}\right)\right] \mathbf{2}, \mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuI}\left(\operatorname{PiPr}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right] 2,4 \mathrm{c}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\operatorname{PiPr}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right] \mathbf{2}, 4 \mathrm{c}$命

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right] 2$, 5 a

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u C l}\left(\mathbf{P C y p}_{2} \mathrm{Ar}^{\mathrm{Xyl}}{ }^{2}\right)\right]$, $\mathbf{5 a}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuCl}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}{ }_{2}}\right)\right] 2,5 \mathrm{a}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right]{ }_{2}, \mathbf{5 b}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{CuBr}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right] 2,5 \mathrm{~b}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathbf{C u B r}\left(\mathbf{P C y p}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right] 2, \mathbf{5 b}$

${ }^{1} \mathbf{H}$ NMR spectrum of $\left[\operatorname{CuI}\left(\mathbf{P C y p}_{2} \mathrm{Ar}^{\mathrm{Xyl}_{2}}\right)\right] 2,5 \mathrm{c}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right] \mathbf{2}, 5 \mathrm{c}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of $\left[\mathrm{CuI}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}}{ }_{2}\right)\right] 2,5 \mathrm{c}$
$\stackrel{\infty}{\bullet}$

1-Benzyl-4-phenyl-1H-1,2,3-triazole, 14a

1-Benzyl-4-butyl-1H-1,2,3-triazole, 14b

(1-Benzyl-1H-1,2,3-triazol-4-yl)methanol, 14c

1-Benzyl-4-cyclopropyl-1H-1,2,3-triazole, 14d

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate, 14e

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)pyridine, 14f

1-Benzyl-4-(trimethylsilyl)-1H-1,2,3-triazole, 14g

1,4-Diphenyl-1H-1,2,3-triazole, 14h

4-(n-Butyl)-1-phenyl-1H-1,2,3-triazole, 14i

2-(1-Phenyl-1H-1,2,3-triazol-4-yl)pyridine, 14j

1-Cinnamyl-4-phenyl-1H-1,2,3-triazole, 14k

4-(n-Butyl)-1-cinnamyl-1H-1,2,3-triazole, 141

2-(1-Cinnamyl-1H-1,2,3-triazol-4-yl)pyridine, 14m

1-Cinnamyl-4-(trimethylsilyl)-1H-1,2,3-triazole, 14n

1-Octyl-4-phenyl-1H-1,2,3-triazole, 140

1-Octyl-4-n-butyl-1H-1,2,3-triazole, 14p

2-(1-Octyl-1H-1,2,3-triazol-4-yl)pyridine, 14q

Ethyl 1-octyl-1H-1,2,3-triazole-4-carboxylate, 14r

1-(4-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole, 14s

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole, 14t

1-Benzyl-5-iodo-4-phenyl-1H-1,2,3-triazole, 15a

1-Cinnamyl-5-iodo-4-phenyl-1H-1,2,3-triazole, 15b

1-Octyl-5-iodo-4-phenyl-1H-1,2,3-triazole, 15c

1-Benzyl-5-iodo-4-cyclopropyl-1H-1,2,3-triazole, 15d

1-Cinnamyl-5-iodo-4-cyclopropyl-1H-1,2,3-triazole, 15e

5. DOSY NMR experiments

Figure S1. DOSY ${ }^{1} \mathrm{H}$ NMR spectra of complexes $\mathbf{1 c}, \mathbf{2 a}, \mathbf{3 c}$, and $\mathbf{5 b}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$ with the corresponding calculated diffusion coefficients.

6. X-ray structural data of new complexes

Single crystals of suitable size for X-ray diffraction analysis of $\mathbf{1 , 2 c} \mathbf{2 c} \mathbf{3 b}, \mathbf{3 c}, \mathbf{4 c}$ and $5 \mathbf{c}$ were obtained from slow diffusion of pentane into a solution of the complex in dichloromethane. Crystals were coated with FOMBLIN oil, mounted on a glass fibre and fixed in a cold nitrogen stream $(T=100 \mathrm{~K})$ to the goniometer head. Data collection have been performed on two diffractometers: a Bruker-AXSX8Kappa diffractometer equipped with an Apex-II CCD area detector, using a graphite monochromator $\mathrm{Ag} \mathrm{K} \alpha 1$ ($\lambda=0.56086 \AA$) and a Bruker Cryo-Flex low-temperature device (used with 1c, 3b and 3c), and a Bruker Chi-Fixed QUEST diffractometer equipped with a Photon II CMOS detector, using MoK $\alpha 1$ ($\lambda=0.71073 \AA$, microfocus sealed x-ray tube) and an Oxford Cryosystems low-temperature device (Cryostream 800), (used with 1a, 1b, 2c, 4c and 5c).

Data collections were processed with APE-W2D-ND (Bruker, 2004), cell refinement and data reduction with SAINT-Plus (Bruker, 2004) and the absorption was corrected by multiscan method applied by SADABS. ${ }^{19}$ The space-group assignment was based upon systematic absences, E statistics, and successful refinement of the structure. The structures $4 \mathrm{~b}, 4 \mathrm{~d}$ and 4 e were solved by direct methods, and $1 \mathrm{a}, 1 \mathrm{c}, 3 \mathrm{~d}$ and 3 e by Charge Flipping. The structure was refined against all F2 data by full-matrix leastsquares techniques (SHELXTL-6.12) ${ }^{20}$ minimizing $\mathrm{w}\left[F^{2}-F c^{2}\right]^{2}$.

Thermal parameters for all non-hydrogen atoms were refined anisotropically while hydrogen atoms were included in calculated positions and allowed to ride on the attached atoms with the isotropic temperature factors (Uiso values) fixed at 1.2 times (1.5 times for methyl groups) those Ueq values of the corresponding attached atoms. Some geometric restraints (DFIX command), the ADP restrain SIMU and the rigid bond restraint DELU and RIGU were used in order to obtain more reasonable geometric and ADP values of the atoms on groups moderately librating. It was also employed ISOR command to restraint the anisotropic U -values of these atoms to behave more isotropically.

A summary of the fundamental crystal and refinement data are given in the Tables S1-S2. Atomic coordinates, anisotropic displacement parameters and bond

[^11]lengths and angles can be found in the cif files, which have been deposited in the Cambridge Crystallographic Data Centre with no. 2001351 (for 1a), 2001349 (for 1b), 2001231 (for 1c), 2003447 (for 2c), 2001230 (for 3b), 2001229 (for 3c), 2001352 (for $\mathbf{4 c}$) and 2001348 (for 5c). These data can be obtained free for charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table S1. Crystal data and Structure Refinement for compounds 1c, 3b, and 3c.

	1c	3b	3c
formula	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Cu}$ I P	$\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{Cu} \mathrm{Br} \mathrm{P}$	$\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{Cu}$ I P
fw	536.86	545.98	592.97
cryst.size, mm	$0.34 \times 0.22 \times 0.14$	$0.29 \times 0.29 \times 0.12$	$0.21 \times 0.18 \times 0.11$
crystal system	Monoclinic	Triclinic	Monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	P-1	$\mathrm{P} 21 / \mathrm{c}$
$a, ~ \AA$	8.3060(4)	11.5683(8)	18.5195(6)
b, \AA	19.0384(8)	11.8831(8)	8.7781(4)
c, \AA	14.4683(7)	12.4332(9)	16.3617(6)
α, deg	90	112.584(3)	90
β, deg	96.369(2)	104.394(3)	100.320(2)
$\gamma, \operatorname{deg}$	90	97.745(3)	90
V, \AA^{3}	2273.79(18)	1477.04(18)	2616.83(18)
$T, \mathrm{~K}$	173(2)	100(2)	173(2)
Z	4	2	4
$\rho_{\text {calc, }}, \mathrm{g} \mathrm{cm}^{-3}$	1.568	1.228	1.505
$\mu, \mathrm{mm}^{-1}(\mathrm{MoK} \alpha)$	1.267	1.150	1.106
$F(000)$	1072	564	1200
absorption corrections	multi-scan, 0.63-0.74	multi-scan, 0.65-0.74	multi-scan, 0.66-0.74
θ range, deg	1.40-21.36	1.48-23.69	1.76-21.99
no. of rflns measd	38180	48388	43948
$\mathrm{R}_{\text {int }}$	0.066	0.070	0.072
no. of rflns unique	5195	8914	6502
no. of params / restraints	250 / 0	288 / 0	288 / 0
$R_{1}(I>2 \sigma(I))^{\text {a }}$	0.036	0.038	0.039
R_{1} (all data)	0.054	0.061	0.063
$w R_{2}(I>2 \sigma(I))$	0.108	0.105	0.112
$w R_{2}$ (all data)	0.129	0.126	0.135
Diff.Fourier.peaks $\min / \max , \mathrm{e}^{-3}$	-0.913 / 0.559	-0.648 / 0.677	-0.908 / 0.821
CCDC number	2001231	2001230	2001229

Table S2 Crystal data and Structure Refinement for compounds 1a, 1b, 2c 4c, 5c.

	1a	1b	2c	4c	5c
Empirical formula	$\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{86} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{70} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{78} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{P}_{2}$
Formula weight	975.75	979.75	1298.14	1185.94	1290.08
Temperature (K)	100.0	100.0	100.0	100.0	100.0
Wavelength (£)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	P-1	P2 $1^{\prime} \mathrm{c}$	P-1	P-1	P21/n
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=11.266(3) \AA \\ & \mathrm{b}=11.920(3) \AA \\ & \mathrm{c}=18.935(4) \AA \\ & \alpha=96.527(8)^{\circ} \\ & \beta=94.614(8)^{\circ} \\ & \gamma=112.882(9)^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=16.0513(7) \AA \\ & \mathrm{b}=12.0946(5) \AA \\ & \mathrm{c}=24.0943(10) \AA \\ & \alpha=90^{\circ} \\ & \beta=106.354(2) \\ & \gamma=90 \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.6353(11) \AA \\ & \mathrm{b}=15.1087(14) \AA \\ & \mathrm{c}=25.294(2) \AA \\ & \alpha=106.683(3)^{\circ} \\ & \beta=90.503(3)^{\circ} \\ & \gamma=95.859(3)^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=9.7059(7) \AA \\ & \mathrm{b}=10.6028(7) \AA \\ & \mathrm{c}=12.6274(9) \AA \\ & \alpha=87.294(3)^{\circ} \\ & \beta=87.732(3)^{\circ} \\ & \gamma=81.145(3)^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=10.3096(5) \AA \\ & \mathrm{b}=12.7129(6) \AA \\ & \mathrm{c}=21.7860(10) \AA \\ & \alpha=90^{\circ} \\ & \beta=101.509(2)^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$
Volume (\AA^{3})	2305.9(9)	4488.3(3)	4597.6(7) \AA^{3}	1281.88(16)	2798.0(2)
Z	2	4	3	1	2
$\rho_{\text {calc },} \mathrm{g} \mathrm{cm}^{-3}$	1.405	1.450	1.407	1.536	1.531
Absorption coefficient (mm^{-1})	1.257	2.831	1.790	2.132	1.960
F(000)	1012	2000	1992	600	1312
Crystal size (mm^{3})	$0.12 \times 0.05 \times 0.02$	$0.285 \times 0.165 \times 0.1$	$0.49 \times 0.28 \times 0.165$	$0.365 \times 0.22 \times 0.065$	$0.29 \times 0.15 \times 0.08$
Theta range for data collection $\left({ }^{\circ}\right)$	2.185 to 26.119	2.141 to 33.253	2.246 to 30.158°	2.477 to 33.335	2.492 to 32.155
Index ranges	$\begin{aligned} & -13<=\mathrm{h}<=13, \\ & -14<=\mathrm{k}<=14, \\ & -23<=\mathrm{l}<=23 \end{aligned}$	$\begin{aligned} & -24<=\mathrm{h}<=24, \\ & -18<=\mathrm{k}<=18, \\ & -37<=1<=37 \end{aligned}$	$\begin{aligned} & -17<=\mathrm{h}<=17, \\ & -21<=\mathrm{k}<=21, \\ & -35<=1<=35 \end{aligned}$	$\begin{aligned} & -15<=\mathrm{h}<=15, \\ & -16<=\mathrm{k}<=16, \\ & -19<=\mathrm{l}<=19 \end{aligned}$	$\begin{aligned} & -15<=\mathrm{h}<=15, \\ & -19<=\mathrm{k}<=19, \\ & -32<=\mathrm{l}<=32 \end{aligned}$
Reflections collected	89551	226365	96575	113965	140181
Independent reflections	$\begin{aligned} & 9117 \\ & {\left[\mathrm{R}_{\mathrm{int}}=0.0768\right]} \end{aligned}$	$\begin{aligned} & 17246 \\ & {\left[\mathrm{R}_{\mathrm{int}}=0.0576\right]} \end{aligned}$	$\begin{aligned} & 27067 \\ & {\left[\mathrm{R}_{\text {int }}=0.0506\right]} \end{aligned}$	$\begin{aligned} & 9911 \\ & {\left[\mathrm{R}_{\mathrm{int}}=0.0466\right]} \end{aligned}$	$\begin{aligned} & 9827 \\ & {\left[\mathrm{R}_{\mathrm{int}}=0.0452\right]} \end{aligned}$
Completeness to theta $=25.242^{\circ}$	99.9 \%	99.9 \%	99.9\%	99.9 \%	99.9 \%
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.0926 and 0.0640	0.2694 and 0.1860	0.0232 and 0.0045	$\begin{aligned} & 0.0734 \text { and } \\ & 0.0340 \end{aligned}$	0.1586 and 0.1140
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F2	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data/restraints/ params	9117 / 906 / 749	17246 / 360 / 574	27067 / 0/976	9911 / 0 / 288	9827 / 0 / 320
Goodness-of-fit on F^{2}	1.099	1.024	1.047	1.034	1.069
Final R indices $(I>2 \sigma(I))$	$\begin{aligned} & \mathrm{R}_{1}=0.0519, \mathrm{wR}_{2} \\ & =0.1199 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0325, \mathrm{wR}_{2} \\ & =0.0755 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0795, \mathrm{wR} 2= \\ & 0.2185 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0288, \mathrm{wR}_{2} \\ & =0.0652 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0240, \mathrm{wR}_{2} \\ & =0.0538 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.0704, \mathrm{wR}_{2} \\ & =0.1279 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0518, \mathrm{wR}_{2} \\ & =0.0849 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0983, \text { wR2 }= \\ & 0.2404 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0406, \mathrm{wR} 2 \\ & =0.0701 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0317, \mathrm{wR} \\ & =0.0573 \end{aligned}$
Largest diff. peak and hole $\left(\mathrm{e}^{-3}\right)$	0.786 and -0.685	0.948 and -0.768	6.837 and -0.869	1.541 and -0.507	1.089 and -0.473
CCDC number		2001349		2001352	2001348

Figure S2. Molecular structure of complex 1a.

Figure S3. Molecular structure of complex 1b.

Figure S4. Molecular structure of complex 2c.

Figure S5. Molecular structure of complex 3b.

Figure S6. Molecular structure of complex 4c.

Figure S7. Molecular structure of complex 5c.

Figure S8. Correlation between the metal-metal separation and the $\mathrm{Cu} 1-\mathrm{X}-\mathrm{Cu}{ }^{\prime}$ ' angle for complexes 1-5.

Table S3. Triplet states close to S_{2} in energy with (HOMO,LUMO+1) participation in their configuration set.

State	1c		3c	
	HOMO,LUMO+1(\%)	Energy(nm)	HOMO,LUMO+1(\%)	Energy(nm)
$\mathbf{S}_{\mathbf{2}}$	$\mathbf{7 9 \%}$	$\mathbf{3 3 8}$	$\mathbf{9 2 \%}$	$\mathbf{3 3 4}$
$\mathbf{T}_{\mathbf{8}}$	$\mathbf{2 0 \%}$	$\mathbf{3 4 0}$	$\mathbf{8 0 \%}$	$\mathbf{3 3 9}$
$\mathbf{T}_{\mathbf{7}}$	$\mathbf{0 \%}$	$\mathbf{3 4 0}$	$\mathbf{0 \%}$	$\mathbf{3 4 0}$
$\mathbf{T}_{\mathbf{6}}$	$\mathbf{2 4 \%}$	$\mathbf{3 4 2}$	$\mathbf{0 \%}$	$\mathbf{3 4 6}$
$\mathbf{T}_{\mathbf{5}}$	$\mathbf{4 \%}$	$\mathbf{3 4 2}$	$\mathbf{0 \%}$	$\mathbf{3 4 6}$
$\mathbf{T}_{\mathbf{4}}$	$\mathbf{5 \%}$	$\mathbf{3 4 6}$	$\mathbf{0 \%}$	$\mathbf{3 4 9}$
$\mathbf{T}_{\mathbf{3}}$	$\mathbf{3 \%}$	$\mathbf{3 4 7}$	$\mathbf{0 \%}$	$\mathbf{3 4 9}$
$\mathbf{T}_{\mathbf{2}}$	$\mathbf{6 \%}$	$\mathbf{3 4 8}$	$\mathbf{0 \%}$	$\mathbf{3 5 3}$
$\mathbf{T}_{\mathbf{1}}$	$\mathbf{2 6 \%}$	$\mathbf{3 5 0}$	$\mathbf{7 \%}$	$\mathbf{3 5 3}$

Figure S9. Decay profile of $\mathbf{1 c}$ and $\mathbf{3 c}$ in Zeonex placed in vacuum, with lifetime of 56 $\mu \mathrm{s}$ for $\mathbf{1 c}$ and 82μ for $\mathbf{3 c}$.

Figure S10 TD-DFT simulated electronic spectra of complexes 1c and 3c (dashed lines) plotted against the experimental UV-Vis spectra in cyclohexane.

Figure S11 X-ray structure of the complexes 1c $\left[\mathrm{CuI}\left(\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)\right]_{2}$ and 3c $\left[\mathrm{CuI}\left(\mathrm{PEt}_{2} \mathrm{Ar}^{\mathrm{Mes}}\right)\right]_{2}$ and their packing in crystalline network. 1c interacts to adjacent molecules through aromatic H while $\mathbf{3 c}$ interacts through I atoms.

Figure S12 Excitation and Emission spectra of complexes $\mathbf{1 c}$ and $\mathbf{3 c}$ in frozen cyclohexane solution $\left(5.00 \times 10^{-5} \mathrm{M}\right)$ at 77 K .

[^0]: ${ }^{1}$ (a) Ortega-Moreno, L.; Fernández-Espada, M.; Moreno, J. J.; Navarro-Gilabert, C.; Campos, J.; Conejero, S.; López-Serrano, J.; Maya, C.; Peloso, R.; Carmona, E. Polyhedron, 2016, 116, 170-181. (b) Marín, M.; J. Moreno, J.; Navarro-Gilabert, C.; Álvarez, E.; Maya, C.; Peloso, R.; Nicasio, M. C.; Carmona, E. Chem. Eur. J. 2019, 25, 260-272
 ${ }^{2}$ a) Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413-414. b) Tao, C-Z.; Cui, X.; Li, J.; Liu, A-X.; Liu, L.; Guo, Q-X. Tetrahedron Lett. 2007, 48, 3525-3529. c) Campbell-Verduyn, L.; Mirfeizi, L.; Dierckx, R. A.; Elsinga, P. H.; Feringa, B. L. Chem. Commun. 2009, 2139-2141.
 ${ }^{3}$ Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, B. K.; Fokin, V. V. Angew. Chem. In. Ed. 2009, 48, 8018-8021.

[^1]: ${ }^{4}$ Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223-4225.

[^2]: ${ }^{5}$ Candelon, N.; Lastécouères, D.; Diallo, A. K.; Aranzaes, J. R.; Astruc, D.; Vincent, J.-M. Chem. Commun. 2008, 741-743.
 ${ }^{6}$ Buckley, B. R.; Dann, S. E.; Harris, D. P.; Heaney, H.; Stubbs, E. C. Chem. Commun. 2010, 46, 22742276.

[^3]: ${ }^{7}$ Namitharan, K.; Kumarraja, M.; Pitchumani, K. Chem. Eur. J. 2009, 15, 2755-2758.

[^4]: ${ }^{8}$ Richardson, C.; Fitchett, C. M.; Keene, F. R.; Steel, P. J. Dalton Trans. 2008, 2534-2537.

[^5]: ${ }^{9}$ Kacprzak, K. Synlett 2005, 943-946.
 ${ }^{10}$ Nunes, A.; Djakovitch, L. Khrouz, L.; Felpin, F.-X. Dufaud, V. J. Mol. Catal. A: Chem. 2017, 437, 150-157.

[^6]: ${ }^{11}$ Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Eur. J. Org. Chem. 2010, 1875-1884.

[^7]: ${ }^{12} \mathrm{Hu}, \mathrm{H} . ;$ Sun, Z. Adv. Synth. Catal. 2016, 358, 1736-1740
 ${ }^{13}$ Crowley, J. D.; Bandeen, P. H.; Hanton, L. R. Polyhedron 2010, 29, 70-83.
 ${ }^{14}$ Özçubukçu, S.; Ozkal, E.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2009, 11, 4680-4683.

[^8]: ${ }^{15}$ Zhou, C. J.; Zhang, J.; Liu, P.; Xie, J. W.; Dai, B. RSC Adv. 2015, 5, 6661-6665.
 ${ }^{16}$ Reddy, V. H.; Reddy, Y. V. R.; Sridhar, B.; Reddy, B. V. S. Adv. Synth. Catal. 2016, 358, 1088-1092.

[^9]: ${ }^{17}$ Dinér, P.; Andersson., T.; Kjellén, J.; Elbing, K.; Hohmann, S.; Grøtli, M. New J. Chem. 2009, 33, 1010-1016.

[^10]: ${ }^{18}$ Steven Lal, Henry S. Rzepa, and Silvia Díez-González. ACS Catal. 2014, 4, 2274-2287.

[^11]: ${ }^{19}$ G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data. Göttingen: University of Göttingen, 1996.
 ${ }^{20}$ G. M. Sheldrick, SHELXTL, versión 6.14. Program for solution and refinement of crystal structures, Universität Göttingen, Germany, 2000.

