Supporting Information

Protic imidazolium cation-based ionic liquids show unexpected interfacial properties

Zhichao Chen, Oscar Morales-Collazo, Joan F. Brennecke*

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA

IL synthesis

1-Propyl-3-methylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask , (250 mL) a solution of 1-methylimidazole (16.0 g, 195 mmol) in anhydrous toluene (15 mL) is treated with 1-bromopropane (24.5 g, 199 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 8 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (38.0 g, 185 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.63 (s, 1H), 8.14 (d, *J* = 1.8 Hz, 1H), 8.06 (d, *J* = 1.8 Hz, 1H), 4.42 (t, *J* = 7.1 Hz, 2H), 4.13 (s, 3H), 2.04 (q, *J* = 7.3 Hz, 2H), 1.07 (t, *J* = 7.4 Hz, 3H).

1-Pentyl-3-methylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask, (250 mL) a solution of 1-methylimidazole (10.2 g, 124 mmol) in anhydrous toluene (10 mL) is treated with 1-bromopentane (19.0 g, 126 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 5 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (28.1 g, 120 mmol, 97%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.33 (s, 1H), 7.85 (d, *J* = 1.8 Hz, 1H), 7.77 (d, *J* = 1.8 Hz, 1H), 4.17 (t, *J* = 7.2 Hz, 2H), 3.86 (s, 1H), 1.76 (q, *J* = 7.6, 2H), 1.22 (m, 4H), 0.82 (t, *J* = 7.2 Hz, 3H).

1-Heptyl-3-methylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask, (250 mL) a solution of 1-methylimidazole (10.0 g, 122 mmol) in anhydrous toluene (10 mL) is treated with 1-bromoheptane (22.0 g, 123 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 5 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (30.0 g, 115 mmol, 94%).¹H NMR (400 MHz, DMSO-*d*₆) δ 9.32 (s,1H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.77 (d, *J* = 1.8 Hz, 1H), 4.17 (t, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 1.75 (q, *J* = 7.4 Hz, 2H), 1.20 (m, 8H), 0.81 (t, *J* = 7.2 Hz, 3H).

1-Methyl-3-octylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask, (250 mL) a solution of 1-methylimidazole (7.00 g, 85.0 mmol) in anhydrous toluene (15 mL) is treated with 1-bromooctane (16.8 g, 87.0 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 8 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (21.7 g, 79.0 mmol, 92%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.27 (s, 1H), 7.82 (d, *J* = 1.6 Hz, 1H), 7.75 (d, *J* = 1.5 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 1.75 (q, *J* = 7.3 Hz, 2H), 1.21 (m, 10H), 0.82 (t, *J* = 7.2 Hz, 3H).

1-Methyl-3-nonylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask, (250 mL) a solution of 1-methylimidazole (7 g, 85 mmol) in anhydrous toluene (10 mL) is treated with 1-bromononane (18 g, 87 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 8 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (23.4 g, 81.0 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.31 (s, 1H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.76 (d, *J* = 1.8 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 1.75 (q, *J* = 7.4 Hz, 2H), 1.21 (m, 12H), 0.80 (t, *J* = 7.2 Hz, 3H).

1-Decyl-3-methylimidazolium bromide. Under inert atmosphere, in an oven dried round bottom flask, (250 mL) a solution of 1-methylimidazole (7.29 g, 89.0 mmol) in anhydrous toluene (10 mL) is treated with 1-bromodecane (20.0 g, 90.0 mmol) via cannula. The reaction is stirred at room temperature for 20 minutes and 70 °C for 8 h. After completion the reaction mixture is concentrated, dissolved in acetonitrile and washed with diethyl ether to removed organic impurities to obtain the product as a viscous oil (23.4 g, 81.0 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.29 (s, 1H), 7.83 (d, *J* = 1.8 Hz, 1H), 7.76 (d, *J* = 1.8 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 3.85 (s, 2H), 1.75 (q, *J* = 7.4 Hz, 2H), 1.21 (m, 14H), 0.82 (t, *J* = 7.2 Hz, 3H).

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-ethyl-3methylimidazolium bromide (5.00 g, 26.2 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (7.60 g, 26.5 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (9.50 g, 24.3 mmol, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.09 (s, 1H), 7.75 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.17 (q, *J* = 7.3 Hz, 2H), 3.82 (s, 3H), 1.39 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-propyl-3methylimidazolium bromide (3.50 g, 17.1 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethyl)sulfonyl)amide (5.00 g, 17.4 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane and washed with water (3 * 30 mL) and concentrated down. The product is obtained as a clear liquid (6.67 g, 16.3 mmol, 95%).¹H NMR (400 MHz, DMSO- d_6) δ 9.08 (s, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 1.8 Hz, 1H), 4.10 (t, J = 7.1 Hz, 2H), 3.83 (s, 2H), 1.78 (q, J = 7.3 Hz, 2H), 0.84 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.84.

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-butyl-3methylimidazolium bromide (5.20 g, 23.7 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (7.00 g, 24.4 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (9.05 g, 21.5 mmol, 90%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.14 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.75 (q, *J* = 7.3 Hz, 2H), 1.24 (q, *J* = 7.3 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Pentyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-pentyl-3methylimidazolium bromide (7.20 g, 30.9 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (9.00 g, 31.3 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (12.5 g, 28.8 mmol, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.78 (q, *J* = 7.2 Hz, 2H), 1.26 (m, 4H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-hexyl-3methylimidazolium bromide (6.00 g, 24.3 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (7.00 g, 24.4 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (8.05 g, 22.4 mmol, 92%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.2 Hz, 2H), 1.25 (m, 6H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Heptyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-heptyl-3methylimidazolium bromide (5.35 g, 20.5 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (6.00 g, 20.9 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (9.03 g, 19.5 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.77 (q, *J* = 7.4 Hz, 2H), 1.24 (m, 8H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-methyl-3octylimidazolium bromide (4.20 g, 15.3 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (4.54 g, 15.7 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (6.91 g, 14.5 mmol, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.08 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.3 Hz, 2H), 1.24 (m, 10H), 0.84 (s, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.84.

1-Methyl-3-nonylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-methyl-3nonylimidazolium bromide (4.10 g, 14.2 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (4.10 g, 14.3 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (6.52 g, 13.3 mmol, 94%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.4 Hz, 2H), 1.24 (m, 12H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-decyl-3methylimidazolium bromide (4.50 g, 14.8 mmol) is dissolved in water (100 mL), followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (4.30 g, 14.9 mmol). The reaction is stirred for 12 hr. the organic layer is extracted with dichloromethane, washed with water (3 * 30 mL), and concentrated down. The product is obtained as a clear liquid (7.03 g, 13.9 mmol, 94%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.4 Hz, 2H), 1.22 (m,14H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.84.

1-Ethyl-3-methylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1-ethyl-3-methylimidazolium bromide (6.10 g, 31.9 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (79.3 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-ethyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (4.38 g, 31.9 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as a clear oil (6.40 g, 31.0 mmol, 97%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.21 (s, 1H), 7.80 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 1.8 Hz, 1H), 4.18 (q, *J* = 7.3 Hz, 2H), 3.84 (s, 3H), 2.33 (s, 3H), 1.38 (t, *J* = 7.3 Hz, 3H).

1-Propyl-3-methylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1propyl-3-methylimidazolium bromide (6.13 g, 29.9 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (79.5 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-propyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (4.10 g, 29.9 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (6.40 g, 29.1 mmol, 97%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.17 (s, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.72 (d, *J* = 1.8 Hz, 1H), 4.11 (t, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 2.30 (s, 3H), 1.78 (q, *J* = 7.3 Hz, 2H), 0.83 (t, *J* = 7.4 Hz, 3H). 1-Butyl-3-methylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1-butyl-3-methylimidazolium bromide (6.00 g, 27.4 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (77.6 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-butyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.76 g, 27.4 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as a white solid (6.20 g, 26.5 mmol, 97%). ¹H NMR (400 MHz, DMSO d_6) δ 9.19 (s, 1H), 7.78 (d, *J* = 1.4 Hz, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 4.15 (t, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 2.31 (s, 3H), 1.74 (q, *J* = 7.2 Hz, 2H), 1.22 (h, *J* = 7.2 Hz, 2H), 0.87 (t, *J* = 7.4 Hz, 3H).

1-Hexyl-3-methylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1-hexyl-3-methylimidazolium bromide (6.00 g, 24.3 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (75.1 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-hexyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.33 g, 24.3 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as a clear oil (6.06 g, 22.9 mmol, 94%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.18 (s, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 1.8 Hz, 1H), 4.14 (t, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 2.31 (s, 3H), 1.75 (q, *J* = 7.5 Hz, 2H), 1.24 (m, 6H), 0.83 (t, 3H).

1-Heptyl-3-methylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1-heptyl-3-methylimidazolium bromide (7.00 g, 26.8 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (77.1 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-heptyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.68 g, 26.8 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.02 g, 25.3 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.16 (s, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 1.8 Hz, 1H), 4.14 (t, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 2.30 (s, 3H), 1.75 (q, *J* = 7.2 Hz, 2H), 1.324 (m, 8H), 0.82 (t, *J* = 7.2 Hz, 2H).

1-Methyl-3-octylimidazolium methanesulfonate. In a round bottom flask (250 mL) a solution of 1methyl-3-octylimidazolium bromide (7.00 g, 25.4 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (77.5 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-methyl-3-octylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.49 g, 25.4 mmol, 70% sol.) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.10 g, 24.5 mmol, 96%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.18 (s, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 1.8 Hz, 1H), 4.14 (t, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 2.30 (s, 3H), 1.75 (q, *J* = 7.3 Hz, 2H), 1.23 (m, 10H), 0.83 (t, *J* = 7.3 Hz, 3H).

1-Propyl-3-methylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-propyl-3-methylimidazolium bromide (6.13 g, 29.9 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (79.7 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-propyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL

round bottom flask and treated with trifluoromethanesulfonic acid (4.49 g, 29.9 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.81 g, 28.4 mmol, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.05 (s, 1H), 7.73 (d, *J* = 1.9 Hz, 1H), 7.67 (d, *J* = 2.0 Hz, 1H), 4.11 (t, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.79 (h, *J* = 7.3 Hz, 2H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -77.93.

1-Pentyl-3-methylimidazolium trifluoromethanesulfonate. In a 250 mL flask, 1-pentyl-3methylimidazolium bromide (7.20 g, 30.9 mmol)) in methanol (100 mL) is treated with Amberlite IRN-78 (89.0 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-Pentyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with trifluoromethanesulfonic acid (4.64 g, 30.9 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (8.78 g, 93%).¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.78 (q, *J* = 7.2 Hz, 2H), 1.26 (m, 4H), 0.85 (t, *J* = 7.2 Hz, 3H).¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Hexyl-3-methylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-hexyl-3-methylimidazolium bromide (9.25 g, 20.3 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (40.8 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-hexyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (5.62 g, 37.4 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (11.1 g, 35.1 mmol, 94%) ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.07 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 1H), 1.76 (q, *J* = 7.2 Hz, 2H), 1.24 (m, 6H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Heptyl-3-methylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-heptyl-3-methylimidazolium bromide (3.00 g, 14.7 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (40.6 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-heptyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (2.20 g, 14.7 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (4.51 g, 13.6 mmol, 93%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.90 (s, 1H), 7.74 (d, *J* = 2.0 Hz, 1H), 7.67 (d, *J* = 1.9 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.77 (q, *J* = 7.2 Hz, 2H), 1.24 (m, 8H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Methyl-3-octylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-methyl-3-octylimidazolium bromide (6.21 g, 22.6 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (82.5 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-methyl-3-octylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.39 g, 22.6 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.30 g, 21.2 mmol, 94%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.07 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.4 Hz, 2H), 1.24 (m, 10H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Methyl-3-nonylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-methyl-3-nonylimidazolium bromide (6.17 g, 21.3 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (77.5 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-methyl-3-nonylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with trifluromethanesulfonic acid (3.20 g, 21.3 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.31 g, 20.4 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.07 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.4 Hz, 2H), 1.24 (m, 12H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Decyl-3-methylimidazolium trifluoromethanesulfonate. In a round bottom flask (250 mL) a solution of 1-decyl-3-methylimidazolium bromide (6.15 g, 20.3 mmol) in methanol (100 mL) is treated with Amberlite IRN-78 (40.4 g) and oscillated for 17 hr, when no residual halide precipitation is observed by AgNO₃ test, to obtain 1-decyl-3-methylimidazolium hydroxide. The mixture is filtered to a 500 mL round bottom flask and treated with methanesulfonic acid (3.04 g, 20.3 mmol) and stirred for 1 day. The solution is concentrated to obtain the product as clear oil (7.21 g, 19.4 mmol, 95%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.07 (s, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.76 (q, *J* = 7.4 Hz, 2H), 1.24 (m, 12H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.93.

1-Ethylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-ethylimidazole (3.56 g, 37.0 mmol) is dissolved in methanol (20 mL). Nitric acid (3.33 g, 2.36 mL, 37.0 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-ethylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (10.6 g, 37.0 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (13.1 g, 35.8 mmol, 97%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.09 (s, 1H), 7.74 (d, *J* = 1.7 Hz, 1H), 7.64 (d, *J* = 1.9 Hz, 1H), 4.19 (q, *J* = 7.3 Hz, 2H), 1.41 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Propylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-propylimidazole (2.00 g, 18.2 mmol) is dissolved in methanol (20 mL). Nitric acid (1.63 g, 1.16 mL, 18.2 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-propylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (5.21 g, 18.2 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (6.83 g, 17.4 mmol, 96%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.09 (s, 1H), 7.75 (d, *J* = 1.7 Hz, 1H), 7.67 (d, *J* = 1.7 Hz, 1H), 4.13 (t, *J* = 7.1 Hz, 2H), 1.80 (h, *J* = 7.3 Hz, 2H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Butylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-butylimidazole (2.90 g, 23.3 mmol) is dissolved in methanol (20 mL). Nitric acid (2.10 g, 1.48 mL, 23.3 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-butylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (6.70 g, 23.3 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (13.1 g, 35.8 mmol, 97%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.04 (s, 1H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.63 (d, *J* = 1.7 Hz, 1H), 4.16 (t, *J* = 7.2 Hz, 2H), 1.77 (q, *J* = 7.2 Hz, 2H), 1.23 (h, *J* = 7.4 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Pentylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-pentylimidazole (2.50 g, 18.1 mmol) is dissolved in methanol (20 mL). Nitric acid (1.63 g, 1.41 mL, 18.1 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-pentylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (5.19 g, 18.1 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (13.1 g, 35.8 mmol, 97%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.08 (s, 1H), 7.77 (d, *J* = 1.6 Hz, 1H), 7.67 (d, *J* = 1.6 Hz, 1H), 4.17 (t, *J* = 7.3 Hz, 2H), 1.81 (q, *J* = 7.4 Hz, 2H), 1.28 (m, 2H), 1.24 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Hexylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-hexylimidazole (4.40 g, 28.9 mmol) is dissolved in methanol (20 mL). Nitric acid (2.60 g, 1.84 mL, 28.9 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-hexylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (8.30 g, 28.9 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (12.1 g, 27.7 mmol, 96%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.04 (s, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.62 (d, *J* = 1.7 Hz, 1H), 4.15 (t, *J* = 7.3 Hz, 2H), 1.79 (q, *J* = 7.3 Hz, 2H), 1.21 (m, 6H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Heptylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-heptylimidazole (4.50 g, 27.1 mmol) is dissolved in methanol (20 mL). Nitric acid (2.44 g, 1.73 mL, 27.1 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-heptylimidazole and stirred for 10 minutes, followed by the addition of lithium bis((trifluoromethyl)sulfonyl)amide (7.77 g, 27.1 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (11.2 g, 25.0 mmol, 92%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.05 (s, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.63 (d, *J* = 1.7 Hz, 1H), 4.15 (t, *J* = 7.3 Hz, 2H), 1.79 (q, *J* = 7.3 Hz, 2H), 1.24 (m, 8H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Octylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-octylimidazole (4.10 g, 22.7 mmol) is dissolved in methanol (20 mL). Nitric acid (2.05 g, 1.45 mL, 22.74 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-octylimidazole and stirred for 10 minutes, followed by the addition of lithium bis((trifluoromethyl)sulfonyl)amide (6.53 g, 22.7 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (10.1 g, 21.9 mmol, 96%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.10 (t, *J* = 1.5 Hz, 1H), 7.76 (t, *J* = 1.7 Hz, 1H), 7.66 (t, *J* = 1.7 Hz, 1H), 4.16 (t, *J* = 7.3 Hz, 2H), 1.78 (q, 7.0 Hz, 2H), 1.22 (m, 12H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.96.

1-Nonylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-nonylimidazole (4.31 g, 22.2 mmol) is dissolved in methanol (20 mL). Nitric acid (1.99 g, 1.42 mL, 22.18 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-nonylimidazole and stirred for 10 minutes, followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (6.37 g, 22.2 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (10.2 g, 21.4 mmol, 97%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 14.20 (s, 1H), 9.12 (s, 1H), 7.78 (d, *J* = 1.7 Hz, 1H), 7.69 (d, *J* = 1.7 Hz, 1H), 4.18 (t, *J* = 7.2 Hz, 2H), 1.80 (q, *J* = 7.3 Hz, 2H), 1.24 (m, 12H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -78.96.

1-Decylimidazolium bis(trifluoromethylsulfonyl)imide. In a 250 mL flask, 1-decylimidazole (4.30 g, 20.6 mmol) is dissolved in methanol (20 mL). Nitric acid (1.86 g, 1.32 mL, 20.6 mmol, 70%), previously dissolved in 20 mL of methanol, is slowly added to the solution of 1-decylimidazole and stirred for 10 minutes, followed by the addition of lithium bis((trifluoromethyl)sulfonyl)amide (5.93 g, 20.6 mmol). The reaction is stirred for 12 hr, followed by concentration and dissolution in dichloromethane to precipitate LiNO₃. The salt is filtered out and the IL washed with water (3x * 5 mL), dried, and concentrated. The product is obtained as a clear liquid (9.60 g, 19.6 mmol, 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.10 (s, 1H), 7.76 (d, *J* = 1.7 Hz, 1H), 7.67 (d, *J* = 1.7 Hz, 1H), 4.16 (t, *J* = 7.3 Hz, 2H), 1.78 (q, *J* = 7.3 Hz, 2H), 1.22 (m, 14H), 0.84 (t, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -78.96.

1-Hexylimidazole. In a flame dried 500 mL flask, under argon atmosphere, sodium hydride (6.46 g, 162 mmol, 60%) is slowly added to a solution of dry imidazole (10.0 g, 147 mmol) in dry THF (250 mL) at 0 °C. The reaction is left stirring at room temperature for 30 minutes and cooled again to 0 °C to add 1-bromohexane (24.2 g, 147 mmol). The reaction is quenched with water, extracted with THF, and concentrated. The concentrate is distilled at 90 °C and 0.75 mbar to obtain the product as a clear liquid (20.5 g, 135 mmol, 92%).¹H NMR (400 MHz, DMSO-*d*₆) δ 7.56 (s, 1H), 7.10 (d, *J* = 1.3 Hz, 1H), 6.84 (d, *J* = 1.1 Hz, 1H), 3.89 (t, *J* = 7.1 Hz, 2H), 1.65 (q, *J* = 7.1 Hz, 2H), 1.19 (m, 5H), 0.80 (t, *J* = 7.1 Hz, 3H).

1-Heptylimidazole. In a flame dried 500 mL flask, under argon atmosphere, sodium hydride (7.05 g, 176 mmol, 60%) is slowly added to a solution of dry imidazole (10 g, 147 mmol) in dry THF (250 mL) at 0 °C.

The reaction is left stirring at room temperature for 30 minutes and cooled again to 0 °C to add 1bromoheptane (26.3 g, 147 mmol). The reaction is quenched with water, extracted with THF, and concentrated. The concentrate is distilled at 94 °C and 0.75 mbar to obtain the product as a clear liquid (23.0 g, 138 mmol, 94%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.56 (s, 1H), 7.11 (d, *J* = 2.7 Hz, 1H), 6.83 (d, *J* = 2.9 Hz, 1H), 3.89 (t, *J* = 7.1 Hz, 2H), 1.64 (q, *J* = 7.2 Hz 2H), 1.27 (m, 8H), 0.81 (t, *J* = 6.7 Hz, 3H).

1-Octylimidazole. In a flame dried 500 mL flask, under argon atmosphere, sodium hydride (6.46 g, 162 mmol, 60%) is slowly added to a solution of dry imidazole (10.0 g, 147 mmol) in dry THF (250 mL) at 0 °C. The reaction is left stirring at room temperature for 30 minutes and cooled again to 0 °C to add 1-bromooctane (26.3 g, 147 mmol). The reaction is quenched with water, extracted with THF, and concentrated. The concentrate is distilled at 98 °C and 0.75 mbar to obtain the product as a clear liquid (24.1 g, 133 mmol, 91%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.57 (s, 1H), 7.12 (d, *J* = 1.3 Hz, 1H), 6.85 (d, *J* = 1.1 Hz, 1H), 3.91 (t, *J* = 7.1 Hz, 2H), 1.66 (q, *J* = 7.2 Hz, 2H), 1.21 (m, 10H), 0.82 (t, *J* = 7.2 Hz, 3H).

1-Nonylimidazole. In a flame dried 500 mL flask, under argon atmosphere, sodium hydride (6.56 g, 164 mmol, 60%) is slowly added to a solution of dry imidazole (10.2 g, 149 mmol) in dry THF (250 mL) at 0 °C. The reaction is left stirring at room temperature for 30 minutes and cooled again to 0 °C to add 1-bromononane (30.9 g, 149 mmol). The reaction is quenched with water, extracted with THF, and concentrated. The concentrate is distilled at 108 °C and 0.75 mbar to obtain the product as a clear liquid (27.3 g, 140 mmol, 94%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.55 (s, 1H), 7.07 (s, 1H), 6.84 (s, 1H), 3.89 (t, *J* = 7.1 Hz, 2H), 1.64 (p, *J* = 7.1 Hz, 2H), 1.15 (m, 12H), 0.81 (t, *J* = 6.7 Hz, 3H).

1-Decylimidazole. In a flame dried 500 mL flask, under argon atmosphere, sodium hydride (6.46 g, 162 mmol, 60%) is slowly added to a solution of dry imidazole (10 g, 147 mmol) in dry THF (250 mL) at 0 °C. The reaction is left stirring at room temperature for 30 minutes and cooled again to 0 °C to add 1-bromodecane (32.50 g, 147 mmol). The reaction is quenched with water, extracted with THF, and concentrated. The concentrate is distilled at 118 °C and 0.75 mbar to obtain the product as a clear liquid (28.6 g, 137 mmol, 93%).¹H NMR (400 MHz, DMSO-*d*₆) δ 7.57 (s, 1H), 7.10 (d, *J* = 1.3 Hz, 1H), 6.85 (d, *J* = 1.1 Hz, 1H), 3.91 (t, *J* = 7.1 Hz, 2H), 1.66 (q, *J* = 7.2 Hz, 2H), 1.21 (s, 14H), 0.83 (t, *J* = 7.1 Hz, 3H)

Selected ¹H NMR spectra of IL samples

Figure S1. ¹H NMR spectrum of $[C_6mim][Tf_2N]$.

Figure S2. ¹H NMR spectrum of [C₁₀mim][Tf₂N].

Figure S3. ¹H NMR spectrum of [C₃mim][CF₃SO₃].

Figure S4. ¹H NMR spectrum of [C₁₀mim][CF₃SO₃].

Figure S5. ¹H NMR spectrum of [C₂im][Tf₂N].

Figure S6. ¹H NMR spectrum of $[C_{10}im][Tf_2N]$.

Figure S7. ¹H NMR spectrum of [C₃mim][CH₃SO₃].

Figure S8. ¹H NMR spectrum of [C₈mim][CH₃SO₃].

ILs	Water Content	Т _g (К) ^а	Т _т (К) ^ь	Т _d (К) ^с
	(ppm)			
[C ₂ mim][Tf ₂ N]	105	181.3, 181 ²⁴ , 186 ²⁷	261.3, 256 ²⁴ , 255 ²⁷	709.5
[C₃mim][Tf₂N]	60	184.5		703.9
[C ₄ mim][Tf ₂ N]	120	186.4, 187 ²⁴ , 186 ²⁶⁻	269.0, 271 ²⁴ , 270 ²⁶⁻	703.0, 695 ²⁴ , 696 ²⁶ ,
		27	27	700 ²⁷
[C₅mim][Tf₂N]	190	187.5	265.0	696.7
[C ₆ mim][Tf ₂ N]	103	188.3, 189 ²⁵ , 192 ²⁷	265.2, 266 ²⁵ , 267 ²⁷	694.7, 700 ²⁵ , 701 ²⁷
[C ₇ mim][Tf ₂ N]	181	188.4		692.9
[C ₈ mim][Tf ₂ N]	60	189.1, 189 ²⁵ , 193 ²⁷		698.0, 700 ²⁵ , 701 ²⁷
[C ₉ mim][Tf ₂ N]	539	189.7		706.5
[C ₁₀ mim][Tf ₂ N]	700	189.2	276.4	706.6
$[C_2 im][Tf_2N]$	262	190.9	280.7	665.5
[C₃im][Tf₂N]	277	191.7	279.1	672.2
$[C_4 im][Tf_2N]$	150	187.8		676.1
[C₅im][Tf₂N]	114	195.1		663.6
$[C_6 im][Tf_2N]$	204	196.6		669.4
[C ₇ im][Tf ₂ N]	74	195.0		656.4
[C ₈ im][Tf ₂ N]	160	195.7	272.4	668.3
[C ₉ im][Tf ₂ N]	317	195.2	290.7	678.9
$[C_{10}im][Tf_2N]$	63	195.7	279.9	662.7
[C ₂ mim][CF ₃ SO ₃]	257	179.1	259.0	658.5
[C ₃ mim][CF ₃ SO ₃]	187	185.0	279.1	664.3
[C ₄ mim][CF ₃ SO ₃]	163		288.1, 286 ²⁴ , 290 ²⁶	662.3, 665 ²⁴ , 682 ²⁶
[C₅mim][CF₃SO₃]	470	195.6		662.2
[C ₆ mim][CF ₃ SO ₃]	326		295.6	658.3
[C ₇ mim][CF ₃ SO ₃]	336	191.6	258.1	663.2
[C ₈ mim][CF ₃ SO ₃]	325	196.3	283.6	661.9
[C ₉ mim][CF ₃ SO ₃]	198	183.1	282.8	660.0
[C ₁₀ mim][CF ₃ SO ₃]	240			660.6
[C ₂ mim][CH ₃ SO ₃]	228	205.5, 211 ²⁸	303.5	608.7
[C ₃ mim][CH ₃ SO ₃]	408	212.4	310.3	609.8
[C ₄ mim][CH ₃ SO ₃]	1000	216.8	334.2, 345 ²⁹	607.2
[C ₆ mim][CH ₃ SO ₃]	657	212.5	309.5	608.2
[C ₇ mim][CH ₃ SO ₃]	332	216.1	310.2	606.5
$[C_8 mim][CH_3SO_3]$	1500	212.9	309.1	604.7

Table S1. Glass transition temperature (T_g), melting point (T_m) and thermal decomposition temperature (T_d) of the four series of [C_n mim][CH₃SO₃], [C_n mim][CF₃SO₃], [C_n mim][Tf₂N], and [C_n im][Tf₂N] ionic liquids.

^aGlass transition temperature determined by differential scanning calorimetry. ^bMelting point determined by differential scanning calorimetry. ^cDecomposition temperature determined by thermal gravimetric analysis.

^dThe uncertainties of the reported T_g and T_m values are ±1.0 K. The uncertainties of the reported T_d values are ±2.0 K. The reference numbers in the table are the reference numbers in the main text.

Figure S9. Density of $[C_n mim][Tf_2N]$ ILs with n=2 through 10 as a function of temperature. The solid lines are linear fits of the data (see Table S2 for the parameters).

Figure S10. Density of $[C_n im][Tf_2N]$ ILs with n=2 through 10 as a function of temperature. The solid lines are linear fits of the data (see Table S2 for the parameters).

Figure S11. Density of $[C_n mim][CF_3SO_3]$ ILs with n = 2 to 4 and 6 to 10 as a function of temperature. The solid lines are linear fits of the data (see Table S2 for the parameters).

Figure S12. Density of $[C_nmim][CH_3SO_3]$ ILs with n=3, 6, 7 and 8 as a function of temperature. The solid lines are linear fits of the data (see Table S2 for the parameters).

т (к)			-	Density	(g/cm ³)	-		
ILs	293.15	295.15	298.15	303.15	313.15	323.15	333.15	343.15
[C ₂ mim][Tf ₂ N]	1.524	1.522	1.519	1.513	1.503	1.493	1.484	1.474
[C₃mim][Tf₂N]	1.479	1.477	1.474	1.469	1.460	1.450	1.440	1.430
[C ₄ mim][Tf ₂ N]	1.441	1.439	1.436	1.431	1.422	1.412	1.403	1.394
[C₅mim][Tf₂N]	1.407	1.405	1.402	1.398	1.388	1.379	1.370	1.360
[C ₆ mim][Tf ₂ N]	1.376	1.375	1.372	1.367	1.358	1.349	1.340	1.330
[C ₇ mim][Tf ₂ N]	1.349	1.347	1.345	1.340	1.331	1.322	1.313	1.304
[C ₈ mim][Tf ₂ N]	1.325	1.323	1.320	1.316	1.307	1.298	1.289	1.280
[C ₉ mim][Tf ₂ N]	1.302	1.300	1.298	1.293	1.285	1.276	1.267	1.259
$[C_{10}mim][Tf_2N]$	1.282	1.281	1.278	1.273	1.264	1.255	1.244	1.232
$[C_2 im][Tf_2N]$	1.577	1.575	1.572	1.567	1.556	1.546	1.536	1.526
[C₃im][Tf₂N]	1.528	1.526	1.523	1.518	1.507	1.497	1.487	1.477
$[C_4 im][Tf_2N]$	1.466	1.464	1.461	1.456	1.446	1.436	1.427	1.417
[C₅im][Tf₂N]	1.418	1.416	1.413	1.408	1.399	1.389	1.380	1.371
$[C_6 im][Tf_2N]$	1.400	1.399	1.396	1.391	1.382	1.372	1.363	1.354
$[C_7 im][Tf_2N]$	1.366	1.364	1.361	1.356	1.347	1.337	1.328	1.319
$[C_8 im][Tf_2N]$	1.340	1.339	1.336	1.331	1.322	1.313	1.304	1.295
[C ₉ im][Tf₂N]	1.303	1.302	1.299	1.295	1.286	1.277	1.267	1.260
$[C_{10}im][Tf_2N]$	1.288	1.286	1.283	1.279	1.270	1.261	1.253	1.244
$[C_2 mim][CF_3SO_3]$	1.388	1.386	1.384	1.380	1.371	1.363	1.355	1.347
[C₃mim][CF₃SO₃]	1.340	1.338	1.335	1.331	1.323	1.315	1.307	1.299
[C ₄ mim][CF ₃ SO ₃]	1.302	1.300	1.298	1.294	1.286	1.278	1.270	1.263
[C ₆ mim][CF ₃ SO ₃]	1.242	1.240	1.238	1.234	1.226	1.219	1.211	1.204
$[C_7 mim][CF_3SO_3]$	1.210	1.208	1.206	1.202	1.195	1.187	1.180	1.172
$[C_8 mim][CF_3SO_3]$	1.192	1.191	1.188	1.185	1.177	1.170	1.163	1.155
[C ₉ mim][CF ₃ SO ₃]	1.170	1.169	1.166	1.163	1.155	1.148	1.141	1.134
$[C_{10}mim][CF_3SO_3]$	1.141	1.139	1.137	1.133	1.126	1.119	1.112	1.105
[C₃mim][CH₃SO₃]	1.206	1.205	1.203	1.200	1.193	1.186	1.180	1.173
$[C_6 mim][CH_3SO_3]$	1.122	1.121	1.119	1.116	1.109	1.103	1.096	1.090
$[C_7 mim][CH_3SO_3]$	1.104	1.103	1.101	1.097	1.091	1.085	1.078	1.072
[C ₈ mim][CH ₃ SO ₃]	1.085	1.083	1.081	1.078	1.072	1.065	1.059	1.053

Table S2. Density (g/cm³) of the four series of $[C_nmim][CH_3SO_3]$, $[C_nmim][CF_3SO_3]$, $[C_nmim][Tf_2N]$, and $[C_nim][Tf_2N]$ ionic liquids at various temperatures (K).

^aThe uncertainty is approximately ±0.012 g/cm³. The water content for each IL is the same as the one for surface tension measurement.

Figure S13. Comparison between the experimental data of density of ILs in this work and the literature data (the reference numbers in the figure are the reference numbers in the main text).

ILs	a (g/cm ³)	b (10 ⁴ *g/(cm ³ *K))	R ²
[C ₂ mim][Tf ₂ N]	1.8156 ± 0.0006	-9.97 ± 0.02	1.0000
[C₃mim][Tf₂N]	1.7659 ± 0.0003	-9.78 ± 0.01	1.0000
[C ₄ mim][Tf ₂ N]	1.7186 ± 0.0004	-9.47 ± 0.01	1.0000
[C₅mim][Tf₂N]	1.6801 ± 0.0003	-9.31 ± 0.01	1.0000
[C ₆ mim][Tf ₂ N]	1.6452 ± 0.0002	-9.17 ± 0.01	1.0000
[C ₇ mim][Tf ₂ N]	1.6114 ± 0.0003	-8.95 ± 0.01	1.0000
[C ₈ mim][Tf ₂ N]	1.5845 ± 0.0001	-8.86 ± 0.01	1.0000
[C ₉ mim][Tf ₂ N]	1.5563 ± 0.0004	-8.67 ± 0.01	1.0000
[C ₁₀ mim][Tf ₂ N]	1.5706 ± 0.0060	-9.81 ± 0.19	0.9977
$[C_2 im][Tf_2N]$	1.8800 ± 0.0008	-10.30 ± 0.03	1.0000
$[C_3 im][Tf_2N]$	1.8237 ± 0.0007	-10.10 ± 0.03	1.0000
$[C_4 im][Tf_2N]$	1.7490 ± 0.0006	-9.67 ± 0.02	1.0000
$[C_5 im][Tf_2N]$	1.6943 ± 0.0006	-9.43 ± 0.02	1.0000
$[C_6 im][Tf_2N]$	1.6744 ± 0.0006	-9.34 ± 0.02	1.0000
$[C_7 im][Tf_2N]$	1.6397 ± 0.0011	-9.35 ± 0.03	0.9999
$[C_8 im][Tf_2N]$	1.6042 ± 0.0005	-9.00 ± 0.02	1.0000
$[C_9 im][Tf_2N]$	1.5637 ± 0.0022	-8.88 ± 0.07	0.9996
$[C_{10}im][Tf_2N]$	1.5435 ± 0.0005	-8.73 ± 0.02	1.0000
[C ₂ mim][CF ₃ SO ₃]	1.6311 ± 0.0006	-8.29 ± 0.02	1.0000
[C₃mim][CF₃SO₃]	1.5764 ± 0.0006	-8.08 ± 0.02	1.0000
[C ₄ mim][CF ₃ SO ₃]	1.5320 ± 0.0005	-7.85 ± 0.02	1.0000
[C ₆ mim][CF ₃ SO ₃]	1.4655 ± 0.0005	-7.63 ± 0.02	1.0000
[C ₇ mim][CF ₃ SO ₃]	1.4276 ± 0.0004	-7.43 ± 0.01	1.0000
[C ₈ mim][CF ₃ SO ₃]	1.4088 ± 0.0004	-7.39 ± 0.01	1.0000
[C ₉ mim][CF ₃ SO ₃]	1.3842 ± 0.0004	-7.30 ± 0.01	1.0000
$[C_{10}mim][CF_3SO_3]$	1.3512 ± 0.0003	-7.18 ± 0.01	1.0000
[C ₃ mim][CH ₃ SO ₃]	1.4003 ± 0.0005	-6.62 ± 0.01	1.0000
[C ₆ mim][CH ₃ SO ₃]	1.3099 ± 0.0005	-6.40 ± 0.02	1.0000
[C ₇ mim][CH ₃ SO ₃]	1.2908 ± 0.0005	-6.37 ± 0.02	1.0000
[C ₈ mim][CH ₃ SO ₃]	1.2707 ± 0.0004	-6.35 ± 0.01	1.0000

Table S3. Linear fitting parameters for the density of the ionic liquids.

Figure S14. Surface tension of $[C_n im][Tf_2N]$ ILs as a function of temperature. The solid lines are linear fits of the data.

Figure S15. Surface tension of $[C_n mim][Tf_2N]$ ILs as a function of temperature. The solid lines are linear fits of the data.

Figure S16. Surface tension of $[C_n mim][CH_3SO_3]$ ILs as a function of temperature. The solid lines are linear fits of the data.

	Water	Surface Tension (mN/m)							
Т (К)	(ppm)	293.15	295.15	298.15	303.15	313.15	323.15	333.15	343.15
[C ₂ mim][Tf ₂ N]	125	35.8	35.7	35.6	35.3	34.8	34.3	33.9	33.4
$[C_3 mim][Tf_2N]$	165	33.9	33.8	33.6	33.3	32.9	32.4	32.0	31.5
$[C_4 \text{mim}][Tf_2N]$	140	32.5	32.4	32.3	32.1	31.6	31.1	30.7	30.3
[C₅mim][Tf₂N]	84	31.6	31.5	31.4	31.2	30.7	30.4	29.9	29.5
[C ₆ mim][Tf ₂ N]	162	31.3	31.1	30.9	30.7	30.3	29.8	29.3	28.8
$[C_2 im][Tf_2N]$	260	34.6	34.4	34.3	34.1	33.7	33.2	32.8	32.5
$[C_3 im][Tf_2N]$	272	32.3	32.2	32.1	31.9	31.4	31.0	30.6	30.2
$[C_4 im][Tf_2N]$	150	31.3	31.2	31.1	30.8	30.4	30.0	29.5	29.1
[C₅im][Tf₂N]	114	30.7	30.6	30.4	30.2	29.7	29.2	28.7	28.2
[C₀im][Tf₂N]	132	30.2	30.1	29.9	29.6	29.1	28.6	28.1	27.6
[C ₇ im][Tf ₂ N]	74	29.8	29.7	29.5	29.2	28.7	28.2	27.7	27.2
[C ₈ im][Tf ₂ N]	160	29.9	29.8	29.6	29.3	28.7	28.2	27.8	27.3
[C ₉ im][Tf ₂ N]	317	29.9	29.8	29.6	29.3	28.6	28.0	27.4	26.8
$[C_{10}im][Tf_2N]$	63	30.0	29.9	29.7	29.3	28.7	28.1	27.6	27.0
[C ₂ mim][CF ₃ SO ₃]	370	39.9	39.8	39.7	39.5	39.1	38.7	38.4	38.1
[C ₃ mim][CF ₃ SO ₃]	148	36.9	36.9	36.8	36.6	36.3	35.9	35.6	35.2
[C ₄ mim][CF ₃ SO ₃]	128	34.5	34.5	34.4	34.2	33.7	33.5	33.2	32.8
[C ₆ mim][CF ₃ SO ₃]	326	31.8	31.7	31.6	31.3	30.9	30.5	30.0	29.6
[C ₇ mim][CF ₃ SO ₃]	227	31.3	31.1	31.0	30.7	30.3	29.8	29.4	29.0
[C ₈ mim][CF ₃ SO ₃]	240	30.5	30.4	30.3	30.0	29.4	28.9	28.4	27.9
[C ₉ mim][CF ₃ SO ₃]	206	30.4	30.3	30.1	29.8	29.3	28.8	28.3	27.8
$[C_{10}mim][CF_3SO_3]$	240	29.7	29.7	29.5	29.2	28.7	28.2	27.7	27.2
$[C_3 mim][CH_3SO_3]$	320	45.1	45.0	44.8	44.7	44.2	43.8	43.4	42.9
$[C_6 mim][CH_3SO_3]$	488	34.5	34.4	34.2	34.0	33.5	33.0	32.6	32.2
[C ₇ mim][CH ₃ SO ₃]	550	32.4	32.4	32.2	32.0	31.5	31.1	30.7	30.2
[C ₈ mim][CH ₃ SO ₃]	379	30.9	30.8	30.7	30.4	29.9	29.4	29.0	28.6

Table S4. Surface tension (mN/m) of the four series of $[C_nmim][CH_3SO_3]$, $[C_nmim][CF_3SO_3]$, $[C_nmim][Tf_2N]$, and $[C_nim][Tf_2N]$ ionic liquids at various temperatures (K).

^aThe instrument uncertainty is ±0.3 mN/m. The uncertainty based on the standard deviation of the five measurements is much smaller.

Figure S17. Sigma profiles of $[CH_3SO_3]^-$, $[CF_3SO_3]^-$ and $[Tf_2N]^-$ anions.

Figure S18. Sigma profiles of $[C_6 mim]^+$ and $[C_6 im]^+$ cations.

Figure S19. Comparison between the experimental data of surface tension (mN/m) of ILs in this work and the literature data (the reference numbers in the figure are the reference numbers in the main text).

Figure S20. Surface tension of the four series of $[C_nmim][CH_3SO_3]$, $[C_nmim][CF_3SO_3]$, $[C_nmim][Tf_2N]$, and $[C_nim][Tf_2N]$ ionic liquids vs. their molar volume at 293.15 K, fitted by equations from the literature (the reference numbers in the figure are the reference numbers in the main text).

ILs	V _m (cm ³ /mol)
[C ₂ mim][Tf ₂ N]	256.6
[C₃mim][Tf₂N]	273.8
[C ₄ mim][Tf ₂ N]	290.8
[C₅mim][Tf ₂ N]	307.7
[C ₆ mim][Tf ₂ N]	324.9
$[C_2 im][Tf_2N]$	239.1
[C₃im][Tf₂N]	255.9
$[C_4 im][Tf_2N]$	276.3
$[C_5 im][Tf_2N]$	265.9
$[C_6 im][Tf_2N]$	299.3
[C ₇ im][Tf ₂ N]	317.0
[C ₈ im][Tf ₂ N]	281.3
[C9im][Tf2N]	343.1
$[C_{10}im][Tf_2N]$	357.9
[C₂mim][CF₃SO₃]	187.3
[C₃mim][CF₃SO₃]	204.5
[C₄mim][CF₃SO₃]	221.2
[C₅mim][CF₃SO₃]	243.2
[C ₇ mim][CF ₃ SO ₃]	261.2
[C ₈ mim][CF₃SO₃]	276.8
[C ₉ mim][CF₃SO₃]	294.0
[C ₁₀ mim][CF ₃ SO ₃]	313.8
[C₃mim][CH₃SO₃]	182.4
$[C_6 mim][CH_3SO_3]$	233.5
[C ₇ mim][CH ₃ SO ₃]	250.0
[C ₈ mim][CH ₃ SO ₃]	267.3

Table S5. Molar volume (V_m) of the four series of [C_n mim][CH₃SO₃], [C_n mim][CF₃SO₃], [C_n mim][Tf₂N], and [C_n im][Tf₂N] ionic liquids at 293.15 K.

Table S6. Calculated surface tension (mN/m) of the three series of $[C_nmim][CH_3SO_3]$, $[C_nmim][CF_3SO_3]$ and $[C_nmim][Tf_2N]$ ionic liquids at different temperatures (K) and comparison with the experimental values in Table S4. Calculated values are using a group contribution method.⁴⁷

	293.15 K			295.15 K			
ILs	<i>Υ_{calc}</i> (mN/m)	γ _{exp} (mN/m)	AAD (%)	<i>Υ_{calc}</i> (mN/m)	γ _{exp} (mN/m)	AAD (%)	
$[C_2 mim][Tf_2N]$	36.3	35.8	1.4	36.2	35.7	1.4	
$[C_3 mim][Tf_2N]$	34.3	33.9	1.1	34.2	33.8	1.1	
$[C_4 mim][Tf_2N]$	32.7	32.5	0.7	32.6	32.4	0.7	
$[C_5 mim][Tf_2N]$	31.6	31.6	0.1	31.5	31.5	0.1	
$[C_6 mim][Tf_2N]$	30.7	31.3	1.9	30.6	31.1	1.5	
$[C_2 mim][CF_3SO_3]$	43.3	39.9	8.6	43.2	39.8	8.4	
[C₃mim][CF₃SO₃]	39.7	36.9	7.7	39.6	36.9	7.3	
[C ₄ mim][CF ₃ SO ₃]	36.8	34.5	6.6	36.6	34.5	6.2	
$[C_6 mim][CF_3SO_3]$	32.5	31.8	2.1	32.4	31.7	2.1	
[C ₇ mim][CF ₃ SO ₃]	31.0	31.3	0.9	30.9	31.1	0.6	
$[C_8 mim][CF_3SO_3]$	29.9	30.5	1.9	29.8	30.4	1.9	
[C ₉ mim][CF ₃ SO ₃]	29.1	30.4	4.2	29.0	30.3	4.1	
$[C_{10}mim][CF_3SO_3]$	28.6	29.7	3.8	28.5	29.7	4.1	
[C₃mim][CH₃SO₃]	36.0	45.1	20.1	35.9	45.0	20.2	
[C ₆ mim][CH ₃ SO ₃]	30.7	34.5	11.1	30.6	34.4	11.1	
[C ₇ mim][CH ₃ SO ₃]	29.7	32.4	8.4	29.6	32.4	8.7	
[C ₈ mim][CH ₃ SO ₃]	28.9	30.9	6.3	28.9	30.8	6.3	
		298.15 K		303.15 K			
ILs	<i>Υ_{calc}</i> (mN/m)	γ _{exp} (mN/m)	AAD (%)	γ _{calc} (mN/m)	γ _{exp} (mN/m)	AAD (%)	
$[C_2 mim][Tf_2N]$	36.1	35.6	1.3	35.8	35.3	1.5	
[C ₃ mim][Tf ₂ N]	34.1	33.6	1.4	33.8	33.3	1.6	
$[C_4 mim][Tf_2N]$	32.5	32.3	0.7	32.3	32.1	0.7	
$[C_5 mim][Tf_2N]$	31.4	31.4	0.1	31.2	31.2	0.1	
$[C_6 mim][Tf_2N]$	30.5	30.9	1.3	30.3	30.7	1.2	
$[C_2 mim][CF_3SO_3]$	42.9	39.7	8.2	42.6	39.5	7.7	
$[C_3mim][CF_3SO_3]$	39.4	36.8	7.0	39.0	36.6	6.7	
[C ₄ mim][CF ₃ SO ₃]	36.5	34.4	6.0	36.1	34.2	5.7	
$[C_6 mim][CF_3SO_3]$	32.2	31.6	1.9	32.0	31.3	2.1	
[C ₇ mim][CF ₃ SO ₃]	30.8	31.0	0.7	30.5	30.7	0.5	
[C ₈ mim][CF ₃ SO ₃]	29.7	30.3	2.0	29.5	30.0	1.8	
[C ₉ mim][CF ₃ SO ₃]	28.9	30.1	3.9	28.7	29.8	3.7	
[C ₁₀ mim][CF ₃ SO ₃]	28.4	29.5	3.9	28.1	29.2	3.6	
[C ₃ mim][CH ₃ SO ₃]	35.7	44.8	20.3	35.4	44.7	20.7	
$[C_6 mim][CH_3SO_3]$	30.4	34.2	11.0	30.2	34.0	11.2	

[C ₇ mim][CH ₃ SO ₃]	29.4	32.2	8.6	29.2	32.0	8.7	
[C ₈ mim][CH ₃ SO ₃]	28.7	30.7	6.4	28.5	30.4	6.2	
		313.15 K			323.15 K		
ILs	<i>Υ_{calc}</i> (mN/m)	γ _{exp} (mN/m)	AAD (%)	γ _{calc} (mN/m)	γ _{exp} (mN/m)	AAD (%)	
$[C_2 mim][Tf_2N]$	35.4	34.8	1.6	34.9	34.3	1.8	
[C ₃ mim][Tf ₂ N]	33.4	32.9	1.5	33.0	32.4	1.8	
$[C_4 mim][Tf_2N]$	31.9	31.6	1.0	31.5	31.1	1.3	
$[C_5 mim][Tf_2N]$	30.8	30.7	0.3	30.4	30.4	0.0	
$[C_6 mim][Tf_2N]$	29.9	30.3	1.2	29.6	29.8	0.8	
$[C_2 mim][CF_3SO_3]$	41.8	39.1	6.9	41.1	38.7	6.1	
[C₃mim][CF₃SO₃]	38.4	36.3	5.7	37.7	35.9	5.0	
[C ₄ mim][CF ₃ SO ₃]	35.5	33.7	5.5	34.9	33.5	4.3	
$[C_6 mim][CF_3SO_3]$	31.4	30.9	1.7	30.9	30.5	1.4	
[C ₇ mim][CF ₃ SO ₃]	30.0	30.3	0.8	29.6	29.8	0.8	
[C ₈ mim][CF ₃ SO ₃]	29.0	29.4	1.3	28.6	28.9	1.2	
[C ₉ mim][CF ₃ SO ₃]	28.3	29.3	3.5	27.8	28.8	3.4	
[C ₁₀ mim][CF ₃ SO ₃]	27.7	28.7	3.4	27.3	28.2	3.2	
[C ₃ mim][CH ₃ SO ₃]	34.8	44.2	21.2	34.3	43.8	21.8	
[C ₆ mim][CH ₃ SO ₃]	29.7	33.5	11.3	29.3	33.0	11.4	
[C ₇ mim][CH ₃ SO ₃]	28.8	31.5	8.7	28.3	31.1	8.9	
[C ₈ mim][CH ₃ SO ₃]	28.1	29.9	6.1	27.7	29.4	5.9	
		333.15 K		343.15 K			
ILs	γ _{calc} (mN/m)	γ _{exp} (mN/m)	AAD (%)	γ _{calc} (mN/m)	γ _{exp} (mN/m)	AAD (%)	
		()					
$[C_2 mim][IT_2 N]$	34.4	33.9	1.6	34.0	33.4	1.7	
$[C_2 mim][If_2N]$ $[C_3 mim][Tf_2N]$	34.4 32.5	33.9 32.0	1.6 1.7	34.0 32.1	33.4 31.5	1.7 2.0	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$	34.4 32.5 31.1	33.9 32.0 30.7	1.6 1.7 1.3	34.0 32.1 30.7	33.4 31.5 30.3	1.7 2.0 1.3	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$	34.4 32.5 31.1 30.0	33.9 32.0 30.7 29.9	1.6 1.7 1.3 0.3	34.0 32.1 30.7 29.6	33.4 31.5 30.3 29.5	1.7 2.0 1.3 0.4	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$ $[C_6mim][Tf_2N]$	34.4 32.5 31.1 30.0 29.2	33.9 32.0 30.7 29.9 29.3	1.6 1.7 1.3 0.3 0.3	34.0 32.1 30.7 29.6 28.8	33.4 31.5 30.3 29.5 28.8	1.7 2.0 1.3 0.4 0.1	
$[C_2mim][T_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$ $[C_6mim][Tf_2N]$ $[C_2mim][CF_3SO_3]$	34.4 32.5 31.1 30.0 29.2 40.3	33.9 32.0 30.7 29.9 29.3 38.4	1.6 1.7 1.3 0.3 0.3 5.0	34.0 32.1 30.7 29.6 28.8 39.6	33.4 31.5 30.3 29.5 28.8 38.1	1.7 2.0 1.3 0.4 0.1 3.8	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$ $[C_6mim][Tf_2N]$ $[C_6mim][Tf_2N]$ $[C_2mim][CF_3SO_3]$ $[C_3mim][CF_3SO_3]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0	33.9 32.0 30.7 29.9 29.3 38.4 35.6	1.6 1.7 1.3 0.3 0.3 5.0 4.0	34.0 32.1 30.7 29.6 28.8 39.6 36.4	33.4 31.5 30.3 29.5 28.8 38.1 35.2	1.7 2.0 1.3 0.4 0.1 3.8 3.3	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$ $[C_6mim][Tf_2N]$ $[C_2mim][CF_3SO_3]$ $[C_3mim][CF_3SO_3]$ $[C_4mim][CF_3SO_3]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4 1.3	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4 1.3 1.1	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4 1.3 1.1 1.1	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9	$ \begin{array}{c} 1.7\\ 2.0\\ 1.3\\ 0.4\\ 0.1\\ 3.8\\ 3.3\\ 2.8\\ 1.0\\ 1.4\\ 0.9\\ \end{array} $	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{8}mim][CF_{3}SO_{3}]$ $[C_{9}mim][CF_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1 27.4	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4 28.3	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4 1.3 1.1 1.1 3.2	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6 27.0	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9 27.8	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4 0.9 3.0	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{9}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1 27.4 26.9	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4 28.3 27.7	1.6 1.7 1.3 0.3 0.3 5.0 4.0 3.4 1.3 1.1 3.2 2.9	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6 27.0 26.5	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9 27.8 27.2	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4 0.9 3.0 2.7	
$[C_2mim][Tf_2N]$ $[C_3mim][Tf_2N]$ $[C_4mim][Tf_2N]$ $[C_5mim][Tf_2N]$ $[C_6mim][Tf_2N]$ $[C_2mim][CF_3SO_3]$ $[C_4mim][CF_3SO_3]$ $[C_4mim][CF_3SO_3]$ $[C_6mim][CF_3SO_3]$ $[C_7mim][CF_3SO_3]$ $[C_8mim][CF_3SO_3]$ $[C_9mim][CF_3SO_3]$ $[C_1_0mim][CF_3SO_3]$ $[C_1_0mim][CF_3SO_3]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1 27.4 26.9 33.7	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4 28.3 27.7 43.4	1.6 1.7 1.3 0.3 5.0 4.0 3.4 1.3 1.1 1.1 3.2 2.9 22.4	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6 27.0 26.5 33.1	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9 27.8 27.2 42.9	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4 0.9 3.0 2.7 22.9	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{9}mim][CF_{3}SO_{3}]$ $[C_{9}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{3}mim][CH_{3}SO_{3}]$ $[C_{6}mim][CH_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1 27.4 26.9 33.7 28.8	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4 28.3 27.7 43.4 32.6	1.6 1.7 1.3 0.3 5.0 4.0 3.4 1.3 1.1 3.2 2.9 22.4 11.7	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6 27.0 26.5 33.1 28.3	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9 27.8 27.2 42.9 32.2	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4 0.9 3.0 2.7 22.9 12.1	
$[C_{2}mim][Tf_{2}N]$ $[C_{3}mim][Tf_{2}N]$ $[C_{4}mim][Tf_{2}N]$ $[C_{5}mim][Tf_{2}N]$ $[C_{6}mim][Tf_{2}N]$ $[C_{2}mim][CF_{3}SO_{3}]$ $[C_{4}mim][CF_{3}SO_{3}]$ $[C_{6}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CF_{3}SO_{3}]$ $[C_{9}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{10}mim][CF_{3}SO_{3}]$ $[C_{7}mim][CH_{3}SO_{3}]$ $[C_{7}mim][CH_{3}SO_{3}]$	34.4 32.5 31.1 30.0 29.2 40.3 37.0 34.3 30.4 29.1 28.1 27.4 26.9 33.7 28.8 27.9	33.9 32.0 30.7 29.9 29.3 38.4 35.6 33.2 30.0 29.4 28.4 28.3 27.7 43.4 32.6 30.7	1.6 1.7 1.3 0.3 5.0 4.0 3.4 1.3 1.1 1.1 3.2 2.9 22.4 11.7 9.2	34.0 32.1 30.7 29.6 28.8 39.6 36.4 33.7 29.9 28.6 27.6 27.6 27.0 26.5 33.1 28.3 27.4	33.4 31.5 30.3 29.5 28.8 38.1 35.2 32.8 29.6 29.0 27.9 27.8 27.2 42.9 32.2 30.2	1.7 2.0 1.3 0.4 0.1 3.8 3.3 2.8 1.0 1.4 0.9 3.0 2.7 22.9 12.1 9.1	

^aThe average absolute deviation (AAD) is defines as

AAD (%) =
$$\left| \frac{(\gamma_{calc} - \gamma_{exp})}{\gamma_{exp}} \right|$$

	Contact Angle (°)					
Water content (ppm)	PTFE	Glassy carbon	Platinum ^a			
140	92.7 ± 2.4	22.1 ± 1.9	< 10.0			
470	90.5 ± 1.6	27.0 ± 1.5	< 10.0			
1053	89.3 ± 1.2	29.7 ± 2.3	< 10.0			
1496	87.4 ± 0.4	24.3 ± 2.6	< 10.0			
1915	89.2 ± 2.1	25.6 ± 1.4	< 10.0			
2641	92.3 ± 2.4	25.2 ± 1.2	< 10.0			
4020	91.7 ± 1.2	27.7 ± 1.3	< 10.0			

Table S7. Contact angles of $[C_4mim][Tf_2N]$ at 293.15 K on the substrates.

^aThe instrumental uncertainty is ±0.3°. The contact angles on platinum were too small for the instrument to detect and measure. Considering the uncertainty, a contact angle value less than 10.0° on platinum is decided.

Figure S21. Contact angles of the four series of $[C_nmim][CH_3SO_3]$, $[C_nmim][CF_3SO_3]$, $[C_nmim][Tf_2N]$, and $[C_nim][Tf_2N]$ ILs on platinum at 293.15 K as a function of alkyl chain length.

Substrates	Water	Contact Angle (°)				
ILs	Content (ppm)	PTFE	Glassy carbon	Platinum ^a		
[C ₂ mim][Tf ₂ N]	111	102.5 ± 2.0	40.5 ± 3.2	8.1 ± 5.0		
[C₃mim][Tf₂N]	47	99.3 ± 1.9	33.6 ± 2.2	8.2 ± 5.0		
[C ₄ mim][Tf ₂ N]	83	92.8 ± 3.0	26.8 ± 1.3	11.7 ± 5.0		
[C₅mim][Tf₂N]	148	90.8 ± 1.1	20.5 ± 1.2	< 10.0		
[C ₆ mim][Tf ₂ N]	47	91.4 ± 1.4	20.5 ± 1.4	< 10.0		
[C ₇ mim][Tf ₂ N]	240	88.0 ± 1.6	24.2 ± 2.6	< 10.0		
[C ₈ mim][Tf ₂ N]	120	85.7 ± 0.8	25.6 ± 1.2	< 10.0		
[C ₉ mim][Tf ₂ N]	252	88.9 ± 1.4	20.2 ± 3.0	< 10.0		
[C ₁₀ mim][Tf ₂ N]	121	88.7 ± 1.1	14.5 ± 1.4	< 10.0		
$[C_2 im][Tf_2N]$	402	99.2 ± 3.5	23.7 ± 2.2	14.2 ± 5.0		
[C₃im][Tf₂N]	425	89.3 ± 2.6	22.9 ± 1.1	< 10.0		
$[C_4 im][Tf_2N]$	323	87.6 ± 1.8	20.9 ± 2.1	< 10.0		
[C₅im][Tf ₂ N]	331	83.1 ± 0.9	16.4 ± 2.6	6.5 ± 5.0		
$[C_6 im][Tf_2N]$	204	71.2 ± 0.9	15.1 ± 2.0	< 10.0		
[C ₇ im][Tf ₂ N]	104	73.3 ± 1.2	13.1 ± 1.2	< 10.0		
[C ₈ im][Tf ₂ N]	203	72.6 ± 1.9	12.9 ± 1.5	< 10.0		
[C ₉ im][Tf ₂ N]	317	72.8 ± 1.6	12.2 ± 2.7	8.7 ± 5.0		
[C ₁₀ im][Tf ₂ N]	86	71.8 ± 2.1	10.7 ± 1.1	7.5 ± 5.0		
[C ₂ mim][CF ₃ SO ₃]	220	115.3 ± 1.8	61.9 ± 0.9	6.3 ± 5.0		
[C₃mim][CF₃SO₃]	340	107.3 ± 0.9	54.1 ± 0.6	9.3 ± 5.0		
[C ₄ mim][CF ₃ SO ₃]	680	100.8 ± 3.4	42.6 ± 3.3	3.7 ± 5.0		
[C ₆ mim][CF ₃ SO ₃]	572	96.1 ± 1.9	32.1 ± 0.7	3.7 ± 5.0		
[C ₇ mim][CF ₃ SO ₃]	427	91.7 ± 1.8	21.2 ± 1.1	5.4 ± 5.0		
[C ₈ mim][CF ₃ SO ₃]	219	91.3 ± 2.3	20.8 ± 2.2	3.7 ± 5.0		
[C ₉ mim][CF ₃ SO ₃]	89	86.6 ± 2.5	15.8 ± 1.4	13.3 ± 5.0		
[C ₁₀ mim][CF ₃ SO ₃]	278	85.3 ± 1.6	10.0 ± 0.3	21.6 ± 5.0		
[C ₃ mim][CH ₃ SO ₃]	1400	128.1 ± 2.5	47.8 ± 3.9	28.6 ± 5.0		
[C ₆ mim][CH ₃ SO ₃]	1700	106.0 ± 1.6	26.9 ± 2.9	13.9 ± 5.0		
[C ₇ mim][CH ₃ SO ₃]	580	103.7 ± 2.4	17.1 ± 0.6	5.5 ± 5.0		
[C ₈ mim][CH ₃ SO ₃]	621	98.9 ± 3.2	17.6 ± 2.5	10.2 ± 5.0		

Table S8. Contact angle of the four series of $[C_n mim][CH_3SO_3]$, $[C_n mim][CF_3SO_3]$, $[C_n mim][Tf_2N]$, and $[C_n im][Tf_2N]$ ILs on PTFE, glassy carbon and platinum substrates at 293.15 K.

^aThe instrumental uncertainty is ±0.3°. For some experiments, the contact angles on platinum were too small for the instrument to detect and measure. Considering the uncertainty, a contact angle value less than 10.0° on platinum is decided.

ILs	γ_l (mJ/m ²)	γ_l^D (mJ/m ²)	γ_l^{ND} (mJ/m ²)	γ_l^{ND}/γ_l
[C ₂ mim][Tf ₂ N]	35.8	9.0	26.8	0.75
[C₃mim][Tf₂N]	33.9	9.4	24.5	0.72
[C ₄ mim][Tf ₂ N]	32.5	11.5	21.0	0.65
[C₅mim][Tf ₂ N]	31.6	11.8	19.8	0.63
[C ₆ mim][Tf ₂ N]	31.3	11.3	20.0	0.64
$[C_2 im][Tf_2N]$	34.6	9.9	24.7	0.71
$[C_3 im][Tf_2N]$	32.3	13.2	19.1	0.59
$[C_4 im][Tf_2N]$	31.3	13.8	18.1	0.56
[C₅im][Tf ₂ N]	30.7	14.9	15.8	0.51
$[C_6 im][Tf_2N]$	30.2	21.3	8.9	0.29
[C ₇ im][Tf ₂ N]	29.8	19.4	10.4	0.35
[C ₈ im][Tf ₂ N]	29.9	20.0	9.9	0.33
[C ₉ im][Tf ₂ N]	29.9	20.0	9.9	0.33
$[C_{10}im][Tf_2N]$	30.0	20.6	9.4	0.31
[C ₂ mim][CF ₃ SO ₃]	39.9	4.8	35.1	0.88
[C₃mim][CF₃SO₃]	36.9	6.8	30.2	0.82
[C ₄ mim][CF ₃ SO ₃]	34.5	8.4	26.2	0.76
[C ₆ mim][CF ₃ SO ₃]	31.8	8.8	23.0	0.72
[C ₇ mim][CF ₃ SO ₃]	31.3	10.4	20.9	0.67
[C ₈ mim][CF ₃ SO ₃]	30.5	10.0	20.5	0.67
[C ₉ mim][CF ₃ SO ₃]	30.4	12.1	18.3	0.60
[C ₁₀ mim][CF ₃ SO ₃]	29.7	12.1	17.6	0.59
[C₃mim][CH₃SO₃]	45.1	2.0	43.1	0.96
[C ₆ mim][CH ₃ SO ₃]	34.5	4.5	30.0	0.87
[C ₇ mim][CH ₃ SO ₃]	32.4	6.4	26.0	0.80
[C ₈ mim][CH ₃ SO ₃]	30.9	8.6	22.3	0.72

Table S9. Dispersive and non-dispersive components of the IL surface energy at 293.15 K, where γ_l is the total surface tension, γ_l^D is the dispersive part of the surface energy, γ_l^{ND} is the non-dispersive part of the surface energy and γ_l^{ND}/γ_l is the fraction of the surface energy that is non-dispersive.

^aThe overall relative uncertainty is ±5%.