Supporting Information

Beta-Hydroxy- and beta-aminophosphonate acyclonucleosides as potent inhibitors of Plasmodium falciparum growth

Thomas Cheviet, Sharon Wein, Gabriel Bourchenin, Manon Lagacherie, Christian Périgaud, Rachel Cerdan* and Suzanne Peyrottes*

Table of Contents

Preparation of NMR samples
Optimization of the stereo-discrimination by using ${ }^{31} \mathrm{P}$ NMR (Fig. S1-3)
Synthetic pathway for compound 11b
Spectra for final compounds (1-10, 11a-b, and 12-13)
page S 2

Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR, ESI-MS or HR-MS, and HPLC
pages S2-S3
pages S4-S5
pages S6 - S53

Preparation of NMR samples.

10 mM of the studied compound were dissolved in $100 \mathrm{mM} \alpha$-cyclodextrin solution in $\mathrm{D}_{2} \mathrm{O}$ (ratio substrate/CSA was $1 / 10$). NMR spectra were recorded at different temperatures ranging from 15 to $75^{\circ} \mathrm{C}$. Small amount of NaOD or DCl were used to reach the pD of interest.

Figure S1. ${ }^{31} \mathrm{P} \delta$ variation of racemic mixture of β-hydroxyphosphonates according to the temperature of analysis, at pD 11.7. Separation of enantiomers were visible at $25^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$, the best separation was observed for $15^{\circ} \mathrm{C}$.

Figure S2.. ${ }^{31} \mathrm{P} \delta$ variation of racemic mixture of β-hydroxyphosphonates according to pD value, at $15^{\circ} \mathrm{C}$. Separation of enantiomers was observed at pD 11.75 , but not at higher or lower pD .

Figure S3. ${ }^{31} \mathrm{P} \delta$ variation of racemic mixture of β-aminophosphonates according to pD value, at $15^{\circ} \mathrm{C}$. Separation of the two isomers are visible at pD 10.8 but the best result was observed at pD 12.3.

Synthetic pathway for compound 11b

Diethyl-(4-hydroxy)-but-1-en-1-yl-phosphonate.

3-Butyn-1-ol (20 mg) was dissolved in a glass vial (diameter : 1 cm , thickness : 0.65 mm) with diethylphosphite (100 eq). Then, 2,2 -dimethoxy-2-phenylacetophenone (DPAP, 0.5 eq) was added and the reaction mixture was stirred under UV activation (UV-A lamp, $\lambda_{\max }=365 \mathrm{~nm}, 4 \times 15 \mathrm{~W}$ tubes; vial located 2.5 cm away from the lamp) for 30 min . The reaction mixture was diluted in ethyl acetate and the resulting solution was washed with aqueous saturated NaHCO_{3}. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient) to obtain the desired compound (59 mg) in quantitative yield and as a $9: 1$ mixture of Z:E isomers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ (ddt, $J=22.0,17.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}, E$-isomer), 6.61 (ddt, $J=$ $52.8,13.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}, Z$-isomer), 5.75 (ddt, $J=19.0,13.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}, Z$-isomer), $4.24-3.96$ (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.74\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right.$), $2.79\left(\mathrm{ddd}, J=12.0,5.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 119.3(\mathrm{~d}, J=182.2 \mathrm{~Hz}, \mathrm{CHP}), 61.9(\mathrm{~d}, J=5.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.9\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 33.9\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 16.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.1$ (s, E-isomer), 17.8 (s, Z-isomer). HMRS TOF ESI+ Found : 209.0943; Calculated for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{P}: 209.0943$ $(\mathrm{M}+\mathrm{H})^{+}$

Diethyl-(Z)-(4-(2-(bis(tert-butoxycarbonyl)amino)-6-methoxy-9H-purin-9-yl)-but-1-en-1-yl) phosphonate

Diethyl-(4-hydroxy)-but-1-en-1-yl-phosphonate ($300 \mathrm{mg}, 1 \mathrm{eq}$.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 / 1, \mathrm{v} / \mathrm{v}$) at $25^{\circ} \mathrm{C}$. The nucleobase (1.5 eq.) was added, then triphenylphosphine ($\mathrm{PPh}_{3}, 1.6$ eq.) and diethylazodicarboxylate (DEAD, 1.6 eq.) dropwise. The reaction mixture was stirred for 24 hours and reaction progress was monitered by TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5 \mathrm{v} / \mathrm{v}\right)$. The reaction mixture was concentrated in vacuo and purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient), which allowed to separate Z and E -isomers. The title compound (440 mg) was obtained in 55% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.41 (ddt, $J=51.6,13.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$), 5.69 (ddt, $J=17.8,13.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHP}$), 4.37 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $4.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09-3.97(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.30-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.6(\mathrm{C}-6), 152.5\left(\mathrm{~d}, J=116.3 \mathrm{~Hz}, \mathrm{C}_{-2}\right), 151.2\left(\mathrm{~s}, \mathrm{C}_{-4}\right), 147.6\left(\mathrm{~d}, J=3.5 \mathrm{~Hz},{\underset{\mathrm{C}}{\mathrm{HCH}}}_{2}\right), 143.1(\mathrm{CH}-8), 121.0(\mathrm{~d}$, $J=182.4 \mathrm{~Hz}, \mathrm{CHP}), 120.0(\mathrm{C}-5), 83.2\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 61.8\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 54.7\left(\mathrm{OCH}_{3}\right), 43.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 30.8(\mathrm{~d}, J}\right.$
$\left.=8.0 \mathrm{~Hz}, \underline{\mathrm{CH}}_{2} \mathrm{CH}\right), 28.1\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.5$. HMRS TOF ESI + Found : 556.2535; Calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}: 556.2536(\mathrm{M}+\mathrm{H})^{+}$.

Diethyl-(Z)-(4-(2-amino-6-methoxy-9H-purin-9-yl)-but-1-en-1-yl)phosphonate

To a solution of diethyl-(Z)-(4-(2-(bis(tert-butoxycarbonyl)amino)-6-methoxy-9H-purin-9-yl)-but-1-en-1yl)phosphonate (261 mg , 1 eq.) in anhydrous dichloromethane ($3 \mathrm{~mL} / \mathrm{mmol}$) was added at room temperature a solution of TFA ($8 \mathrm{~mL} / \mathrm{mmol}$) in anhydrous dichloromethane ($3 \mathrm{~mL} / \mathrm{mmol}$). The reaction mixture was stirred for 3h with TLC monitoring ($\mathrm{DCM} / \mathrm{MeOH}, 9 / 1$, v/v). Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated under vacuum and the crude oil was purified on silica gel by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}$ gradient, 0 to $10 \% \mathrm{MeOH}$) to obtain quantitatively the desired compound (167 mg). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.37$ (ddt, $J=51.7$, $\left.13.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.67-5.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHP}), 4.35\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.10\left(\mathrm{tdd}, J=6.9,5.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{C}_{-6}\right), 157.8\left(\mathrm{C}_{-5}\right), 147.6\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 145.0\left(\mathrm{CH}_{-8}\right), 128.6\left(\mathrm{~d}, J=83.6 \mathrm{~Hz}, \mathrm{C}_{-2}\right), 120.7$ $(\mathrm{d}, J=182.2 \mathrm{~Hz}, \mathrm{CHP}), 106.8(\mathrm{C}-4), 61.7\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 54.7\left(\mathrm{OCH}_{3}\right), 46.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 31.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}$,
 Calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}: 356.1488(\mathrm{M}+\mathrm{H})^{+}$

(Z)-(4-(2-amino-6-hydroxy-9H-purin-9-yl)-but-1-en-1-yl)phosphonic acid disodic salt 11b

The diethyl-(Z)-(4-(2-amino-6-methoxy-9H-purin-9-yl)-but-1-en-1-yl)phosphonate ($261 \mathrm{mg}, 1 \mathrm{eq}$.) was dissolved under argon atmosphere in anhydrous DMF ($20 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C} . \mathrm{TMSBr}$ (6.6 eq .) was added dropwise to the solution, and the mixture was kept at $0^{\circ} \mathrm{C}$ for 5 min , then allowed to slowly warm to room temperature and stirred for 3 days. The reaction progress was followed by TLC monitoring (isopropanol/water/ammoniac $7 / 2 / 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$). The reaction was quenched by addition of a triethylbutylammonium solution $(1 \mathrm{M}, \mathrm{pH} 7)$. The volatiles were removed under vacuum and the resulting aqueous solution was freeze-dried. The crude was purified on reverse phase flash chromatography (water/methanol gradient, 0 to 100% methanol), leading to the phosphonate triethylammonium salts as a white powder. The compound was percolated through a Na^{+}Dowex resin and after freeze-dried of the require fractions the sodium salts were obtained as a white lyophilizate.The desired compound (130 mg) was obtained in 54% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{-8}\right), 6.11\left(\mathrm{ddt}, J=45.8,13.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.83(\mathrm{ddt}, J=17.7,13.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHP), $4.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.93\left(\mathrm{qdd}, J=7.0,2.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 158.9$ $\left(\mathrm{C}_{-6}\right), 153.5\left(\mathrm{C}_{-2}\right), 151.4\left(\mathrm{C}_{-5}\right), 141.1\left(\mathrm{CHCH}_{2}\right), 140.1\left(\mathrm{CH}_{-8}\right), 126.3(\mathrm{~d}, J=171.7 \mathrm{~Hz}, \mathrm{CHP}), 115.9\left(\mathrm{C}_{-4}\right), 42.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $30.2\left(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 10.5$. HMRS TOF ESI+ Found : 286.0708; Calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}: 286.0705(\mathrm{M}+\mathrm{H})^{+}$.
(R)-(3-(6-amino-9H-purin-9-yl)-2-hydroxypropyl)phosphonic acid (R)-1

3-cp-231113.11.1.2r
Solvent or Scans
EC. $3.114 \mathrm{RPF4}-17 \mathrm{Na}+$
P31dec1H-51 D20 / Opt/ topspin CP 3
Spectrometer Frequency 121.49
Nucleus $\quad 31 \mathrm{P}$

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isctope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
363 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:

Minimun:			-2.5
Maximum:	5.0	2.0	50.0

Mass Calc. Mass mDa PEN DEE i-PIT Norm Conf(7) Pormula

(S)-(3-(6-amino-9H-purin-9-yl)-2-hydroxypropyl)phosphonic acid (S)-1


```
Tole pdata/ 1
Solvene
*umber of Scans
```



```
O20
Nmacer or scans 128
#pectrometer Frequency 121.49
```

Timo 1

Elemental Composition Report

Single Mass Analysis
Tolerance $=10.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =500$
Element prediction: Off
Number of isotope peaks used for l-FIT $=4$
Moncisotopic Mass, Even Electron Ions
42 formula(e) evaluated with 3 results within limits (up to 20 closest results for each mass)
Elements Used
$\begin{array}{llllll}\text { C: } 0-100 & \mathrm{H}: ~ 0-150 & \mathrm{~N}: ~ 0-50 & \mathrm{O}: 0-50 & \mathrm{Na}: 2-2 & \mathrm{P}: 1-1\end{array}$
$\begin{array}{ll}\text { SYNAPT G2-SPUEB205 } & \text { BGI77RPF7-10N3+ } \\ \text { Y-CP13091608 14 (0.263) AM2 (Ac,30000.0,0.00,0.00) } & \\ \text { 16-Sep-2013 } \\ \text { 1:TOFMS ES }+\end{array}$

Minimum:	5.0	10.0	-1.5
Maximum:	50.0		

Mass Calc. Mass mDa PFM DBE i-FIT Norm Conf (v) Formula
$\begin{array}{lllllllllllll}318.0349 & 318.0344 & 0.5 & 1.6 & 5.5 & 1263.7 & 0.645 & 52.45 & \text { Cb } & \mathrm{H} 11 & \mathrm{N5} & \text { O4 Na2 }\end{array}$

$$
\begin{array}{lllllllll}
318.0331 & 1.8 & 5.7 & 0.5 & 1264.3 & 1.251 & 28.62 & \mathrm{C} 7 \mathrm{H} 15 \mathrm{~N} \text { OB Na2 } \\
318.0357 & -0.8 & -2.5 & 10.5 & 1264.7 & 1.664 & 18.93 & \mathrm{C} 日 \text { H7 N9 Na2 } \mathrm{P}
\end{array}
$$

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount
1	Component 1	1,713	46,130	1566,763	100,00	100,00	n.a.

(R)-(3-(2-amino-6-oxo-9H-purin-9-yl)-2-hydroxypropyl)phosphonic acid (R)-2

	$\begin{aligned} & \text { n } \\ & 0 \\ & \text { 훈 } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { i } \\ & \div \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{1}{\circ} \\ & \hline \end{aligned}$		
I					


```
Titelement 42-cp-271113.11.1.1r
#
N2O
Spectrometer Frequency 121.4
Nucleus 31P
```


Monoisotopic Mass, Even Electron Ions
424 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: }: 0-100 & H: 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{P}: ~ 1-1\end{array}$
$\begin{array}{ll}\text { SYNAPT G2-S\#UEB205 } & \text { BG171 (RPF1) } \\ \text { Y-CP13053105 23 (} 0.465 \text {) AM2 (Ar, 30000.0.0.00, 0.00); Cm (23:32) } & \text { 31-May-2013 } \\ & \text { 1: TOF MS ES- } \\ & 9.36 \mathrm{e}+005\end{array}$

$\begin{array}{lll}\text { Minimum: } & 5.0 \quad 2.0 \quad 50.5\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(g) Formula
$288.0498 \quad 288.0498 \quad 0.0 \quad 0.0 \quad 6.5 \quad 1455.3 \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C8 H11 N5 O5 P

Integration Results								
No.	Peak Name	Retention Time min	Area mAU $\mathbf{m i n}$	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount	
1	Component 1	1,797	38,749	1335,498	100,00	100,00	n.a.	

(S)-(3-(2-amino-6-oxo-9H-purin-9-yl)-2-hydroxypropyl) phosphonic acid (S)-2

Elemental Composition Report
Single Mass Analysis
Tolerance $=10.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
401 formula(e) evaluated with 4 results within limits (up to 20 closest results for each mass)
Elements Used.
$\begin{array}{llllll}\text { C: } 0-100 & \text { H: } 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{Na}: 2-2 & \mathrm{P}: 1-1\end{array}$
$\begin{array}{llll}\text { SYNAPT G2-S\#UEB205 } & \text { Na: } & \text { BGI78RPF4-5Na+ } & \text { 16-Sep-2013 }\end{array}$
Y-CP 1309160911 (0.213) AM2 (Ar,30000.0,0.00,0.00) $\quad 1:$ TOF MS ES +

$\begin{array}{llll}\text { Minimum: } & & & -1.5 \\ \text { Maximum: } & 5.0 & 10.0 & 50.0\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$\begin{array}{lllllllllll}334.0302 & 334.0293 & 0.9 & 2.7 & 5.5 & 1224.9 & 0.096 & 90.82 & \text { C8 } & \text { H11 N5 O5 Na2 P }\end{array}$
$\begin{array}{lllllllll}334.0293 & 0.9 & 2.7 & 5.5 & 1224.9 & 0.096 & 90.82 & \text { C8 H11 N5 O5 Na2 } & \text { P } \\ 334.0307 & -0.5 & -1.5 & 10.5 & 1227.6 & 2.832 & 5.89 & \text { C9 H7 N9 O Na2 P }\end{array}$
$\begin{array}{lllllllll}334.0307 & -0.5 & -1.5 & 10.5 & 1227.6 & 2.832 & 5.89 & \text { C9 H7 N9 O Na2 } \mathrm{P} \\ 334.0333 & -3.1 & -9.3 & 9.5 & 1228.8 & 3.991 & 1.85 & \text { C13 H11 N3 O3 Na2 } \mathrm{P} \\ 334.0280 & 2.2 & 6.6 & 0.5 & 1229.0 & 4.240 & 1.44 & \mathrm{C} 7 \mathrm{H} 15 \mathrm{NO} 09 \mathrm{Na} 2 \mathrm{P}\end{array}$

Integration Results								
No.	Peak Name	Retention Time \min	Area mAU min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount	
1	Component 1	1,980	10,921	344,675	96,45	95,77	n.a.	
n.a.	Component 2	n.a.	n.a.	n.a.	n.a	n.a.	n.	
2	Component 2	2,923	0,402	15,231	3.55	4,23	n.a.	

(R)-(3-(2,6-diamino-9H-purin-9-yl)-2-hydroxypropyl) phosphonic acid (R)-3

$\begin{array}{r}159.537 \\ \square \\ \hline\end{array} 155.742$

8G.3.136 Na+
O20
Spectrometer Frequency 121.49
Nucieus 31P

```


\section*{Elemental Composition Repor}

Single Mass Analysis \(\quad\) DBE: \(\min =-1.5, \max =50.0\)
Tolerance \(=10.0 \mathrm{PPM}\)
Number of isotope peaks used for i-FIT \(=4\)
Monoisotopic Mass, Even Electron Ions
386 formula(e) evaluated with 5 results within limits (up to 20 closest results for each mass
Elements Used:
\(\begin{array}{lllll}\text { C: } 0-100 & \mathrm{H}: 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{Na} .2-2 \\ \text { P. 1-1 }\end{array}\)
\(\begin{array}{ll}\text { SYNAPT G2-SHUUEB205 } \\ \text { Y-CP13091610 } 12(0.229) \text { AM2 (Ar,30000.0,0.00.0.00) } & \text { BG195RPF5-12Na+ }\end{array} \begin{aligned} & \text { 16-Sep-2013 } \\ & \text { 1:TOF MS ES }+\end{aligned}\)
\(3.88 \mathrm{e}+006\)

\begin{tabular}{llll} 
Minimum: & & & -1.5 \\
Maximum: & 5.0 & 10.0 & 50.0
\end{tabular}

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf( \(\boldsymbol{\xi}\) ) Formula
\(\begin{array}{llllllllllllllllll}333.0460 & 333.0453 & 0.7 & 2.1 & 5.5 & 1198.7 & 0.013 & 98.69 & \text { C8 } & \text { H12 } & \mathrm{N} 6 & 04 \mathrm{Na} 2 \mathrm{P} \\ & 333.0440 & 2.0 & 6.0 & 0.5 & 1203.5 & 4.798 & 0.82 & \mathrm{C} & \mathrm{H} 16 & \mathrm{~N} 2 & 08 & \mathrm{Na} 2 \mathrm{P}\end{array}\)

\(\begin{array}{lllllllll} & -2.0\end{array}\)



(S)-(3-(2,6-diamino-9H-purin-9-yl)-2-hydroxypropyl) phosphonic acid (S)-3

                            MG.3.135 Na+
                            P31dec1H-S1 D2O / opt/ topspin CD S
                        D2O
Solvent
    Number of Scans }12
    Npectrometer Frequency 31P
```


Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
386 formula(e) evaluated with 6 results within limits (up to 20 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-100 } & \text { H: } 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{Na}: 2-2 & \mathrm{P}: 1-1\end{array}$
SYNAPT G2-S\#UEB205 BG194RPF4-12Na+ \quad 16-Sep-2013
Y-CP 130916118 (0.157) AM2 (Ar,30000.0,0.00,0.00) $\mathrm{Cm}(8.16) \quad$ BGI94RPF4-12Na+

Minimum:			-1.5
Maximum:	5.0	10.0	50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$\begin{array}{lllllllllllllll}333.0450 & 333.0453 & -0.3 & -0.9 & 5.5 & 1752.5 & 0.001 & 99.94 & \text { C8 } & \mathrm{H} 12 & \mathrm{~N} 6 & \mathrm{O} 4 \mathrm{Na2} \\ \mathrm{P}\end{array}$

333.0440	1.0	3.0	0.5

$333.0466 \quad-1.6 \quad-4.8 \quad 10.5 \quad 1765.7 \quad 13.140 \quad 0.00 \quad \mathrm{C9}$ H8 N10 Na2 P
$333.0426 \quad 2.4 \quad 7.2 \quad 6.5$
$\begin{array}{llllllll}333.0421 & 2.9 & 8.7 & 13.5 & 1769.9 & 17.402 & 0.00\end{array}$

(R)-(4-(6-amino-9H-purin-9-yl)-2-hydroxybutyl)phosphonic acid (R)-4


```
TMite 44-cp-271113.11.1.1
Solvent
    G.3.118 RPF3-12Na+
    P31dec1H-SI D2O/ opt/ topspin cp 44
    N
    Spectrometer Frequency 128,4
    31P
```


'Elemental Composition Report

Single Mass Analysis
Tolerance $=2.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
422 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: 0-100 } & \mathrm{H}: ~ 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{P}: ~ 1-1\end{array}$
SYNAPT G2-S\#NotSet
BG3. 118

1. TOF MS ES +
$5.03 \mathrm{e}+005$

Minimum:			-1.5
Maximum:	1.0	2.0	50.0

Mass Calc. Mass mDa PFM DBE i-EIT Norm Conf(8) Formula
$\begin{array}{llllllllllllllllll}288.0867 & 288.0862 & 0.5 & 1.7 & 5.5 & 2642.5 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C9 H15 N5 04 P }\end{array}$

(S)-(4-(6-amino-9H-purin-9-yl)-2-hydroxybutyl)phosphonic acid (S)-4


```
Mule
Solvent 0%O
Spectrometer Frequency 128,48
```


Elemental Composition Repor

Single Mass Analysis
Tolerance $=2.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for $\mathrm{i}-\mathrm{FIT}=4$
Monoisotopic Mass, Even Electron Ions
422 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used
$\begin{array}{lllll}C: & 0-100 & H: ~ 0-150 & N: & 0-50 \\ \text { O: 0-50 } & P: 1-1\end{array}$
$\begin{array}{lll}\text { SYNAPT G2-S\#NotSet } & \text { BG3.147 } & \text { 19-Sep-2014 }\end{array}$
7.83e +005

Minimum:
Maximum:
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(8) Formula
$288.0860 \quad 288.0862 \quad-0.2 \quad-0.7 \quad 5.5 \quad 3401.7 \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C9 H15 N5 04 P

Spectral plot could not be created.
No spectra selected.

(R)-(4-(2-amino-6-oxo-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (R)-5

nibe
Solvent
Noumber of Scans
pdata/ 1
BC. 3. 129 Nat
P31dectiH-S1 D2O / opt/ copspin CD
23
020
128
speatrometer frequency 122.43

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0 \mathrm{PPM} / \mathrm{DBE}: \mathrm{min}=-1.5 . \mathrm{max}=50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
489 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
$\begin{array}{lllll}\text { Elements Used: } \\ \mathrm{C}: 0-100 & \mathrm{H}: 0-150 & \mathrm{~N}: 0-50 & 0: 0-50 & \mathrm{P} ; 1-1\end{array}$

Mininumt
$\begin{array}{llll}\text { Maximum: } & 5.0 & 2.0 & 50.0\end{array}$
Mass Calc. Mass nDa PPM DBE 1-EIT Norm Conf (b) Formula
$304.0808 \quad 304.0811 \quad-0.3 \quad-1.0 \quad 5.5 \quad 2937.7 \quad \mathrm{n} / \mathrm{a} \quad \mathrm{D} / \mathrm{A} \quad$ C9 H15 NS O5 P

(S)-(4-(2-amino-6-oxo-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (S)-5

$\underset{\sim}{*}$
$\stackrel{6}{2}$

P31deciH-SiD20 / opt/ topspin CP 16
020
128
Number of Scans

Spectrometer Frequency	121.49
Nucleus	
1020	

Elemental Composition Report

Page 1

Single Mass Analysis
Tolerance $=2.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for I-FIT $=4$
Monoisotopic Mass, Even Electron Ions
489 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C. } 0-100 & H: 0-150 & \mathrm{~N}: 0-50 & \mathrm{O}: 0-50 & \mathrm{P}: 1-1\end{array}$

(R)-(4-(2,6-diamino-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (R)-6

-BG3-113

	$\stackrel{\infty}{\text { ¢ }}$

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=2.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
472 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
Elements Used:
$\begin{array}{cllll}\mathrm{C}: ~ 0-100 & \mathrm{H}: ~ 0-150 & \mathrm{~N}: ~ 0-50 & \mathrm{O}: 0-50 & \mathrm{P}: ~ 1-1\end{array}$

SYNAPT G2-St\#NotSet	BG3. 126	014
Y-CP14091714 7 (0.143) Cm (6:8)	B3. 2	1: TOF MS ES+

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount
n.a.	Component 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
1	Component 1	2.747	57,007	1511,888	100,00	100,00	n.a.

(S)-(4-(2,6-diamino-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (S)-6

Comment BC.3.146 Nat
Solvent
P31dec1H-si D2O / opt/ topspin cp 2
Number of Scans

D 2 O
128
12140

Spectrometer Frequency 121.49
Nucleus 31°

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=1.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Odd and Even Electron Ions
472 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)
$\begin{array}{lllll}\text { Elements Used: } \\ \text { C: } 0-100 \quad \text { H: O-100 } & \mathrm{N}: 0-50 & \text { O: 0-50 } & \mathrm{P}: 1-1\end{array}$
$\begin{array}{lllll}\text { C: } 0-100 \quad \text { H: O-100 } & \text { N: 0-50 } & \text { O: 0-50 } & \text { P: 1-1 } & \\ \text { SYNAPT G2-S.NotSet } \\ \text { Y-CP14092401 } 17(0.329) & & & \text { BG3.146 }\end{array}$
24-Sep-2014
$\begin{array}{lllllllllllll}100 & 294.16 & 295.19 & 297.24 & 298.18 & 301.14 & 303.10 & 304.10 & 307.17 & 309.13 & 311.24 & 31324 & 315.18\end{array} 3^{318.22} \begin{array}{lll}319.15 & 32121 & 322.21\end{array}$ $\begin{array}{llllllllllll}295.0 & 297.5 & 300.0 & 302.5 & 305.0 & 307.5 & 310.0 & 312.5 & 315.0 & 317.5 & 320.0 & 322.5\end{array}$

Minimum:
$\begin{array}{llll}\text { Maximum: } & 1.0 & 1.0 & 50.0\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(8) Formula
$\begin{array}{lllllllllll}303.0971 & 303.0971 & 0.0 & 0.0 & 5.5 & 2146.2 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C9 H16 N6 O4 P }\end{array}$

(R)-(2-hydroxy-4-(6-oxo-1,6-dihydro-9H-purin-9-yl)buty) phosphonic acid disodic salt (R)-7

Elemental Composition Report

Single Mass Analysis
Tolerance $=1.0$ PPM / DBE: $\min =-10.0, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1299 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llllll}\text { C: 1-100 } & \text { H: } 0-100 & \mathrm{~N}: 0-20 & \mathrm{O}: 0-20 & \mathrm{Na}: ~ 0-2 & \mathrm{P}: 1-1\end{array}$
SYNAPT G2-SHUEB205 TC1-78-272

Minimum:
Maximum:

Maximum:	10.0	1.0	-10.0
100.0			

Mass Calc. Mass mDa PPM DEE 1-EIT Norm Cont(t) Formula
$\begin{array}{llllllllllllllll}287.0547 & 287.0545 & 0.2 & 0.7 & 6.5 & 1018.4 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { c9 } & \text { n12 } & \text { N4 } 05\end{array}$

Spectrum Index Plot

230,00							
	240,00	250,00	260,00	270,00	280,00	290,00	300,00
249,5							

(S)-(2-hydroxy-4-(6-oxo-1,6-dihydro-9H-purin-9-yl)butyl) phosphonic acid disodic salt (S)-7

antal Composition Report

Page 1
igle Mass Analysis
Jlerance $=1.0 \mathrm{mDa} / \mathrm{DBE}: \min =-10.0, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
548 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-100 & \text { H: } 0-100 & \mathrm{~N}: ~ 0-20 & \text { O: 0-20 } & \text { P: 1-1 } \\ \text { SYNAPT G2-Stueb20 }\end{array}$
SYNAPT G2-SEUEB205

$\begin{array}{llll}\text { Maximum: } & 1.0 & 1.0 & -10.0 \\ \text { Maximum: } & 100.0\end{array}$
Mass Calc. Mass mDa PPM DeE 1-FIT Norm Conf(1) Formula
$\begin{array}{llllllllll}289.0703 & 289.0702 & 0.1 & 0.3 & 5.5 & 1988.3 \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C9 H14 N4 OS P }\end{array}$

(R)-(4-(2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-9-yl)-2-hydroxybutyl)phosphonic acid disodic salt (R)-8

antal Composition Report

Page 1

```
Igle Mass Analysis
olerance = 1.0 mDa / DBE. min =-10.0, max = 100.0
Element prediction: Off
Number of isotope peaks used for i-FIT =3
```

Monoisotopic Mass, Even Electron Ions
642 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
642 formula(e) evaluated with 1 results within limits (all res
Elements Used:
$\begin{array}{llllll}\text { C: } & 0-100 & \mathrm{H}: ~ 0-100 & \mathrm{~N}: ~ 0-20 & 0: & 0-20 \\ \text { P. 1-1 } & \mathrm{Na}: 2-2\end{array}$

Mininum:			-10.0
Maximum:	1.0	1.0	100.0

Mass Calc. Mass mDa PPM DBE \{-FIT Norm Conf(8) Formula

(S)-(4-(2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-9-yl)-2-hydroxybutyl)phosphonic acid disodic salt (S)-8

.tal Composition Report
Page 1
a Mass Analysis
ance $=1.0 \mathrm{mDa} / \mathrm{DBE} \cdot \min =-10.0, \max =100.0$
ient prediction: Off
nber of isotope peaks used for i-FIT $=3$
onoisotopic Mass, Even Electron Ions
05 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C: $1-100$	$\mathrm{H}: 0-100$	$\mathrm{~N}: 0-20$	$0: 0-20$	$\mathrm{Na}: 2-2$	$\mathrm{P}:$

SYNAPT G2-S\#UEB205 TCL-70-2 F3
TCl-70-2F3 $\begin{gathered}\text { 31-Mar-2017 } \\ \text { 1:TOFMSES+ }\end{gathered}$

Minimum:
$\begin{array}{llll} & & & -10.0 \\ \text { Maximum: } & 1.0 & 1.0 & 100.0\end{array}$
Mass Calc. Mass mDa PPM DEE 1-民T7 Nore Cont (1) Formula

(R)-(4-(2-amino-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (R)-9

Elemental Composition Report
Page 1

Single Mass Analysis
Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons 917 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
917 formula(e) evaluated with 1 results within limits
Elements Used:
C: 1-100 H: 0-100 N: 0-20 O: 0-20 P: 0-1
SYNAPT G2-SHUEB205
Y.SP18030601 9 (0. 403) Cm (49)

$\begin{array}{llll}\text { Mininum: } & & & -1.5 \\ \text { Maxinum: } & 3.0 & 3.0 & 50.0\end{array}$
Mass Calc. Mass mDa PPM DeE i-EIT Norm Conf(b) Eormula

(R)-(4-(6-amino-2-fluoro-9H-purin-9-yl)-2-hydroxybutyl) phosphonic acid (R)-10

Elemental Composition Report
Page 1

Single Mass Analysis

Tolerance $=1.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
384 formula(e) evaluated with 5 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: $0-100 \quad$ H:
SYNAPT G2-S\#UEB205 N. O-10 0:0-10 F: 0-1 P. O-1 MLVI-61
$\begin{array}{ll}\text { Y-CP17100602 } 4(0.175) & \text { 1: TOF MS ES+ } \\ 3.98 \mathrm{e}+006\end{array}$

Minimum:
Maximum:
Mass Calc. Mass mDa PFM OBE 1-FIT Norm Cone (8) Formula

$\begin{array}{lllllllllll}304.0822 & -0.7 & -2.3 & 1.5 & 2218.0 & 1.214 & 29.70 & \text { C6 H16 N5 O6 F } \\ 304.0811 & 0.4 & 1.3 & 5.5 & 2218.1 & 1.298 & 27.30 & \text { C9 } & \text { H15 N5 O5 }\end{array}$
$\begin{array}{lllllllll}304.0824 & -0.9 & -3.0 & 10.5 & 2220.2 & 3.369 & 3.44 & \text { C10 H11 N9 OP } \\ 304.0821 & -0.6 & -2.0 & 9.5 & 2221.7 & 4.866 & 0.77 & \text { C15 H14 N O6 }\end{array}$

Time [min]								
Integration Results								
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.	
1		2.892	5.043	65.479	2.63	2.50	n.a.	
2		3.122	184.044	2537.409	96.14	96.84	n.a.	
3		7.010	2.345	17.254	1.23	0.66	n.a.	

N-9-[4-phosphonic acid-butyl]guanine, 11a

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=1.0 \mathrm{mDa}$ / DBE $\mathrm{min}=-10.0, \mathrm{max}=100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass. Even Electron Ions
1337 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
$\begin{array}{lllll}\text { Elements Used } & & & \\ \text { C: 0-100 } & \text { H: } 0-100 & \mathrm{~N}: 0-20 & 0: 0-20 & \mathrm{P}: 0-1\end{array}$

SYNAPT G2-Stueb205 Y-JV17060501 3 (0.141) $\mathrm{Cm}(3)$			MLA V-38b							$\begin{array}{r} 06-\mathrm{Jun-2017} \\ \text { 1: TOF MS ES } \\ 2.42 e+006 \end{array}$	
${ }^{109}{ }^{10}{ }^{247.07}$	$27008 \quad 26809$		30311316.12	${ }^{326.03}{ }_{342} 01360.00$		371.14	397.01	$414.08{ }^{42398434.13}$		$443600^{449.76}$	

Ninimum: Maximum:				$\begin{aligned} & -10.0 \\ & 100.0 \end{aligned}$				
		1.0	1.0					
Nass	Calc. Mass	noa	рем	DeE	1-EIT	Norm	Cont (3)	Formula
288.0864	$\begin{aligned} & 288.0872 \\ & 288.0862 \end{aligned}$	$\begin{aligned} & -0.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & -2.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2110.7 \\ & 2120.1 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 9.423 \end{aligned}$	$\begin{aligned} & 99.99 \\ & 0.01 \end{aligned}$	C15 H14 N C C9 H15 N5

(Z)-(4-(2-amino-6-hydroxy-9H-purin-9-yl)-but-1-en-1-yl)phosphonic acid disodic salt 11b

[^0]\qquad

ental Composition Report

Page 1

.ngle Mass Anatysis

rolerance $=1.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for 1 FIT $=3$
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass. Even Electron Ions
322 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass
Elements Used

SYNAPT G2-SHUEB225
Y-CP17120404 $5(0228)$
N.

1. TOF MS ES. | O4- 2017 |
| :--- |

$1.14 \mathrm{e}+006$

Minimum:
Maximum:
Mass Calc. Mass mDa ppM deE 1-FIT Norm Cont(6) Formula
$\begin{array}{llllllllll}286.0708 & 286.0705 & 0.3 & 1.0 & 6.5 & 1906.8 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C9 H13 MS 04 p }\end{array}$

(R)-(4-(2-amino-6-oxo-9H-purin-9-yl)-2-aminobutyl) phosphonic acid (R)-12

intal Composition Report

gle Mass Analysis

Jlerance $=1.5 \mathrm{mDa} / \mathrm{DBE} \cdot \mathrm{min}=-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass. Even Electron Ions
439 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: $0-100 \quad$ H:
$\begin{array}{lllllll}\mathrm{C}: ~ 0-100 & \mathrm{H}: 0-100 & \mathrm{~N}: 0-20 & 0 & 0-20 & \mathrm{P}: 1-1 & \mathrm{Na} \\ 2 & 2-2\end{array}$

Minimum:
Maximum:
Mass Calc. Mass mDa PPM Deg 1-FIT Norm Constul Formul
$\begin{array}{lllllllllllllllll}347.0611 & 347.0610 & 0.1 & 0.3 & 5.5 & 1077.2 & 0.000 & 99.97 & \text { C9 H14 } & \mathrm{NG} & \text { O4 } \mathrm{P} \\ \mathrm{Na} 2\end{array}$

Integration Results							
No.	Peak Name	Retention Time \min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		1,743	150,702	2700,527	98,87	98,37	n.a.
2		2,560	1,719	44,883	1,13	1,63	n.a.

(S)-(4-(2-amino-6-oxo-9H-purin-9-yl)-2-aminobutyl) phosphonic acid (S)-12

ental Composition Report
Page 1
Single Mass Analysis
Tolerance $=1.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1693 formula(e) evaluated with 6 results within limits (up to 50 best isotopic matches for each mass)
Elements Used
$\begin{array}{llllll}\text { C: } 0-100 & \mathrm{H}: 0-100 & \mathrm{~N}: 0-20 & \mathrm{O}: 0-20 & \mathrm{Na}: 0-2 & \mathrm{P}: 1-1 \\ \text { SYNAPT G2-SHUEB205 }\end{array}$

Minimum:
Maximum:

347.0605

347.0602	0.3	0.9	16.5	724.0	0.000	100.00	C22	$\mathrm{H}_{3} \mathrm{O}$	Na	P
347.0610	-0.5	-1.4	5.5	735.2	11.164	0.00	c9	H14 N6	04	Na 2
347.0604	0.1	0.3	2.5	736.0	12.022	0.00	C7	H16 174	01	0 P
347.0596	0.9	2.6	0.5	736.3	12.269	0.00	ce	H1/8 N2	O8	Na 2
347.0607	-0.2	-0.6	9.5	737.8	13.822	0.00	c7	H9 111	02	N
347.0604	0.1	0.3	13.5	740.4	16,413	0.00	C5	74 M18	P	

(R)-(4-(2,6-diamino-9H-purin-9-yl)-2-aminobutyl) phosphonic acid (R)-13

cal Composition Report
Page 1
dle Mass Analysis
aerance $=1.5 \mathrm{mDa} /$ DBE $\min =-1.5, \max =100.0$
slement prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
447 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)
Elements Used
$\begin{array}{lllllll}\text { C: } 0-100 & H: ~ 0-100 & \mathrm{~N}: 0-20 & 0: 0-20 & \text { P: 1-1 } & \mathrm{Na}: 2-2\end{array}$
SYNAPT G2-S\#UEB205
Y-NuEP18020106 5 (0.228) Cm (3.6)
C3-240

Minimum:
$\begin{array}{llll}\text { Maximum: } & 1.5 & 1.0 & -1.5 \\ 100.0\end{array}$
Mass Calc. Mass mDa PMM DeE i-FIT Norm Conf(1) Formula

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	$\begin{gathered} \text { Relative Area } \\ \% \end{gathered}$	Relative Height \%	Amount n.a.
1		1,743	2,106	39,682	2,16	1,52	n. 8.
2		2,563	95,293	2563.936	97,84	98,49	R.a.

(S)-(4-(2,6-diamino-9H-purin-9-yl)-2-aminobutyl) phosphonic acid (S)-13

antal Composition Report

agle Mass Analysis
. Olerance $=1.5 \mathrm{mDa} / \mathrm{DBE} \min =-1.5, \max =100.0$
Element prediction: Off
Monoisotopic Mass, Even Electron Ions
447 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)
$\begin{array}{llllll}\text { Elements Used: } \\ \text { C: 0-100 } & \mathrm{H}: 0-100 & \mathrm{~N}: ~ 0-20 & 0: 0-20 & \mathrm{P}: 1-1 & \mathrm{Na}: 2-2\end{array}$
SYNAPT G2-SHUEB2O5

Minimum:
Maximum:
$\begin{array}{llll} & 1.5 & 1.0 & 100.0\end{array}$
Nass Calc. Mass mDa PPM DeE 1-ris Norm Contin) Formala

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		1,740	1,980	36,495	3,84	2,62	n.a.
2		2,560	49,530	1355,695	96,16	97,38	n.

[^0]:

