SUPPORTING INFORMATION

Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer

Zhiqiang Shen^{*}

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Jeffrey Ge^{*}

Department of Materials Engineering, University of Maryland, College Park, MD 20742, USA

Huilin Ye

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Shan Tang

State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, PR China.

E-mail: shantang@dlut.edu.cn

Ying Li

Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.

E-mail: yingli@engr.uconn.edu

Table S1: Summary of different simulations in the main text. Four different sets of simulations were performed for different purposes: (1) Test whether PFAS molecules can penetrate into the lipid membrane. The entire 30 ns simulations were used to see the evolution of penetrated PFAS number; (2) Analyze the membrane properties with inserted PFAS; The configurations in the last 5 ns were used to analyze the structure of the membrane. (3) Analyze the membrane properties with inserted cholesterol as a comparison. The configurations in the last 5 ns were used to analyze the membrane. (4) Perform a free energy analysis through umbrella sampling. The lipid membrane was first relaxed for 30 ns. Then, a PFAS molecule was placed above the membrane to perform the free energy analysis through the umbrella sampling process. The entire umbrella sampling process was 60 ns.

Target	PFAS	POPC	Cholesterol	Initial configurations	Simulation	Data for
	number	number	number		times	analysis
Test whether	26	274	0	PFAS molecules are	30 ns	0-30 ns
PFAS molecules				placed above (below)		
can penetrate into				the upper (lower)		
lipid membrane				leaflet		
Analyze the mem-	14, 26,	274	0	PFAS molecules are	30 ns	25-30 ns
brane properties	36, 46			evenly pre-inserted in		
with inserted				the lower and upper		
PFAS				leaflets		
Analyze the mem-	0	274	46	Cholesterol molecules	30 ns	25-30 ns
brane properties				are evenly pre-inserted		
with inserted				in the lower and upper		
cholesterol as a				leaflets		
comparison						
Perform free en-	1	274	0	The PFAS molecule is	30 ns	60 ns
ergy analysis				placed above the upper	pre-relax +	
				leaflet	60 ns	
					production	
					run	

1. Convergence of free energy analysis during umbrella sampling.

Figure S1: To check the convergence of free energy, we performed 5 independent sets of umbrella sampling processes with different time spans. As shown in the figure, the free energy profile is already converged at simulation with 1.6 ns relaxation time in each window. The different curves in the figure represent simulations with 0.8 ns, 1.2 ns, 1.6 ns, 2.0 ns and 3.0 ns per window, respectively. The corresponding total simulation time spans are 24 ns, 36 ns, 48 ns, 60 ns and 90 ns, respectively.

2. Confirmation of the computational time.

Figure S2: Evolutions of the total energy (A) and the area of lipid bilayer (B) of POPC bilayer embedded with PFOA molecules at the molar ratio of 14 mol% during the relaxation process. It can be seen from these figures that 30 ns in simulations is long enough to relax the bilayer.

3. Effect of initial distance during free penetration process.

Figure S3: To test the influence of initial distance between a PFAS molecules and the lipid membrane during the penetration process, we increase the their initial distance to the value of 2 nm for PFOA and PFOS. As given in these figures, the PFAS molecules still can spontaneously penetrated into the lipid membrane during a time period of 30 ns.

4. Effect of the bilayer size.

Figure S4: (A) To test the size effect of lipid bilayer during free penetration, we enlarged the system in Fig.2.A of the main text at both the lateral directions. The lipid bilayer and number of PFAS molecules shown in the snapshots here are four times larger than the one in the main text. Compared to PFOA, the PFOS molecules still have a larger probability to penetrate into the lipid bilayer. (B) To test the size effect of lipid bilayer embedded with PFAS molecules, we built a lipid bilayer with PFOA molecules that four times larger than the ones in Fig.4 of the main text. The molar ratio of PFOA here is 14 mol%. As confirmed in the figures, the order parameters of the larger system here are almost the same as those of the smaller system in the main text. As confirmed by these results, a lipid bilayer with 274 POPC is large enough to investigate the penetration of PFAS molecules and their effect on the bilayer proprieties.

Figure S5: Snapshots of lipid membrane embedded with PFNA, PFOS and PFHxS molecules of different molar ratios.

!rtf f	ile for	PFOA b	uilt by MAT	СН	
22	0		2		
MASS	128 02	D1 15.9	99900 O		
MASS	123 C3	11 15 9	99900 O		
MASS	122 C2	02 12.0	01100 C		
MASS	127 HC	P1 1.00	08000 H		
MASS	124 C3	12 12.0	01100 C		
MASS	125 FG	A2 18.9	99800 F		
MASS	126 FG	A3 18.9	99800 F		
AUTO A	NGLES D	IHE			
RESI GROUP	PFOA 0	.000000			
ATOM C	C30	2 0.34	40000		
ATOM C	2 C31	2 0.42	10000		
ATOM C	C31	2 0.34	40000		
ATOM C	C31	2 0.34	40000		
ATOM C	C31	2 0.34	40000		
ATOM C	C31	2 0.30	00000		
ATOM C	27 C20	2 0.84	40000		
ATOM F	FGA	3 -0.1	40000		
ATOM F	1 FGA	3 -0.1	40000		
ATOM F	2 FGA	$2^{-0.1}$	70000		
ATOM F	4 FGA	2 -0.1	70000		
ATOM F	5 FGA	.2 -0.1	70000		
ATOM F	6 FGA	2 -0.1	70000		
ATOM F	/ FGA	2 -0.1	/0000		
	o FGA	$2 -0.1^{\circ}$	70000		
ATOM F	9 FGA	2 -0.1	70000		
ATOM F	11 FGA	2 -0.1	70000		
ATOM F	12 FGA	2 -0.1	70000		
ATOM F	13 FGA	2 -0.1	70000		
ATOM F	14 FGA	2 -0.1	70000		
ATOM O	020	1 -0.6	90000		
ATOM H	HGP	1 = 0.3	20000		
BOND C	C1				
BOND C	1 C2				
BOND C	2 C3				
BOND C	C4				
BOND C	24 C5				
BOND C	.5 C0				
BOND C	F				
BOND C	F1				
BOND C	F2				
BOND C	1 F3				
BOND C	C1 F4				
BOND	2 F3 2 F6				
BOND C	2 F7				
BOND C	3 F8				
BOND C	4 F9				
BOND C	4 F10				
BOND C	5 F11				
BOND C	.5 F12 Y6 E12				
BOND C	6 F14				
BOND C	7 0				
BOND C	7 01				
BOND H	01				
IMPR C	7 C6	0	01		
PATCH	FIRST N	ONE LAS	T NONE		
l nrm f	ile of	PFOA bu	ilt by MATC	 भ	
BONDS	110 01		int by MAIC	4.1	
C302	C312	250.00	1.5200		
C312	C312	198.00	1.4500		
C2O2	C312	200.00	1.5220		
C302	FGA3	265.00	1.3400		
C312 C202	FGA2	549.00 750.00	1.3530		
C2O2	0311	230.00	1.2200		
HGP1	0311	545.00	0.9600		
ANGLES		aa	10.05		
FGA3	C302	C312	42.00	112.00	
C302	C312	C312 EGA2	75.70 50.00	110.10	
FGA?	C312	C312	50.00	115.00	
C312	C312	C312	45.80	120.00	
C312	C312	C2O2	52.00	108.00	
O2D1	C2O2	C312	70.00	125.00	
0311	C2O2	C312	55.00	110.50	
C2O2	C312	FGA2	50.00	115.00	
FGA2	C302	FGA2	150.00	107.00	

Supporting Information

0311	C2O2	O2D1	50.00	123.0	00	
C202	0511	nori	55.00	115.0	0	
DIHED	RALS					
FGA3	C302	C312	C312	0.2500	3	0.00
FGA3	C302	C312	FGA2	0.2500	3	0.00
C302	C312	C312	C312	0.9000	2	0.00
C302	C312	C312	C312	0.7000	3	0.00
C302	C312	C312	C312	0.1200	4	0.00
C302	C312	C312	C312	0.4000	1	0.00
C302	C312	C312	FGA2	0.3000	2	0.00
FGA2	C312	C312	C312	0.3000	2	0.00
FGA2	C312	C312	FGA2	0.3000	2	0.00
C312	C312	C312	C312	0.2000	3	0.00
C312	C312	C312	C2O2	0.2000	3	0.00
FGA2	C312	C312	C2O2	0.3000	2	0.00
C312	C312	C2O2	O2D1	0.0500	6	180.00
C312	C312	C2O2	0311	0.0500	6	180.00
O2D1	C2O2	C312	FGA2	0.0000	3	0.00
HGP1	O311	C2O2	C312	2.0500	2	180.00
0311	C2O2	C312	FGA2	0.1000	3	0.00
HGP1	O311	C2O2	O2D1	2.0500	2	180.00
IMPRO	PER					
C2O2	C312	O2D1	O311	65.0000	0	0.00
NONBO	NDED					
C302	0.0000	-	0.0200	2.3000		
C312	0.0000	-	0.0420	2.0500		
C2O2	0.0000	-	0.0980	1.7000		
FGA3	0.0000	-	-0.0970	1.6000		
FGA2	0.0000	-	0.1050	1.6300		
O2D1	0.0000	-	0.1200	1.7000		
0311	0.0000	-	0.1921	1.7650		
HGP1	0.0000	-	0.0460	0.2245		

Irtif
file
for
PFOS
built
by
MATCH

22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

AUTO ANGLES DIHE

RESI	PFO ₅	S 0.00	0000			
GROUP						
ATOM	С	C302	0.340000			
ATOM	C1	C312	0.420000			
ATOM	C2	C312	0.340000			
ATOM	C3	C312	0.340000			
ATOM	C4	C312	0.340000			
ATOM	C5	C312	0.340000			
ATOM	C6	C312	0.340000			
ATOM	C7	C312	0.560000			
ATOM	S	S3O2	0.540000			
ATOM	F	FGA3	-0.140000			
ATOM	F1	FGA3	-0.140000			
ATOM	F2	FGA3	-0.140000			
ATOM	F3	FGA2	-0.170000			
ATOM	F4	FGA2	-0.170000			
ATOM	F5	FGA2	-0.170000			
ATOM	F6	FGA2	-0.170000			
ATOM	F7	FGA2	-0.170000			
ATOM	F8	FGA2	-0.170000			
ATOM	F9	FGA2	-0.170000			
ATOM	F10	FGA2	-0.170000			
ATOM	F11	FGA2	-0.170000			
ATOM	F12	FGA2	-0.170000			
ATOM	F13	FGA2	-0.170000			
ATOM	F14	FGA2	-0.170000			
ATOM	F15	FGA2	-0.170000			
ATOM	F16	FGA2	-0.170000			
ATOM	0	O2P1	-0.420000			
ATOM	01	0311	-0.340000			
ATOM	O2	O2P1	-0.420000			
ATOM	Н	HGP1	0.420000			
BOND	С	C1				
BOND	C1	C2				
BOND	C2	C3				
BOND	C3	C4				
BOND	C4	C5				
BOND	C5	C6				
BOND	C6	C7				
BOND	C7	S				
BOND	С	F				
BOND	С	F1				
BOND	С	F2				
BOND	C1	F3				
BOND	C1	F4				

BOND C2	F5
BOND C2	F6
BOND C3	F7
BOND C3	F8
BOND C4	F9
BOND C4	F10
BOND C5	F11
BOND C5	F12
BOND C6	F13
BOND C6	F14
BOND C7	F15
BOND C7	F16
BOND O	S
BOND O1	S
BOND O2	S
BOND H	01
PATCH FIRS	ST NONE LAST NONE

Inrm f	ile of	PEOS hu	ilt by N	/ATCH		
BONDS	110 01	1105 04	iii oy n	2 man		
C302	C312	250.00	1.5	200		
C312	C212	108.00	1.5	500		
C312	\$202	198.00	1.4	2000		
C312	5502	185.00	1.7	300		
C302	FGAS	265.00	1.3	400		
C312	FGA2	349.00	1.5	530		
O2P1	\$302	630.00	1.4	400		
0311	\$302	235.00	1.6	400		
HGPI	0311	545.00	0.9	600		
ANGLES	G202	0010	42.00	110.00		
FGA3	C302	C312	42.00	112.00		
C302	C312	C312	75.70	110.10		
C302	C312	FGA2	50.00	115.00		
FGA2	C312	C312	50.00	115.00		
C312	C312	C312	45.80	120.00		
C312	C312	S3O2	45.00	105.00		
FGA2	C312	\$302	50.00	115.00		
C312	S3O2	O2P1	75.00	107.50		
C312	S3O2	0311	90.10	90.00		
FGA3	C302	FGA3	118.00	107.00		
FGA2	C312	FGA2	150.00	107.00		
O2P1	S3O2	0311	90.00	109.00		
O2P1	S3O2	O2P1	85.00	121.00		
HGP1	0311	\$302	42.30	113.20		
DIHEDR.	ALS					
FGA3	C302	C312	C312	0.2500	3	0.00
FGA3	C302	C312	FGA2	0.2500	3	0.00
C302	C312	C312	C312	0.9000	2	0.00
C302	C312	C312	C312	0 7000	3	0.00
C302	C312	C312	C312	0.1200	4	0.00
C302	C312	C312	C312	0.4000	1	0.00
C302	C312	C312	EGA2	0.4000	2	0.00
EGA2	C212	C212	C212	0.3000	2	0.00
EC A2	C212	C212	ECA2	0.3000	2	0.00
C212	C212	C312 C212	C212	0.3000	2	0.00
C312	C312	C312	6202	0.2000	2	0.00
C312	C312	C312	\$302	0.0770	3	0.00
FGA2	C312	0312	S302	0.3000	2	0.00
C312	C312	\$302	02P1	0.1800	3	0.00
C312	C312	\$302	0311	0.4000	3	0.00
C312	C312	\$302	0311	0.1000	2	0.00
FGA2	C312	\$302	O2P1	0.0000	3	0.00
FGA2	C312	\$302	0311	0.1000	3	0.00
C312	S3O2	0311	HGP1	1.6000	2	0.00
C312	S3O2	0311	HGP1	0.2000	1	180.00
O2P1	S3O2	O311	HGP1	0.2000	3	0.00
IMPROP	ER					
NONBON	NONBONDED					

1101100			
C302	0.0000	-0.0200	2.3000
C312	0.0000	-0.0420	2.0500
S3O2	0.0000	-0.3500	2.0000
FGA3	0.0000	-0.0970	1.6000
FGA2	0.0000	-0.1050	1.6300
O2P1	0.0000	-0.1200	1.7000
0311	0.0000	-0.1921	1.7650
HGP1	0.0000	-0.0460	0.2245