SUPPORTING INFORMATION

Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer

Zhiqiang Shen ${ }^{*}$

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Jeffrey Ge*

Department of Materials Engineering, University of Maryland, College Park, MD 20742, USA

Huilin Ye

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Shan Tang
State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, PR China.
E-mail: shantang@dlut.edu.cn

Ying Li

Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
E-mail: yingli@engr.uconn.edu

Table S1: Summary of different simulations in the main text. Four different sets of simulations were performed for different purposes: (1) Test whether PFAS molecules can penetrate into the lipid membrane. The entire 30 ns simulations were used to see the evolution of penetrated PFAS number; (2) Analyze the membrane properties with inserted PFAS; The configurations in the last 5 ns were used to analyze the structure of the membrane. (3) Analyze the membrane properties with inserted cholesterol as a comparison. The configurations in the last 5 ns were used to analyze the structure of the membrane. (4) Perform a free energy analysis through umbrella sampling. The lipid membrane was first relaxed for 30 ns . Then, a PFAS molecule was placed above the membrane to perform the free energy analysis through the umbrella sampling process. The entire umbrella sampling process was 60 ns .

Target	PFAS number	POPC number	Cholesterol number	Initial configurations	Simulation times	Data for analysis
Test whether PFAS molecules can penetrate into lipid membrane	26	274	0	PFAS molecules are placed above (below) the upper (lower) leaflet	30 ns	$0-30 \mathrm{~ns}$
Analyze the membrane properties with inserted PFAS	$\begin{aligned} & 14,26, \\ & 36,46 \end{aligned}$	274	0	PFAS molecules are evenly pre-inserted in the lower and upper leaflets	30 ns	25-30 ns
Analyze the membrane properties with inserted cholesterol as a comparison	0	274	46	Cholesterol molecules are evenly pre-inserted in the lower and upper leaflets	30 ns	25-30 ns
Perform free energy analysis		274	0	The PFAS molecule is placed above the upper leaflet	30 ns pre-relax + 60 ns production run	60 ns

1. Convergence of free energy analysis during umbrella sampling.

Figure S1: To check the convergence of free energy, we performed 5 independent sets of umbrella sampling processes with different time spans. As shown in the figure, the free energy profile is already converged at simulation with 1.6 ns relaxation time in each window. The different curves in the figure represent simulations with $0.8 \mathrm{~ns}, 1.2 \mathrm{~ns}, 1.6 \mathrm{~ns}, 2.0 \mathrm{~ns}$ and 3.0 ns per window, respectively. The corresponding total simulation time spans are $24 \mathrm{~ns}, 36 \mathrm{~ns}$, $48 \mathrm{~ns}, 60 \mathrm{~ns}$ and 90 ns , respectively.

2. Confirmation of the computational time.

Figure S2: Evolutions of the total energy (A) and the area of lipid bilayer (B) of POPC bilayer embedded with PFOA molecules at the molar ratio of $14 \mathrm{~mol} \%$ during the relaxation process. It can be seen from these figures that 30 ns in simulations is long enough to relax the bilayer.
3. Effect of initial distance during free penetration process.

Figure S3: To test the influence of initial distance between a PFAS molecules and the lipid membrane during the penetration process, we increase the their initial distance to the value of 2 nm for PFOA and PFOS. As given in these figures, the PFAS molecules still can spontaneously penetrated into the lipid membrane during a time period of 30 ns .

4. Effect of the bilayer size.

Figure S4: (A) To test the size effect of lipid bilayer during free penetration, we enlarged the system in Fig.2.A of the main text at both the lateral directions. The lipid bilayer and number of PFAS molecules shown in the snapshots here are four times larger than the one in the main text. Compared to PFOA, the PFOS molecules still have a larger probability to penetrate into the lipid bilayer. (B) To test the size effect of lipid bilayer embedded with PFAS molecules, we built a lipid bilayer with PFOA molecules that four times larger than the ones in Fig. 4 of the main text. The molar ratio of PFOA here is $14 \mathrm{~mol} \%$. As confirmed in the figures, the order parameters of the larger system here are almost the same as those of the smaller system in the main text. As confirmed by these results, a lipid bilayer with 274 POPC is large enough to investigate the penetration of PFAS molecules and their effect on the bilayer proprieties.

Figure S5: Snapshots of lipid membrane embedded with PFNA, PFOS and PFHxS molecules of different molar ratios.

MASS	128	O2D1	15.99900	O
MASS	123	C302	12.01100	C
MASS	129	O311	15.99900	O
MASS	122	C2O2	12.01100	C
MASS	127	HGP1	1.008000	H
MASS	124	C312	12.01100	C
MASS	125	FGA2	18.99800	F
MASS	126	FGA3	18.99800	F

AUTO ANGLES DIHE

RESI PFOA 0.000000			
GROUP			
ATOM	C	C302	0.340000
ATOM	C1	C312	0.420000
ATOM	C 2	C312	0.340000
ATOM	C3	C312	0.340000
ATOM	C4	C312	0.340000
ATOM	C5	C312	0.340000
ATOM	C6	C312	0.300000
ATOM	C7	C 2 O 2	0.840000
ATOM	F	FGA3	-0.140000
ATOM	F1	FGA3	-0.140000
ATOM	F2	FGA3	-0.140000
ATOM	F3	FGA2	-0.170000
ATOM	F4	FGA2	-0.170000
ATOM	F5	FGA2	-0.170000
ATOM	F6	FGA2	-0.170000
ATOM	F7	FGA2	-0.170000
ATOM	F8	FGA2	-0.170000
ATOM	F9	FGA2	-0.170000
ATOM	F10	FGA2	-0.170000
ATOM	F11	FGA2	-0.170000
ATOM	F12	FGA2	-0.170000
ATOM	F13	FGA2	-0.170000
ATOM	F14	FGA2	-0.170000
ATOM	O	O2D1	-0.630000
ATOM	O1	O311	-0.590000
ATOM	H	HGP1	0.420000
BOND	C	C1	
BOND	C1	C2	
BOND	C 2	C3	
BOND	C3	C4	
BOND	C 4	C5	
BOND	C5	C6	
BOND	C7	C6	
BOND	C	F	
BOND	C	F1	
BOND	C	F2	
BOND	C1	F3	
BOND	C1	F4	
BOND	C 2	F5	
BOND	C 2	F6	
BOND	C3	F7	
BOND	C3	F8	
BOND	C 4	F9	
BOND	C 4	F10	
BOND	C5	F11	
BOND	C 5	F12	
BOND	C6	F13	
BOND	C6	F14	
BOND	C7	O	
BOND	C 7	O1	
BOND	H	O1	
IMPR	C7	C6	O O1

!prm				
file BONDS				
C302	C312	250.00	1.5200	
C312	C312	198.00	1.4500	
C2O2	C312	200.00	1.5220	
C302	FGA3	265.00	1.3400	
C312	FGA2	349.00	1.3530	
C2O2	O2D1	750.00	1.2200	
C2O2	O311	230.00	1.4000	
HGP1	O311	545.00	0.9600	
ANGLES				
FGA3	C302	C312	42.00	112.00
C302	C312	C312	75.70	110.10
C302	C312	FGA2	50.00	115.00
FGA2	C312	C312	50.00	115.00
C312	C312	C312	45.80	120.00
C312	C312	C2O2	52.00	108.00
O2D1	C2O2	C312	70.00	125.00
O311	C2O2	C312	55.00	110.50
C2O2	C312	FGA2	50.00	115.00
FGA3	C302	FGA3	118.00	107.00
FGA2	C312	FGA2	150.00	107.00

O311	C2O2	O2D1	50.00	123.00		
C2O2	O311	HGP1	55.00	115.00		
DIHEDRALS						
FGA3	C302	C312	C312	0.2500	3	0.00
FGA3	C302	C312	FGA2	0.2500	3	0.00
C302	C312	C312	C312	0.9000	2	0.00
C302	C312	C312	C312	0.7000	3	0.00
C302	C312	C312	C312	0.1200	4	0.00
C302	C312	C312	C312	0.4000	1	0.00
C302	C312	C312	FGA2	0.3000	2	0.00
FGA2	C312	C312	C312	0.3000	2	0.00
FGA2	C312	C312	FGA2	0.3000	2	0.00
C312	C312	C312	C312	0.2000	3	0.00
C312	C312	C312	C2O2	0.2000	3	0.00
FGA2	C312	C312	C 2 O 2	0.3000	2	0.00
C312	C312	C 2 O 2	O2D1	0.0500	6	180.00
C312	C312	C2O2	O311	0.0500	6	180.00
O2D1	C2O2	C312	FGA2	0.0000	3	0.00
HGP1	O311	C 2 O 2	C312	2.0500	2	180.00
O311	C2O2	C312	FGA2	0.1000	3	0.00
HGP1	O311	C2O2	O2D1	2.0500	2	180.00
IMPROPER						
C2O2	C312	O2D1	O311	65.0000	0	0.00
NONBONDED						
C302	0.0000		-0.0200	2.3000		
C312	0.0000		-0.0420	2.0500		
C2O2	0.0000		-0.0980	1.7000		
FGA3	0.0000		-0.0970	1.6000		
FGA2	0.0000		-0.1050	1.6300		
O2D1	0.0000		-0.1200	1.7000		
O311	0.0000		-0.1921	1.7650		
HGP1	0.0000		-0.0460	0.2245		

! rtf file for PFOS built by MATCH

MASS	129	S3O2	32.06000	S
MASS	124	FGA2	18.99800	F
MASS	125	FGA3	18.99800	F
MASS	123	C312	12.01100	C
MASS	126	HGP1	1.008000	H
MASS	127	O2P1	15.99900	O
MASS	128	O311	15.99900	O
MASS	122	C 302	12.01100	C

AUTO ANGLES DIHE

RESI PFOS	0.000000	
GROUP		
ATOM C	C302	0.340000
ATOM C1	C312	0.420000
ATOM C2	C312	0.340000
ATOM C3	C312	0.340000
ATOM C4	C312	0.340000
ATOM C5	C312	0.340000
ATOM C6	C312	0.340000
ATOM C7	C312	0.560000
ATOM S	S3O2	0.540000
ATOM F	FGA3	-0.140000
ATOM F1	FGA3	-0.140000
ATOM F2	FGA3	-0.140000
ATOM F3	FGA2	-0.170000
ATOM F4	FGA2	-0.170000
ATOM F5	FGA2	-0.170000
ATOM F6	FGA2	-0.170000
ATOM F7	FGA2	-0.170000
ATOM F8	FGA2	-0.170000
ATOM F9	FGA2	-0.170000
ATOM F10	FGA2	-0.170000
ATOM F11	FGA2	-0.170000
ATOM F12	FGA2	-0.170000
ATOM F13	FGA2	-0.170000
ATOM F14	FGA2	-0.170000
ATOM F15	FGA2	-0.170000
ATOM F16	FGA2	-0.170000
ATOM O	O2P1	-0.420000
ATOM O1	O311	-0.340000
ATOM O2	O2P1	-0.420000
ATOM H	HGP1	0.420000
BOND C	C1	
BOND C1	C2	
BOND C2	C3	
BOND C3	C4	
BOND C4	C5	
BOND C5	C6	
BOND C6	C7	
BOND C7	S	
BOND C	F	
BOND C	F1	
BOND C	F2	
BOND C1	F3	
BOND C1	F4	
ATOM		

BOND C2	F5
BOND C2	F6
BOND C3	F7
BOND C3	F8
BOND C4	F9
BOND C4	F10
BOND C5	F11
BOND C5	F12
BOND C6	F13
BOND C6	F14
BOND C7	F15
BOND C7	F16
BOND O	S
BOND O1	S
BOND O2	S
BOND H	O1
PATCH FIRST NONE LAST NONE	

!prm file of PFOS built by MATCH

BONDS			
C302	C312	250.00	1.5200
C312	C312	198.00	1.4500
C312	S3O2	185.00	1.7900
C302	FGA3	265.00	1.3400
C312	FGA2	349.00	1.3530
O2P1	S3O2	630.00	1.4400
O311	S3O2	235.00	1.6400
HGP1	O311	545.00	0.9600

ANGLES				
FGA3	C302	C312	42.00	112.00
C302	C312	C312	75.70	110.10
C302	C312	FGA2	50.00	115.00
FGA2	C312	C312	50.00	115.00
C312	C312	C312	45.80	120.00
C312	C312	S3O2	45.00	105.00
FGA2	C312	S3O2	50.00	115.00
C312	S3O2	O2P1	75.00	107.50
C312	S3O2	O311	90.10	90.00
FGA3	C302	FGA3	118.00	107.00
FGA2	C312	FGA2	150.00	107.00
O2P1	S3O2	O311	90.00	109.00
O2P1	S3O2	O2P1	85.00	121.00
HGP1	O311	S3O2	42.30	113.20
DIHEDRALS				

DIHEDRALS						
FGA3	C302	C312	C312	0.2500	3	0.00
FGA3	C302	C3122	FGA2	0.2500	3	0.00
C302	C312	C312	C312	0.9000	2	0.00
C302	C312	C312	C312	0.7000	3	0.00
C302	C312	C312	C312	0.1200	4	0.00
C302	C312	C312	C312	0.4000	1	0.00
C302	C312	C312	FGA2	0.3000	2	0.00
FGA2	C312	C312	C312	0.3000	2	0.00
FGA2	C312	C312	FGA2	0.3000	2	0.00
C312	C312	C312	C312	0.2000	3	0.00
C312	C312	C312	S3O2	0.0770	3	0.00
FGA2	C312	C312	S3O2	0.3000	2	0.00
C312	C312	S3O2	O2P1	0.1800	3	0.00
C312	C312	S3O2	O311	0.4000	3	0.00
C312	C312	S3O2	O311	0.1000	2	0.00
FGA2	C312	S3O2	O2P1	0.0000	3	0.00
FGA2	C312	S3O2	O311	0.1000	3	0.00
C312	S3O2	O3111	HGP1	1.6000	2	0.00
C312	S3O2	O311	HGP1	0.2000	1	180.00
O2P1	S3O2	O311	HGP1	0.2000	3	0.00

IMPROPER

NONBONDED			
C302	0.0000	-0.0200	2.3000
C312	0.0000	-0.0420	2.0500
S3O2	0.0000	-0.3500	2.0000
FGA3	0.0000	-0.0970	1.6000
FGA2	0.0000	-0.1050	1.6300
O2P1	0.0000	-0.1200	1.7000
O311	0.0000	-0.1921	1.7650
HGP1	0.0000	-0.0460	0.2245

