Supporting Information (SI)

Synthesis of Three-layer Perovskite Oxynitride K₂Ca₂Ta₃O₉N·2H₂O and Photocatalytic Activity for H₂ Evolution under Visible Light

Ya Tang,[†] Kosaku Kato,[‡] Takayoshi Oshima,^{†,#} Hiroto Mogi,[†] Akinobu Miyoshi,^{†,§} Kotaro Fujii,[†] Keiichi Yanagisawa,[§] Koji Kimoto,[§] Akira Yamakata,[‡] Masatomo Yashima,[†] and Kazuhiko Maeda^{*,†}

[†] Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

[‡] Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan

[§] Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
§ Electronic Functional Materials Group, Polymer Materials Unit, National Institute for Materials

Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

[#] Current address: Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart 70569, Germany

*To whom corresponding author should be addressed. maedak@chem.titech.ac.jp

Figure S1. XRD patterns for nitridation products of $KCa_2Ta_3O_{10}$ under various reaction conditions (at 1173 K); (a) different amounts of K_2CO_3 at 50 mL min⁻¹ of NH₃ flow, (b) different reaction times at 50 mL min⁻¹ of NH₃ flow, and (c) different NH₃ flow rates. The best reaction conditions for $K_2Ca_2Ta_3O_9N \cdot 2H_2O$ synthesis were finally confirmed to be 1173 K, 3 h, 100 mL min⁻¹ NH₃ flow, and 1.5 mol equiv of potassium (from K_2CO_3).

Figure S2. TGA profile for $K_2Ca_2Ta_3O_9N \cdot nH_2O$ under air flow. Conditions: temperature range, 298–1273 K; heating/cooling rate, 5 K min⁻¹.

Figure S3. Comparison of the crystal structures of (a) $K_2Ca_2Ta_3O_9N \cdot 2H_2O$; (b) $K_2LaTa_2O_6N \cdot 1.6H_2O$. The inset is the coordination geometry around Ta, band length and angle were calculated from the results of Rietveld refinement.

Figure S4. (a) XRD patterns for $Pt/K_2Ca_2Ta_3O_9N$ before and after reaction. (b) DRS for the photocatalysts before and after reaction.

Figure S5. Time courses of H₂ evolution over Pt/K₂Ca₂Ta₃O₉N·2H₂O and Pt/K₂LaTa₂O₆N·1.6H₂O in (a) aqueous NaI solution (5 mM, pH = 2.5), and (b) aqueous methanol solution (10 vol%). Reaction conditions: catalyst, 50 mg; light source, 300 W Xe lamp without cutoff filter ($\lambda > 350$ nm).

Figure S6. (a) Mott-Schottky plots for $K_2Ca_2Ta_3O_9N\cdot 2H_2O$ with different frequencies in a MeCN solution containing 0.1 M Et₄NBF₄. (b) Proposed band gap structure for $K_2Ca_2Ta_3O_9N\cdot 2H_2O$.

Figure S7. Transient absorption spectra for $K_2Ca_2Ta_3O_9N\cdot 2H_2O$ and $K_2LaTa_2O_6N\cdot 1.6H_2O$ recorded with 480 nm laser pulse excitation under a N_2 atmosphere (20 Torr).

Figure S8. Decay curves of transient absorption intensity for $K_2Ca_2Ta_3O_9N \cdot 2H_2O$ and $K_2LaTa_2O_6N \cdot 1.6H_2O$ recorded at 17000 or 19600 cm⁻¹. Excitation: 480 nm, atmosphere: air.

Table	S1.	Refined	structural	parameters	and	reliability	factors	for	synchrotron	XRD	data	for
K ₂ Ca ₂	Fa ₃ O ₉	$N \cdot 2H_2O$	measured a	at 297 K.								

Atom		Coordinates		Occupancy	Uiso / Ų	Site
	x	У	Ζ			
K	1/2	1/2	0.37970	1	0.045(6)	2h
Ca	1/2	1/2	0.12850	1	0.008(2)	2h
Та	0	0	0	1	0.004(8)	1a
Та	0	0	0.24408	1	0.004(8)	2g
O1/N1 ^[a]	0	1/2	0	0.875/0.125	$0.073(9)^{[b]}$	2f
O2/N2 ^[a]	0	0	0.10938	0.875/0.125	$0.073(9)^{[b]}$	2g
O3/N3 ^[a]	0	1/2	0.22248	0.938/0.063	$0.073(9)^{[b]}$	4i
$O4/N4^{[a]}$	0	0	0.34738	0.875/0.125	$0.073(9)^{[b]}$	2g
O5 ^[c]	0.12422	0	1/2	1/2	$0.073(9)^{[b]}$	4m

^[a] The ratio was decided in order to retain charge neutrality. Nitrogen was assumed to be equally located in each site. ^[b] Atomic displacement parameters for anions were assumed to be the same. ^[c] The O(5) is from intercalated H₂O and H atoms were not included for the analysis.