Supporting Information

Structural Tuning and Pore modulation of Three $\mathbf{C u (I I) - O r g a n i c}$ Frameworks: Enhance Stability and Functionality

Tao Ding, *, ${ }^{a}$ Hao Wang, ${ }^{a}$ Hui-Min Li, ${ }^{a}$ Li-Na Zheng, *, ${ }^{a}$ Ning Xue, ${ }^{a}$ Bo Liu* ${ }^{*}$
a. School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China.
b. College of Chemistry \& Pharmacy, Northwest A\&F University, Yangling, 712100, P. R. China

Table S1. Selected Bond Length (\AA) and Angles (${ }^{\circ}$) for 1 to 3

1			
$\mathrm{Cu}(1)-\mathrm{O}(1) \# 1$	1.981(3)	$\mathrm{Cu}(2)-\mathrm{O}(2)$	1.982(3)
$\mathrm{Cu}(1)-\mathrm{O}(1)$	1.981(3)	$\mathrm{Cu}(2)-\mathrm{O}(5)$	2.22(3)
$\mathrm{Cu}(1)-\mathrm{O}(1) \# 2$	1.981(3)	$\mathrm{Cu}(2)-\mathrm{O}(5 \mathrm{~A})$	2.18(2)
$\mathrm{Cu}(1)-\mathrm{O}(1) \# 3$	1.981(3)	$\mathrm{Cu}(3)-\mathrm{O}(4)$	1.949(3)
$\mathrm{Cu}(1)-\mathrm{O}(6)$	1.99(2)	$\mathrm{Cu}(3)-\mathrm{O}(4) \# 4$	1.949(3)
$\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	2.223(17)	$\mathrm{Cu}(3)-\mathrm{O}(4) \# 5$	1.949(3)
$\mathrm{Cu}(2)-\mathrm{O}(2) \# 1$	1.982(3)	$\mathrm{Cu}(3)-\mathrm{O}(4) \# 6$	1.949(3)
$\mathrm{Cu}(2)-\mathrm{O}(2) \# 3$	1.982(3)	$\mathrm{O}(2) \# 3-\mathrm{Cu}(2)-\mathrm{O}(2)$	88.18(17)
$\mathrm{O}(1) \# 2-\mathrm{Cu}(1)-\mathrm{O}(1)$	90.88(18)	$\mathrm{O}(2) \# 1-\mathrm{Cu}(2)-\mathrm{O}(2)$	169.63(17)
$\mathrm{O}(1) \# 2-\mathrm{Cu}(1)-\mathrm{O}(1) \# 3$	168.02(17)	$\mathrm{O}(2) \# 1-\mathrm{Cu}(2)-\mathrm{O}(5)$	95.9(10)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1)$	168.02(17)	$\mathrm{O}(2) \# 3-\mathrm{Cu}(2)-\mathrm{O}(5)$	99.8(9)
$\mathrm{O}(1) \# 3-\mathrm{Cu}(1)-\mathrm{O}(1)$	87.87(18)	$\mathrm{O}(2) \# 2-\mathrm{Cu}(2)-\mathrm{O}(5)$	90.5(9)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1) \# 2$	87.87(18)	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(5)$	94.4(10)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1) \# 3$	90.88(18)	$\mathrm{O}(2) \# 2-\mathrm{Cu}(2)-\mathrm{O}(5 \mathrm{~A})$	90.2(7)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(6)$	95.2(8)	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(5 \mathrm{~A})$	98.5(6)
$\mathrm{O}(1) \# 3-\mathrm{Cu}(1)-\mathrm{O}(6)$	102.7(9)	$\mathrm{O}(2) \# 3-\mathrm{Cu}(2)-\mathrm{O}(5 \mathrm{~A})$	100.2(7)
$\mathrm{O}(1) \# 2-\mathrm{Cu}(1)-\mathrm{O}(6)$	89.3(9)	$\mathrm{O}(2) \# 1-\mathrm{Cu}(2)-\mathrm{O}(5 \mathrm{~A})$	91.8(6)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(6)$	96.7(8)	$\mathrm{O}(4)-\mathrm{Cu}(3)-\mathrm{O}(4) \# 5$	180
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	95.99(9)	$\mathrm{O}(4) \# 6-\mathrm{Cu}(3)-\mathrm{O}(4) \# 4$	180.00(13)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	95.99(9)	$\mathrm{O}(4) \# 5-\mathrm{Cu}(3)-\mathrm{O}(4) \# 4$	88.6(2)
$\mathrm{O}(2) \# 1-\mathrm{Cu}(2)-\mathrm{O}(2) \# 3$	90.88(17)	$\mathrm{O}(4)-\mathrm{Cu}(3)-\mathrm{O}(4) \# 6$	88.6(2)
$\mathrm{O}(2) \# 1-\mathrm{Cu}(2)-\mathrm{O}(2) \# 2$	88.18(17)	$\mathrm{O}(4) \# 5-\mathrm{Cu}(3)-\mathrm{O}(4) \# 6$	91.4(2)
$\mathrm{O}(2) \# 2-\mathrm{Cu}(2)-\mathrm{O}(2) \# 3$	$169.63(17)$	$\mathrm{O}(4)-\mathrm{Cu}(3)-\mathrm{O}(4) \# 4$	91.4(2)
$\mathrm{O}(2) \# 2-\mathrm{Cu}(2)-\mathrm{O}(2)$	90.88(17)		

Symmetrical codes: \#1-x+1, y, z; \#2-x+1, y, -z-1/2; \#3 x, y, -z-1/2; \#4-x, y, z; \#5 x, -y+1, -z-1; \#6-x, -y+1, -z-1 for $\mathbf{1}$.

$\mathbf{2}$			
$\mathrm{Cu}(1)-\mathrm{O}(2) \# 1$	$1.982(5)$	$\mathrm{Cu}(2)-\mathrm{O}(3)$	$1.966(5)$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.970(5)$	$\mathrm{Cu}(2)-\mathrm{O}(4)$	$2.145(8)$
$\mathrm{Cu}(1)-\mathrm{O}(6)$	$1.938(11)$	$\mathrm{Cu}(2)-\mathrm{O}(5) \# 2$	$1.956(5)$
$\mathrm{Cu}(1)-\mathrm{O}(11)$	$2.135(6)$	$\mathrm{Cu}(2)-\mathrm{O}(5) \# 4$	$1.956(5)$
$\mathrm{Cu}(1)-\mathrm{O}(7) \# 1$	$1.977(17)$	$\mathrm{Cu}(3)-\mathrm{O}(8)$	$1.975(4)$
$\mathrm{Cu}(1)-\mathrm{C}(9 \mathrm{~A}) \# 1$	$2.61(4)$	$\mathrm{Cu}(3)-\mathrm{O}(8) \# 3$	$1.975(4)$
$\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	$2.09(3)$	$\mathrm{Cu}(3)-\mathrm{O}(9)$	$2.134(8)$
$\mathrm{Cu}(1)-\mathrm{O}(7 \mathrm{~A}) \# 1$	$1.94(3)$	$\mathrm{Cu}(3)-\mathrm{O}(10) \# 6$	$1.973(5)$
$\mathrm{Cu}(1)-\mathrm{O}(2) \# 1$	$1.982(5)$	$\mathrm{Cu}(3)-\mathrm{O}(10) \# 5$	$1.973(5)$

$\mathrm{O}(2) \# 1-\mathrm{Cu}(1)-\mathrm{O}(11)$	$97.1(2)$	$\mathrm{O}(7 \mathrm{~A}) \# 1-\mathrm{Cu}(1)-\mathrm{O}(11)$	$88.1(11)$
$\mathrm{O}(2) \# 1-\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	$88.9(7)$	$\mathrm{O}(3) \# 3-\mathrm{Cu}(2)-\mathrm{O}(3)$	$87.6(3)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2) \# 1$	$167.8(2)$	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(4)$	$95.6(2)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(11)$	$95.2(2)$	$\mathrm{O}(5) \# 4-\mathrm{Cu}(2)-\mathrm{O}(3)$	$91.10(19)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(7) \# 1$	$89.7(5)$	$\mathrm{O}(5) \# 2-\mathrm{Cu}(2)-\mathrm{O}(3)$	$167.9(2)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(6 \mathrm{~A})$	$88.2(7)$	$\mathrm{O}(5) \# 2-\mathrm{Cu}(2)-\mathrm{O}(3) \# 3$	$91.10(19)$
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}(2) \# 1$	$91.3(4)$	$\mathrm{O}(5) \# 4-\mathrm{Cu}(2)-\mathrm{O}(4)$	$96.5(3)$
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}(1)$	$88.6(4)$	$\mathrm{O}(5) \# 2-\mathrm{Cu}(2)-\mathrm{O}(5) \# 4$	$87.6(3)$
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}(11)$	$91.1(10)$	$\mathrm{O}(8)-\mathrm{Cu}(3)-\mathrm{O}(8) \# 3$	$88.5(3)$
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}(7) \# 1$	$168.8(3)$	$\mathrm{O}(8)-\mathrm{Cu}(3)-\mathrm{O}(9)$	$95.2(2)$
$\mathrm{O}(7) \# 1-\mathrm{Cu}(1)-\mathrm{O}(11)$	$100.1(9)$	$\mathrm{O}(10) \# 5-\mathrm{Cu}(3)-\mathrm{O}(8)$	$167.8(2)$
$\mathrm{O}(6 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(11)$	$104.1(11)$	$\mathrm{O}(10) \# 6-\mathrm{Cu}(3)-\mathrm{O}(8) \# 3$	$167.8(2)$
$\mathrm{O}(6 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{C}(9 \mathrm{~A}) \# 1$	$140.6(10)$	$\mathrm{O}(10) \# 6-\mathrm{Cu}(3)-\mathrm{O}(9)$	$97.0(3)$
$\mathrm{O}(7 \mathrm{~A}) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1)$	$91.9(9)$	$\mathrm{O}(10) \# 6-\mathrm{Cu}(3)-\mathrm{O}(10) \# 5$	$88.9(3)$

Symmetrical codes: \#1-x+1, y, z; \#2-x+1, y, -z-1/2; \#3 x, y, -z-1/2; \#4-x, y, z; \#5 x, -y+1, -z-1; \#6 -x, -y+1, -z-1 for 2.

$\mathbf{3}$			
$\mathrm{Cu}(2)-\mathrm{O}(1) \# 1$	$1.963(4)$	$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.910(19)$
$\mathrm{Cu}(2)-\mathrm{O}(2)$	$1.970(4)$	$\mathrm{Cu}(1)-\mathrm{O}(4 \mathrm{~A})$	$1.994(19)$
$\mathrm{Cu}(2)-\mathrm{O}(7)$	$1.964(4)$	$\mathrm{Cu}(1)-\mathrm{O}(5 \mathrm{~A})$	$1.92(3)$
$\mathrm{Cu}(2)-\mathrm{O}(8) \# 1$	$1.963(5)$	$\mathrm{Cu}(1)-\mathrm{O}(007)$	$1.95(3)$
$\mathrm{Cu}(2)-\mathrm{N}(4) \# 2$	$2.123(5)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.991(5)$
$\mathrm{Cu}(1)-\mathrm{O}(9)$	$\mathrm{Cu}(1)-\mathrm{N}(2) \# 3$	$1.999(4)$	
$\mathrm{O}(1) \# 1-\mathrm{Cu}(2)-\mathrm{O}(2)$	$167.23(19)$	$\mathrm{O}(4 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(9)$	$99.4(5)$
$\mathrm{O}(1) \# 1-\mathrm{Cu}(2)-\mathrm{O}(7)$	$90.3(2)$	$\mathrm{O}(4 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(2) \# 3$	$171.9(5)$
$\mathrm{O}(1) \# 1-\mathrm{Cu}(2)-\mathrm{O}(8) \# 1$	$86.9(2)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(9)$	$95.5(7)$
$\mathrm{O}(1) \# 1-\mathrm{Cu}(2)-\mathrm{N}(4) \# 2$	$96.12(18)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(4 \mathrm{~A})$	$90.7(11)$
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{N}(4) \# 2$	$96.64(19)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(1)$	$176.9(8)$
$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{O}(2)$	$87.9(2)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{N}(2) \# 3$	$93.3(9)$
$\mathrm{O}(8) \# 1-\mathrm{Cu}(2)-\mathrm{O}(2)$	$92.1(3)$	$\mathrm{O}(007)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$171.6(6)$
$\mathrm{O}(8) \# 1-\mathrm{Cu}(2)-\mathrm{O}(7)$	$167.4(2)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(9)$	$87.41(15)$
$\mathrm{O}(8) \# 1-\mathrm{Cu}(2)-\mathrm{N}(4) \# 2$	$96.3(2)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(4 \mathrm{~A})$	$87.7(6)$
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(9)$	$96.7(5)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2) \# 3$	$87.94(19)$
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(007)$	$84.8(10)$	$\mathrm{N}(2) \# 3-\mathrm{Cu}(1)-\mathrm{O}(9)$	$87.28(15)$
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$96.6(6)$	$\mathrm{Cu}(1)-\mathrm{O}(9)-\mathrm{Cu}(1) \# 3$	$95.0(2)$
S			

Symmetrical codes: \#1-x+1, y, z; \#1-x+3/2, -y+3/2,-z+1; \#2-x+1,-y+1,-z; \#3x,-y+1,z; ; ;
$\# 4-\mathrm{x}+1, \mathrm{y},-\mathrm{z} ; \# 5-\mathrm{x}+2,-\mathrm{y}+1,-\mathrm{z}+1 ; \# 6-\mathrm{x}+2, \mathrm{y},-\mathrm{z}+1$ for 3.

Figure S1. The L ${ }^{4-}$ ligand viewed as two 3-c nodes.

(a)

(b)

Figure S2. Single-crystal structure of 1. (a) Coordination environments of $\mathrm{Cu}(\mathrm{II})$ ions . The hydrogen atoms are omitted for clarity. Symmetry codes A: (1-x, y, z); B: (2-x+1, y, -z-1/2); C: ($x, y,-z-1 / 2$); D: ($-x, y, z$); E: ($x,-y+1,-z-1$); F: (-x, -y+1, -z-1); G: (1- x, y, -z-1/2); (gray C, red O, blue N, green Cu); (b) View of the 2D layer structure.

Figure S3. Single-crystal structure of 2. (a) Coordination environments of $\mathrm{Cu}(\mathrm{II})$ ions . The hydrogen atoms are omitted for clarity. Symmetry codes A: $(-x+3 / 2,-y+3 / 2$, $-z+1) ;$ B: (-x+1, -y+1, -z); C: ($x,-y+1, z) ;$ D: ($-x+1, y,-z) ;$ E: ($-x+2,-y+1,-z+1$); F: $(-x+2, y,-z+1)$; (gray C, red O, blue N, green Cu) ; (b) View of the 2D layer structure
from the c axis.

(a)

(b)

(c)

(d)

Figure S4. Single-crystal structure of 3. (a) Coordination environments of $\mathrm{Cu}(\mathrm{II})$ ions in 3. The hydrogen atoms are omitted for clarity. Symmetry codes A: $(-x+2,-y+1$, $-z+1) ;$ B: (-x+3/2,-y +3/2, -z+1); C: (-x+1, y, -z+3/2); D: (x, -y+1, z-1/2); E: (x, $-\mathrm{y}+1, \mathrm{z}+1 / 2$); F: (x-1/2, y-1/2, -z+1); (gray C, red O, blue N, green Cu); (b) View of
the 2D layer structure from the b axis; (c) 1D open channel; (d) are stacked diagrams from the c axis.

Figure S5. PXRD patterns for 1. (a) Simulated, as-synthesized and activated samples and (b) After being soaked in acidic and basic solutions for different time periods.

Figure S6. PXRD patterns for 2. (a) Simulated, as-synthesized and activated samples and (b) After being soaked in acidic and basic solutions for different time periods.

(a)

(b)

Figure S7. PXRD patterns for 3. (a) Simulated, as-synthesized and activated samples and (b) After being soaked in acidic and basic solutions for different time periods.

Figure S8. TGA for 1: as-synthesized and desolved samples.

Figure S9. TGA for 2: as-synthesized, MeOH -exchanged and desolved samples.

Figure S10. TGA for 3: as-synthesized, MeOH-exchanged and desolved samples.

Figure S11. IR for 1: ligand and as-synthesized samples.

Figure S12. IR for 2: ligand and as-synthesized samples.

Figure S13. IR for 3: ligand and as-synthesized samples.

AST adsorption selectivity calculation

The experimental isotherm data for pure $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and N_{2} (measured at 298 K) were fitted using a Langmuir-Freundlich (L-F) model

$$
q=\frac{a * b * p^{c}}{1+b * p^{c}}
$$

Where q and p are adsorbed amounts and pressures of component i, respectively. The adsorption selectivities for binary mixtures of $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ at 273 and 298 K and $\mathrm{C}_{2} \mathrm{O}_{2} / \mathrm{CH}_{4}$ at 298 K , defined by

$$
S_{a d s}=\left(q_{1} / q_{2}\right) /\left(p_{1} / p_{2}\right)
$$

Where $q i$ is the amount of i adsorbed and $p i$ is the partial pressure of i in the mixture.

(a)

(b)

(c)

Figure S14. (a) $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption isotherms of 1 at 298 K with fitting by L-F model: a $=24.31462, \mathrm{~b}=0.01734, \mathrm{c}=0.37322$, $\mathrm{Chi}^{\wedge} 2=1.47337 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99991$; $(\mathrm{b}) \mathrm{CO}_{2}$ adsorption isotherms of $\mathbf{1}$ at 298 K with fitting by L-F model: $\mathrm{a}=4.43901, \mathrm{~b}=0.03524$, $\mathrm{c}=0.633$, Chi^2 $=1.59642 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99938$; (c) CH_{4} adsorption isotherms of 1 at 298 K with fitting by L-F model: $\mathrm{a}=2.12998, \mathrm{~b}=0.00224, \mathrm{c}=0.89865$, Chi^2 $=$ $1.34179 \mathrm{E}-6, \mathrm{R}^{\wedge} 2=0.9998$.

(c)

Figure S15. (a) $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption isotherms of $\mathbf{2}$ at 298 K with fitting by L-F model: a $=4.17757, \mathrm{~b}=0.02287, \mathrm{c}=0.87318$, Chi^2 $=4.07018 \mathrm{E}-5, \mathrm{R} \wedge 2=0.99991$; (b) CO_{2} adsorption isotherms of $\mathbf{2}$ at 298 K with fitting by L-F model: $\mathrm{a}=7.34815, \mathrm{~b}=0.00315$, $\mathrm{c}=0.9111$, Chi^2 $=9.08482 \mathrm{E}-7, \mathrm{R}^{\wedge} 2=0.99999$; (c) CH_{4} adsorption isotherms of 2 at 298 K with fitting by L-F model: $\mathrm{a}=4.86678, \mathrm{~b}=0.00173, \mathrm{c}=0.90815$, Chi^2 $=$ $1.7268 \mathrm{E}-6, \mathrm{R}^{\wedge} 2=0.99993$.

(a)

(b)

(c)

Figure S16. (a) $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption isotherms of $\mathbf{3}$ at 298 K with fitting by L-F model: a $=9.68477, \mathrm{~b}=0.05163, \mathrm{c}=0.56442$, $\mathrm{Chi}^{\wedge} 2=7.75771 \mathrm{E}-4, \mathrm{R}^{\wedge} 2=0.99952$; $(\mathrm{b}) \mathrm{CO}_{2}$ adsorption isotherms of $\mathbf{3}$ at 298 K with fitting by L-F model: $\mathrm{a}=7.51871, \mathrm{~b}=0.01254$, $\mathrm{c}=0.78898$, Chi^2 $=5.44812 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99988$; (c) CH_{4} adsorption isotherms of $\mathbf{3}$ at 298 K with fitting by L-F model: $\mathrm{a}=5.31361, \mathrm{~b}=0.0024$, $\mathrm{c}=0.901$, Chi^2 $=$ $1.18098 \mathrm{E}-6, \mathrm{R}^{\wedge} 2=0.99997$.

Calculation of sorption heat for $\mathrm{C}_{2} \mathbf{H}_{\mathbf{2}}$ and CO_{2} uptakes using Virial 2 model

The above equation was applied to fit the combined $\mathrm{C}_{2} \mathrm{H}_{2}$ and CO_{2} and isotherm data for desolvated 1a at 273 and 298 K , where P is the pressure, N is the adsorbed amount, T is the temperature, $a i$ and $b i$ are virial coefficients, and m and n are the number of coefficients used to describe the isotherms. $Q_{s t}$ is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

$$
\ln P=\ln N+1 / T \sum_{i=0}^{m} a i N^{i}+\sum_{i=0}^{n} b i N^{i} Q_{s t}=-R \sum_{i=0}^{m} a i N^{i}
$$

(a)

(b)

Figure S17. (a)Virial analysis of the $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption data at 298 K and 273 K for 1. Fitting results: $\mathrm{a} 0=-3384.23849$, $\mathrm{a} 1=-2326.22707$, $\mathrm{a} 2=3359.65238$, a 3 $=-1104.86407, \mathrm{a} 4=45.13798, \mathrm{Chi}^{\wedge} 2=1.63211 \mathrm{E}-4, \mathrm{R}^{\wedge} 2=0.99991$; (b) Virial analysis of the CO_{2} adsorption data at 298 K and 273 K for 1 . Fitting results: $\mathrm{a} 0=$ $-5851.66716, \mathrm{a} 1=1727.35878, \mathrm{a} 2=-2422.53865, \mathrm{a} 3=1154.05576, \mathrm{a} 4=-78.28237$, $\mathrm{Chi}^{\wedge} 2=3.18886 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99998$.

(a)

(b)

Figure S18. (a)Virial analysis of the $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption data at 298 K and 273 K for 2. Fitting results: $\mathrm{a} 0=-3263.55325$, $\mathrm{a} 1=282.7658$, $\mathrm{a} 2=-353.66525$, $\mathrm{a} 3=136.96067$, a 4 $=-11.4289$, Chi^2 $=6.25196 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99996$; (b) Virial analysis of the CO_{2} adsorption data at 298 K and 273 K for 2. Fitting results: $\mathrm{a} 0=-3036.47805$, a1 $=$ 559.69175, $\mathrm{a} 2=-330.64788$, $\mathrm{a} 3=28.47604, \mathrm{a} 4=-24.54171$, Chi^2 $=8.01372 \mathrm{E}-4$, $\mathrm{R}^{\wedge} 2=0.99993$.

Figure S19. (a)Virial analysis of the $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption data at 298 K and 273 K for 3.
Fitting results: $\mathrm{a} 0=-4213.57892, \mathrm{a} 1=296.47929, \mathrm{a} 2=-15.7082, \mathrm{a} 3=3.9664, \mathrm{a} 4=$ -0.50387, Chi^ $^{\wedge} 2=9.48438 \mathrm{E}-5, \mathrm{R}^{\wedge} 2=0.99996$; (b) Virial analysis of the CO_{2} adsorption data at 298 K and 273 K for 3 . Fitting results: $\mathrm{a} 0=-3080.7598$, $\mathrm{a} 1=$ 264.81468, $\mathrm{a} 2=-224.48446, \mathrm{a} 3=54.16894, \mathrm{a} 4=-1.23403, \mathrm{Chi}^{\wedge} 2=5.7699 \mathrm{E}-6, \mathrm{R}^{\wedge} 2=$ 0.99999 .

