Supporting Information

Understanding the Dual-Phase Synergy Mechanism in Mn₂O₃-Mn₃O₄ Catalyst for Efficient Li-CO₂ Batteries

Limin Liu[†], Libo Zhang[§], Ke Wang[†], Hu Wu[†], Heng Mao[†], Long Li[†], Zongjie Sun[†], Shiyao Lu[†], Dongyang Zhang[†], Wei Yu[†], Shujiang Ding^{†‡}*

[†] Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China

[‡] Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China

[§] State of Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Corresponding Author

* E-mail: <u>dingsj@mail.xjtu.edu.cn</u>

L. L., L. Z., and K. W. contributed equally to this work.

Thermogravimetric analysis (TGA) was performed to confirm the degree of Mn-BTC conversion at a heating rate of 10 °C per minute under an air environment. As shown in **Figure S1**, the first step of weight loss starts from room temperature to 200°C. The corresponding weight loss might be attributed to the removal of physisorbed moistures and solvent molecules. The 48.3% weight loss around 450°C is referred to the decomposition of Mn-BTC, and the residues (30.9%) were thermally stable Mn₂O₃.

Figure S1. TGA curve of the Mn-BTC at a temperature ramp of 10 °C min⁻¹

Figure S2. The content of Mn_2O_3 and Mn_3O_4 in the composite obtained by semi-quantitative analysis of XRD result.

Figure S3. SEM images of (a) Mn-BTC and (b) Mn₂O₃.

Figure S4. (a) Schematic illustration of the preparation of Mn_3O_4 ; (b) SEM image of Mn_3O_4 .

Figure S5. Mn₂O₃-Mn₃O₄: (b)line-scanning profiles of Mn, O, and N along with the red, green, and yellow line in (a), respectively.

Figure S6. Refined N 1s XPS spectrum of Mn₂O₃-Mn₃O₄.

Figure S7. Cyclic voltammetry (CV) curves of Li-CO₂ batteries with Mn_2O_3 and Mn_3O_4 cathodes.

Figure S8. The median voltage of Li-CO₂ battery based on Mn_2O_3 - Mn_3O_4 cathode during cycling at the current density of 100 mA g⁻¹ within a limited capacity of 1000 mAh g⁻¹.

Figure S9. The median voltage of Li-CO₂ battery based on (a) Mn_2O_3 and (b) Mn_3O_4 cathode during cycling at the current density of 100 mA g⁻¹ within a limited capacity of 1000 mAh g⁻¹.

Cathode	Current density (mA g ⁻¹)	Discharge Capacity (mAh g ⁻¹)	Overpote- ntial (V)	Cycling number/ cycling time(hours)	Ref.
Mn ₂ O ₃ -Mn ₃ O ₄	100	19024	~1.24	69/1380h	This work
Mn ₂ O ₃	100	8261	~1.13	36/720h	This work
Mn ₃ O ₄	100	14281	~1.33	29/580h	This work
Carbon nanotubes (CNTs)	50	8379	~1.6	29/1160h	1
Graphene	50	14722	~1.5	20/800h	2
Ketjen Black (KB)	30	1032	~1.6	7/467h	3
B,N-codoped holey graphene	1000	16033 (0.3 A g ⁻¹)	~1.75	200/436h	4
NiO / CNTs	50	9000	~1.55	42/1680h	5
Ni nanoparticles /N-doped graphene	100	17625	~1.75	100/2000h	6
Cu nanoparticles / N-doped graphene	200	14864	~1.4	50/500h	7
TiO2@CNTs/C NF	0.05 ^a	1.95 ^b	~1.4	20/200h	8
NiFe@NC/PPC	0.05 ^a	6.8 ^b	-	109/1090h	9
Mn ₂ (dobdc)	50	18022	~1.46	50/500h (200 mA g ⁻¹)	10
Mn(HCOO) ₂	50	15510	~1.50	50/500h (200 mA g ⁻¹)	10
a-MnO ₂ /CNTs	50	7134	-	50/1000h (100 mAg ⁻¹)	11
P-Mn ₂ O ₃	50	9434	~1.40	50/2000h	12

 Table S1. The comparisons of electrochemical performances between previous

 transition metal/carbon-based cathode catalysts

^a Unit: mA cm^2 ^b Unit: mA h cm^2

Figure S10. Nyquist plots of Li-CO₂ battery with Mn₂O₃-Mn₃O₄ cathode at different charge/discharge states.

Figure S11. Discharge-charge curves of Li-CO₂ battery with Mn_2O_3 - Mn_3O_4 cathode under Ar atmosphere at 100 mA g⁻¹ over the voltage window of 2.0-4.5 V.

Figure S12. The rate capabilities of Li-CO₂ battery with Mn_2O_3 - Mn_3O_4 cathode at different current densities.

Figure S13. SEM image of Mn₂O₃-Mn₃O₄ cathode before cycles.

Figure S14. The high-resolution XPS spectra of Li 1s of the 10th cycle: (a) discharge and (b) recharge.

Figure S15. (a) Photographs of a pristine Li plate and a Li anode after the 69th cycle;(b) XRD spectra of Li anode after the 69th cycle.

The crystal faces of the surface models were chosen from our XRD and TEM results. XRD pattern (**Figure 2a**) reveals that the highest peak for Mn_2O_3 and Mn_3O_4 are (222) and (211), respectively. The TEM image indicates the exposure of (222) face for Mn_2O_3 and (101) face for Mn_3O_4 . Therefore, these crystal planes were considered in this work.

Figure S16. Side and top view of the optimized energetically most favorable structures of (a, b) CO_2 and (c, d) CO_3^* adsorbed on Mn_2O_3 (222) surface.

Figure S17. Side and top view of the optimized energetically most favorable structures of (a, b) CO_2 and (c, d) CO_3^* adsorbed on $Mn_3O_4(101)$ surface.

Figure S18. Side and top view of the optimized energetically most favorable structures of (a, b) CO_2 and (c, d) CO_3^* adsorbed on $Mn_3O_4(211)$ surface.

References

(1) Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z. Rechargeable Li-CO₂ batteries with carbon nanotubes as air cathodes. *Chem. commun.* **2015**, *51*, 14636-9.

(2) Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z. The First Introduction of Graphene to Rechargeable Li-CO₂ Batteries. *Angew. Chem., Int. Ed.* **2015,** *54*, 6550-6553.

(3) Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Rechargeable Li/CO₂–O₂ (2:1) battery and Li/CO₂ battery. *Energy Environ. Sci.* **2014**, *7*, 677.

(4) Qie, L.; Lin,Y.; J. Connell, W.; Xu, J.; Dai, L. Highly RechargeableLithium-CO₂ Batteries with aBoron- and Nitrogen-Codoped Holey-Graphene Cathode. *Angew. Chem., Int. Ed.* 2017 *56* 6970-6974.

(5) Zhang, X.; Wang, C.; Li, H.; Wang, X.-G.; Chen, Y.-N.; Xie, Z.; Zhou, Z. High performance Li–CO₂ batteries with NiO–CNT cathodes. *J. Mater. Chem. A* **2018**, *6*, 2792-2796.

(6) Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z.; Chen, Y. N.; Ma, L.; Peng, Z.; Zhou, Z. Verifying the Rechargeability of Li-CO₂ Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene. *Advanced science* **2018**, *5*, 1700567.

(7) Zhang, Z.; Zhang, Z.; Liu, P.; Xie, Y.; Cao, K.; Zhou, Z. Identification of cathode stability in Li–CO₂ batteries with Cu nanoparticles highly dispersed on N-doped graphene. *J. Mater. Chem. A* **2018**, *6*, 3218-3223.

(8) Pipes, R.; Bhargav, A.; Manthiram, A. Nanostructured Anatase Titania as a Cathode Catalyst for Li-CO₂ Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10*, 37119-37124.

(9) Liang, H.; Zhang, Y.; Chen, F.; Jing, S.; Yin, S.; Tsiakaras, P. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO₂ batteries. *Appl. Catal. B- Environ.* **2019**, *244*, 559-567.

(10) Li, S.; Dong, Y.; Zhou, J.; Liu, Y.; Wang, J.; Gao, X.; Han, Y.; Qi, P.; Wang, B. Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO₂ electrodes in Li–CO₂ batteries. *Energy Environ. Sci.* **2018**, *11*, 1318-1325.

(11) Lei, D.; Ma, S.; Lu, Y.; Liu, Q.; Li, Z. High-Performance Li-CO₂ Batteries with α -MnO₂/CNT Cathodes. *J. Electron. Mater.* **2019**, *48*, 4653-4659.

(12) Ma, W.; Lu, S.; Lei, X.; Liu, X.; Ding, Y. Porous Mn₂O₃ cathode for highly durable Li–CO₂ batteries. *J. Mater. Chem. A* **2018**, *6*, 20829-20835.