Supporting Information

Identification of the biosynthetic gene cluster for the anti-MRSA lysocins through gene cluster activation using strong promoters of housekeeping genes and production of new analogs in *Lysobacter* sp.

3655

Lingjun Yu,^{†,‡,#} Fengyu Du,^{‡,§,#} Xusheng Chen,^{‡,⊥} Yongbiao Zheng,^{‡,¶} Martha Morton,[‡] Fengquan Liu,^{*,†} and Liangcheng Du^{*,‡}

[†]Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China

[‡]Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA

[§]College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, 266109, China

[⊥]School of biotechnology, Jiangnan University, Wuxi, 214122, China

[¶]College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China

[#]These authors contributed equally

*Corresponding Authors Liangcheng Du, Email: <u>ldu3@unl.edu</u> Fengquan Liu, Email: <u>fqliu20011@sina.com</u>

Position	$\delta_{\rm C}$ (type)	Position	$\delta_{\rm C}$ (type)	Position	$\delta_{\rm C}$ (type)
	3-hydroxy-5-		N MoDhor		Clm
	methylhexanoic acid		Iv-Ivier nes		GIII9
1	172.1, CO	1	169.6, CO	CO	171.7, C
2	43.1, CH ₂	2	51.0, CH	α	51.8, CH
3	65.5, CH	3	33.8, CH ₂	β	29.0, CH ₂
4	46.1, CH ₂	4	138.5, C	γ	30.2, CH ₂
5	23.9, CH	5,9	129.1, CH	γ -CONH ₂	173.6, C
6	23.3, CH ₃	6,8	128.4, CH		Trp ₁₀
7	21.8, CH ₃	7	126.3, CH	1	170.7, CO
	Thr ₁	N-CH ₃	35.9, CH ₃	2	52.6, CH
CO	168.1, C		Leu ₆	3	28.4, CH ₂
α	55.4, CH	CO	171.1, C	4	109.3, C
β	71.8, CH	α	51.4, CH	4a	127.3, C
γ	16.6, CH ₃	β	$40.2, CH_2$	5	118.0, CH
	Arg ₂	γ	24.2, CH	6	118.3, CH
CO	170.9, C	δ	22.9, CH ₃	7	120.9, CH
α	51.5, CH	δ '	20.7, CH ₃	8	111.2, CH
β	30.0, CH ₂		Arg ₇	8a	136.0, C
γ	24.8, CH ₂	CO	172.9, C	9	123.0, CH
δ	40.3, CH ₂	α	58.7, CH		Ile ₁₁
NH=C	156.6, C	β	30.0, CH ₂	CO	170.5, C
	Ser3	γ	24.2, CH ₂	α	58.1, CH
CO	170.0, C	δ	$40.3, CH_2$	β	36.1, CH
α	54.5, CH	NH=C	156.6, C	β -CH ₃	10.7, CH ₃
β	62.3, CH ₂		Glu ₈	γ	15.0, CH ₂
	Gly ₄	CO	170.5, C	δ	24.7, CH ₃
CO	169.0, C	α	51.7, CH		Thr ₁₂
α	41.7, CH ₂	β	29.4, CH ₂	CO	169.2, C
		γ	31.3, CH ₂	α	58.2, CH
		γ-СООН	173.9, C	β	66.5, CH
				γ	20.0, CH ₃

Table S1. ¹³C (125 MHz) NMR data of lysocin E (DMSO- d_6 , δ : ppm). The numbers and labels of the carbons correspond to that in the structure of lysocin E in Figure 1.

ORF	Size (aa)	Annotation	%identity/	Accession number
			similarity	
orf2680	208	protein involved in polysaccharide export	89/92	SDY56278.1
orf2681	46	No significant similarity found		
orf2682	504	undecaprenyl-phosphate glucose	99/99	WP_074868051.1
		phosphotransferase		
orf2683	279	porin family protein	96/97	WP_096378230.1
orf2684	257	hypothetical protein	93/94	WP_074868058.1
orf2685	207	sigma-70 family RNA polymerase sigma factor	99/100	WP_096378236.1
orf2686	246	hypothetical protein	99/99	WP_074868061.1
orf2687	253	acyl-CoA desaturase	99/99	WP_096378242.1
orf2688	435	FAD-dependent oxidoreductase	99/99	WP_074868066.1
orf2689	264	DUF1365 domain-containing protein	97/97	WP_074868068.1
orf2690	429	class I SAM-dependent methyltransferase	99/99	WP_096378248.1
orf2691	180	DUF2878 domain-containing protein	99/99	WP_096378251.1
orf2692	268	DUF1295 domain-containing protein	99/99	WP_096378254.1
orf2693	363	class I SAM-dependent methyltransferase	99/99	WP_083382572.1
orf2694	161	hypothetical protein	98/98	WP_074868081.1
orf2695	328	ATP-binding protein	99/100	WP_074870226.1
orf2696	135	No significant similarity found		
orf2697	586	ABC transporter ATP-binding protein	99/99	WP_074870228.1
orf2698	9232	non-ribosomal peptide synthetase	99/99	WP_083383100.1
orf2699	6471	non-ribosomal peptide synthetase	99/99	WP_074873721.1
orf2700	76	MbtH family protein	99/99	WP_074873762.1
orf2701	108	copper amine oxidase	78/89	ODU52305.1
orf2702	609	NADH:ubiquinone oxidoreductase, Na(+)-	98/98	SDX37479.1
		translocating, F subunit		
orf2703	230	hypothetical protein	98/99	WP_074868090.1
orf2704	902	TonB-dependent receptor	99/99	WP_074868093.1
orf2705	244	Histidine utilization repressor	99/99	WP_096378293.1
orf2706	449	DUF239 domain-containing protein	99/99	WP_083382573.1
orf2707	124	No significant similarity found		
orf2708	293	alpha/beta hydrolase	99/100	WP_083382643.1
orf2709	214	glutathione S-transferase	96/98	WP_096378319.1
orf2710	86	No significant similarity found		
orf2711	146	No significant similarity found		
orf2712	663	sulfatase	99/99	WP_083382576.1
orf2713	623	ABC transporter ATP-binding protein	99/99	WP_096378331.1

Table S2. Deduced function of ORFs in and around the lysocin gene cluster (Cluster-

8) of Lysobacter sp. 3655.

Medium	Compounds	Most abundant compounds $(>100 \text{ mAU})$
GBS solid	1-10, 12, 13, 16-19	2, 4, 5, 7, 9
YME	1-7, 9, 10, 12, 13, 16-19	2, 4-7, 9, 10, 18
M813m	2-4, 7-11, 13, 15-18	7, 9, 13, 17, 18
LBM	2-4, 7-9, 11	2, 4, 7, 11
PSE	2-4, 9, 10, 13, 18	4
NB	2-10, 13, 18, 19	2, 4, 9, 10
YPG	2-7, 9, 10, 13, 18, 19	4, 5, 9, 10

 Table S3. Lysocin compounds produced by C8-pRpsL engineered strain in various

 media

Table S4. Summary of the mass of the new compounds produced in the engineeredstrain C8-pRpsL.

Compound	<i>m/z</i> (M+H)+	Compound	<i>m/z</i> (M+H) ⁺
5	Not determined	13	1535.40
6	Not determined	14	1650.87
7	1250.27	15	1649.60
8	1163.40	16	1664.40
9	1149.40	17	1548.67
10	1062.53	18	1564.67
11	1636.67	19	1632.53
12	1449.27		

	1 v	
Bacterial strains/plasmids	Relevant characteristics ^a	Source/references
Lysobacter sp. 3655		
3655	Wild-type, Km ^r	DSM
$\Delta ORF2698$	The deletion mutant of part of orf2698 in 3655 (the deletion	This study
	part was from +8746 to +12018 with respect to the start	
	codon of <i>orf2698</i>)	
C8-pGAPDH	3655 containing the promoter <i>pGAPDH</i> in front of cluster-8	This study
C8-pRpsL	3655 containing the promoter <i>pRpsL</i> in front of cluster-8	This study
C8-pRpsL/ Δ ORF2698	The deletion mutant of part of orf2698 in C8-pRpsL	This study
C8-pRpsL/ORF2698C	The complementary strain of C8-pRpsL/ΔORF2698	This study
C8-pRpsL/A1K508E	C8-pRpsL containing site mutation of K508E in A1 domain	This study
Other bacteria		
Bacillus subtilis	Indicator strain of lysocin	1
Escherichia coli strain		
XL-1 Blue	Host strain for molecular cloning	2
S17-1	Strain for conjugation with Lysobacter	3
Plasmids		
pJQ200SK	Cloning vector, Gm ^r	4
pJQ200SK::ORF2698	Plasmid for the deletion of part of orf2698, Gmr	This study
pJQ200SK::ORF2698C	Plasmid for the complementary of orf2698, Gm ^r	This study
pJQ200SK::pGAPDH	Plasmid for the insertion of promoter <i>pGAPDH</i> in front of	This study
	cluster 8, Gm ^r	
pJQ200SK::pRpsL	Plasmid for the insertion of promoter <i>pRpsL</i> in front of	This study
	cluster 8, Gm ^r	
pJQ200SK::A1K508E	Plasmid for the site mutation of K508E in A1 domain, Gm ^r	This study

	Table S5. Bacterial strains and plasmids used in this study
--	---

^aKm^r, kanamycin resistant; Gm^r, gentamicin resistant

		_	
Primer	Sequence (5'-3')	Purpose	
For gene <i>orf2698</i> d	eletion, complementation and confirmation		
ORF2698UF	CCG <u>CTCGAG</u> GCCTTCACCAGCCACCATT (XhoI)	To amplify the upstream and	
ORF2698UR	CG <u>GGATCC</u> GAAGTTCTCGAACACCACCAAG (BamHI)	downstream homolog fragment of	
ORF2698DF	CG <u>GGATCC</u> TTCAACGAACGCCACGAC (BamHI)	orf2698	
ORF2698DR	GG <u>ACTAGT</u> CGGAGGTGTAGATCACATAGG (SpeI)		
ORF2698VFO	CCGACCTGGACGAACCGA	To amplify the complementary	
ORF2698VRO	CGGGTCCAGCGGCAAGTA	fragment of <i>orf2698</i> ; To confirm the	
ORF2698VFI	CGAACGCATGAGCCTGAAG	deletion mutant of <i>orf2698</i>	
ORF2698VRI	TCGGTATCCAGCGGTAGGT		
For promoter excha	inge and confirmation		
C8-UF	GG <u>ACTAGT</u> TGAGGCTCCGCCAAGACG (SpeI)	To amplify the promoters of gapdh	
C8-DR	C <u>GAGCTC</u> CCTTCGCTGGGCTGGTAG (SacI)	and <i>rpsL</i> and their adjacent fragments	
C8-pGAPDH-UR	GCAAGGGGGGACTCCAGGAGCGGACTCCGGAAAGCGT		
C8-pGAPDH-F	ACGCTTTCCGGAGTCCGCTCCTGGAGTCCCCCTTGC		
C8-pGAPDH-R	GGACGAGGGACTGCTCATTGACATAACTCCTGCGGC		
C8-pGAPDH-DF	GCCGCAGGAGTTATGTCAATGAGCAGTCCCTCGTCC		
C8-pRpsL-UR	CCTTGCCTGGAACTTCGCGCGGACTCCGGAAAGCGT		
C8-pRpsL-F	ACGCTTTCCGGAGTCCGCGCGAAGTTCCAGGCAAGG		
C8-pRpsL-R	GGACGAGGGACTGCTCATCTGGAACTCTTGTTTAAGGGC		
C8-pRpsL-DF	GCCCTTAAACAAGAGTTCCAGATGAGCAGTCCCTCGTCC		
For qRT-PCR			
ORF2697-real-F	AGACCGTGAACCTGCTGAC	To amplify lysocin biosynthetic	
ORF2697-real-R	GGAATCATCAAGGCGAAGGC	related genes	
ORF2698-real-F	TGTTCCACTCCTACGCCTTC		
ORF2698-real-R	TCTGGTTGAGCACGGTGAC		
ORF2699-real-F	GCTGGATGTGTCCGAGTTG		
ORF2699-real-R	TGTGGTGGCTGGTGAAGAT		
ORF2900-real-F	ACACCAACGGCACCTTCCT		
ORF2900-real-R	CGATGTAGTCCAGGCATTCTTG		
3655-16S-real-F	TCCACGCCCTAAACGATG	To amplify 16S rRNA gene	
3655-16S-real-R	TTGCAGCCCTCTGTCCCT	-	
GAPDH-real-F	CCAAGAAGGTGGTGCTGTC	To amplify house-keeping genes of <i>Lysobacter</i> sp. 3655	
GAPDH-real-R	CCAGGCAGTTGGTCGTG		
GyrB-real-F	CCTCAACTCGGGCGTCAA	-	
GyrB-real-R	CGGTGATGCCGTTCTGCT		
pyK-real-F	CGCCAGTTCAACCACGAC		
pyK-real-R	GGATTCGGTCATCGCCAC		
RpoA-real-F	CGTGCTGGAAGTCCTGCT		
RpoA-real-R	CCTTGGTCAGGTGGCAGA	1	

Table S6. Primers used in this study.

RpoB-real-F	TCGGAAGTCACGCACAAGC			
RpoB-real-R	CACCGCCAGCGAGTTGAT			
RpsL-real-F	CCCCGAAGAAGCCGAACT			
RpsL-real-R	ACGACCGAGTGCTCCTGC			
For gene site-directed mutagenesis and confirmation				
A1-F	CCG <u>CTCGAG</u> TGTTCCACTCCTACGCCTTC(XhoI)	To amplify, mutant and confirm the		
A1-R	GG <u>ACTAGT</u> GCAGCACCACGGTATTGAC(SpeI)	orf2698 A1-domain K508E		
A1-K508E-F	CTGACCGCCAACGGCGAGCTCGACCG			
A1-K508E-R	CGCCGTTGGCGGTCAGCGGCAGCGAG			
A1-VR	GCATCAGCAGCAGCAATACG			

Fig S1. Identification of antibiotic compounds from *Lysobacter* sp. 3655. (A) Antibiotic activity of crude extracts from strain 3655 grown in various media, with *Bacillus subtilis* as the testing organism. (B) Bioassay-guided isolation of the active fractions

from the extracts of the GBS solid culture. (C) LC-MS analysis and (D) purification of the main active compounds (1-4).

Fig S2. Mass spectrum of compound **1-4** (A-D). The structure and calculated mass (E) of lysocins A-I are included to show that the mass of compoud **2** is consistent with that of lysocin E, and the mass of compounds **1**, **3**, and **4** is with that of lysocin A/B, C/D/F/G, and H/I, respectively.

Fig S3. HR-ESI-MS spectrum of compound **2** (A) and the structure of lysocin E (calculated mass 1616.8675) (B).

Fig S4. ¹³C NMR (A) and HSQC (B) spectra of compound 2.

Fig S5. Comparison of the putative lysocin gene cluster (*les*) identified *in silico* from *Lysobacter* sp. RH2180-5⁵ with Cluster-8 from *Lysobacter* sp. 3655.

Fig S6. HPLC analysis of lysocin production in the wild type and the NRPS *orf2698* (*lesA*) deletion mutant of the wild type. The strains were cultured in GBS solid medium for 72 h. WT, *Lysobacter* sp. 3655 wild type; Δ ORF2698, *orf2698* deletion mutant of *Lysobacter* sp. 3655. Standard lysocins were included as references.

Fig S7. The relative transcription level of selected housekeeping genes in *Lysobacter* sp. 3655. *pyK*, pyruvate kinase encoding gene; *gapdh*, glyceraldehyde-3-phosphate dehydrogenase encoding gene; *gyrB*, DNA gyrase subunit B encoding gene; *rpoA*, RNA polymerase subunit α encoding gene; *rpoB*, RNA polymerase subunit β encoding gene; *rpsL*, 30s ribosomal protein S12 encoding gene. Data are presented as averages of three independent experiments, with each conducted in triplicate. *, *P*< 0.05; **, *P*< 0.01.

Fig S8. Generation of the engineered strains C8-pGAPDH and C8-pRpsL of *Lysobacter* sp. 3655. (A) Schematic illustration of the insertion of promoter *pGAPDH* or promoter *pRpsL* in front of the core genes of Cluster-8 in *Lysobacter* sp. 3655. (B) Verification of plasmid pJQ200SK::C8-pGAPDH and pJQ200SK::C8-pRpsL. Lanes 1-3: pJQ200SK::C8-pGAPDH treated with *SpeI/SacI*, and the product of 2756 bp was expected; Lanes 4-6: pJQ200SK::C8-pRpsL treated with *SpeI/SacI*, and the product of 2915 bp was expected; M: DNA marker. (C) PCR verification of the engineered strains C8-pGAPDH and C8-pRpsL using primers C8-UF/DR. Lanes 1 and 4: negative control, with H₂O as the template; lane 2, C8-pGAPDH strain, and the product of 2756 bp expected; lanes 3 and 6: positive control, with genomic DNA of WT as the template, and the product of 2520 bp expected; lane 5: C8-pRpsL strain, and the product of 2915 bp expected; M: DNA marker.

Fig S9. Generation of the *orf2698* (*lesA*) deletion mutant of *Lysobacter* sp. 3655. (A) Schematic illustration of deleting *orf2698* in the wild type and in the engineered strain C8-pRpsL. (B) Verification of plasmid pJQ200SK::ORF2698. Lanes 1 and 2: pJQ200SK::ORF2698 treated with *XhoI/SpeI*, and product of 1360 bp was expected; M: DNA marker. (C) PCR verification of mutant Δ ORF2698, derived the wild type. (D) PCR verification of mutant C8-pRpsL/ Δ ORF2698, derived from strain C8-pRpsL. Lanes 1 and 7: negative control, H₂O as the template; lanes 2-5: the deletion mutant, the product of 941 bp expected with ORF2698VFO/VRO as primers; lane 6: positive control, the product of 4213 bp expected with genomic DNA of the wild type as template and ORF2698VFO/VRO as primers; lanes 8-11: the deletion mutant, no

product expected with ORF2698VFI/VRI as primers; lane 12: positive control, the product of 456 bp expected with genomic DNA of the wild type as template and ORF2698VFI/VRI as primers; M: DNA marker.

ORF2698VFI/VRI as primers; lanes 10-13: complementary strain C8pRpsL/ORF2698C, the product of 456 bp expected with ORF2698VFI/VRI as primers; lane 14: positive control, the product of 456 bp expected with genomic DNA of the wild type as template and ORF2698VFI/VRI as primers; M: DNA marker.

Fig S11. MS analysis of compound 5 and 6.

Fig S12. MS spectrum of compounds 7-10, which appeared to contain a "partial" structure of the "full-length" lysocins (1-4).

Fig S13. MS spectrum of compounds 11-19.

Fig S14. HR-ESI-MS/MS analysis of compound 7. (A) Mass spectrum of 7. (B) proposed structure of 7, with a calculated mass of 1249.6455. (C) MS/MS fragmentation of 7. (D) Assigned characteristic product ions of the a-, b-, and y-series of the amino acid fragmentation.

Fig S15. Generation of K508E mutant of A₁. (A) Schematic illustration of the K508E mutagenesis of A₁. The red dotted lines represent sequences from the plasmid. (B) Verification of the mutant plasmid pJQ200SK::A1K508E. Lane 1: non-mutant plasmid pJQ200SK::A1 treated with *XhoI/SpeI*, and the product of 2100 bp was expected; lane 2: mutant plasmid pJQ200SK::A1K508E treated with *XhoI/SpeI*, and the product of 2100 bp was expected; lane 3: non-mutant plasmid pJQ200SK::A1 treated with *XhoI/SacI*, and the products of 1077 bp and 1052 bp were expected; lane 4: mutant plasmid pJQ200SK::A1K508E treated with *XhoI/SacI*, and the products of 1077 bp, and 1052 bp were expected; lane 4: mutant plasmid pJQ200SK::A1K508E treated with *XhoI/SacI*, and the products of 1077 bp, 908 bp, and 144 bp were expected; M: DNA marker. (C) PCR verification of strain C8-pRpsL/K508E with site-directed mutagenesis. Lane 1: PCR product of C8-pRpsL, 1607 bp expected with A1-F/VR as primers; lane 3: PCR product of C8-pRpsL/K508E, 1607 bp expected with A1-F/VR as primers; lane 4: PCR product of C8-pRpsL/K508E digested with *SacI*, 1052 bp and 555 bp expected; lane 4: PCR product of C8-pRpsL/K508E digested with *SacI*, 908 bp, 555 bp, and 144 bp expected; M: DNA marker.

Fig S16. Changes in the profile of lysocin congeners produced in the engineered strain C8-pRpsL at different growth times. Strain C8-pRpsL was cultured in YME medium, and the profile of lysocin compounds was evaluated by HPLC every 24 h.

Fig S17. The antibacterial activity of lysocin compounds. The numbers represent the corresponding lysocin congeners listed in Table S3-S4. *B. subtilis* was the indicator organism for the antibiotic activity.

Reference

- Zhang, W., Li, Y., Qian, G., Wang, Y., Chen, H., Li, Y., Liu, F., Shen, Y., and Du, L. (2011) Identification and characterization of the anti-methicillin-resistant *Staphylococcus aureus* WAP-8294A2 biosynthetic gene cluster from *Lysobacter enzymogenes* OH11. *Antimicrob. Agents Chemother.* 55, 5581–5589.
- Bullock, W.O., Fernandez, J.M., and Short, J.M. (1987) XL1-blue: a high efficiency plasmid transforming *recA Escherichia coli* strain with beta-galactosidase selection. *Biotechniques 5*, 376–378.
- Simon, R., Priefer, U., and Pehle, A. (1983) A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria. *Biotechnology 1*, 784–890.
- 4. Quandt, J., and Hynes, M. F. (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. *Gene 127*, 15–21.
- Panthee, S., Hamamoto, H., Suzuki, Y., and Sekimizu, K. (2017) *In silico* identification of lysocin biosynthetic gene cluster from *Lysobacter* sp. RH2180-5. *J. Antibiot.* 70, 204–207.