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Table S1. Previous literatures for Ru complex based photoelectrochemical cells non-assisted 

by photocatalytic metal oxide. 

Substrate 
Active 

materials 

Photoanodic 

current 

(μA/cm2) 

Anodic 

bias 

Photocathodic 

current 

(μA/cm2) 

Cathodic 

bias 
Electrolyte Method Ref. 

ITO 
Ru complex / 

nGO 
4.28 

0 V vs 

RHE 
28.42  

1.23 V vs 

RHE 

Potassium 
phosphate buffer 

at pH 7 
LbL assembly 

This 

work 

ITO 
Ru complex 

EuBW 
- - 8.47 

-0.3 V vs. 

SCE 
0.2 M Na2SO4 LbL assembly S1 

ITO 

Ru complex 
Phosphomolybdic 

acid 

~7.5 
vs. 

Hg/HgCl2 
- - 50 mmol/L KCl 

Langmuir 

blodgett 
S2 

ITO 
Ru complex GO-

PEG 
- - 2.8 

-0.4 V vs. 

SCE 
0.2 M Na2SO4 Drop casting S3 

ITO 
Ru complex 

MWCNT, PVA 
0.05 

0.9 V vs. 

Ag/AgNO3 
- - 

0.1 M TBAPF6 in 

acetonitrile 
LbL assembly S4 

ITO 
Ru complex 

AgNP 
- - ~0.045 

-0.5 V vs. 

Ag/AgCl 

0.1 M 

TBAPF6·CHCl3 

Molecular 

immobilizatio

n 

S5 

ITO Ru complex GO - - 7.43 
-0.4 V vs. 

SCE 
0.1 M Na2SO4 LbL assembly S6 

ITO Ru complex - - 2.72 
-0.4 V vs. 

SCE 
0.1 M Na2SO4 

Covalently 

self-assembly 
S7 

Pt flag Ru complex POM 59 
1.0 V vs. 

Ag/AgCl 
- - 1 mM (Bu)4NBF4 LbL assembly S8 
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Figure S1. 1H NMR spectra of (a) TPY ligand and (b) TPY2Ru complex.  
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Figure S2. Progress of TPY2Ru-complex formation. (a) Changes in UV/vis absorption peaks 

corresponding to π-π* transition of the TPY moiety at 247 nm, electron delocalization on the 

TPY moiety at 310 nm, and MLCT band of metal-ligand complex at 489 nm, respectively. (b) 

Deshielding effect of electron delocalization upon complexation observed through ex-situ 1H 

NMR spectra of the formation of TPY2Ru complex. 
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Figure S3. MALDI-TOF spectrum of TPY2Ru complex (C44H36N8Ru: 778.21). 

 

 

 

 

 

Figure S4. TGA results of the (black) TPY ligand and (red) TPY2Ru complex at a heating rate 

of 5 °C per min in N2 atmosphere. 
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Figure S5. Characterizations of nGO with (a) FT-IR and (b-d) XPS spectroscopy. (b) Survey 

spectrum and (c, d) deconvoluted high-resolution XPS spectra of (c) C1s and (d) O1s of nGO.  
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Figure S6. ζ-potential of the (a) TPY2Ru complex and (b) nGO at various pH conditions. (c) 

Photographic images of aqueous dispersions of nGO, TPY2Ru complex, and a simple mixture. 
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Figure S7. LbL growth curves of two control multilayer electrodes. (a) UV/vis absorbance 

spectra of (TPY2Ru/PAA)n multilayer electrodes and (b) absorbance at 499 nm corresponding 

to the absorbance maxima of TPY complex. (c) UV/vis absorbance spectra of (PEI/nGO)n 

multilayer electrodes and (d) absorbance at 224 nm corresponding to the absorbance maxima 

of nGO. 
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Figure S8. (a, b) PEC performance of the (TPY2Ru/nGO)25 multilayer film electrodes as a 

function of annealing temperature for optimizing reduction temperature of nGO. (a) 

Chronoamperometry and (b) on-off photocurrent density. Chronoamperometry was conducted 

in 0.10 M KCl solution at 0.62 V vs Ag/AgCl. 
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Figure S9. (a–d) Characterizations of (TPY2Ru/nGO)30 multilayer electrodes by XPS. (b) 

High-resolution C1s XPS spectra of (TPY2Ru/nGO)30 multilayer electrode treated at different 

reduction temperatures. (c) Changes in C/O ratio based on C1s XPS spectra, depending on the 

annealing temperature. (d) Ru 3d XPS spectra of (TPY2Ru/nGO)30 multilayer film electrode 

after a thermal reduction of 150 °C.  
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Figure S10. Chronoamperometry data of two control multilayer electrodes. (a, b) (PEI/nGO)n 

multilayer electrode for (a) OER and (b) HER. (c, d) (TPY2Ru/PAA)n multilayer electrode for 

(c) OER and (d) HER as a function of the number of BLs. All experiments were conducted 

with intermittent visible light irradiation in the presence of 0.10 M potassium phosphate buffer 

at each redox potential for water splitting at pH 7. 
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Figure S11. Chronoamperometry data of the (PDDA/nGO)30 multilayer electrode for (a) OER 

and (b) HER with and without visible light irradiation in 0.10 M potassium phosphate buffer 

at each redox potential for water splitting at pH 7. 
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Figure S12. (a) Chronoamperometry data under intermittent light and (b) comparison of the 

photocurrent density between the (TPY2Ru/nGO)30 multilayer electrode and simple mixture of 

TPY2Ru and nGO for respective OER and HER at each redox potential for water splitting 

measured in 0.10 M potassium phosphate buffer at pH 7. For preparation of a simple mixture 

sample, 100 μL of mixture suspension (200 μg/mL) with or without 50 μL of Nafion 117 (5 

wt%) was drop-casted on the ITO electrodes. 

 

 

  



Supporting Information 

S-14 

 

 

Figure S13. PEC performances of (a) (TPY2Ru/nGO)n, (b) (PEI/nGO)n, and (c) 

(TPY2Ru/PAA)n multilayer thin films in 0.10 M KCl electrolyte at 0.62 V vs Ag/AgCl. (d) 

Linear sweep voltammetry (LSV) data of each multilayer film electrode with visible light 

irradiation. (e) Comparison of photocurrent densities between different types of multilayer film 

electrodes for OER. (f) Current density of (TPY2Ru/nGO)n photocatalytic multilayer film with 

and without visible light irradiation and onset potential for OER with respect to the number of 

BLs. 
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Figure S14. Nyquist plots of electrochemical impedance spectroscopy (EIS) for three different 

multilayer electrodes; (blue) (TPY2Ru/nGO)30, (red) (PEI/nGO)30, and (black) 

(TPY2Ru/PAA)30 under visible light irradiation at (a) 1.41 V vs. RHE for photoanode and (d) 

0 V vs. RHE for photocathode. (b), (c), (e) and (f) show enlarged graphs of all the boxes. 
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Table S2. A proposed two RC circuit models and fitting results of the Nyquist plot in Figure 

S13. Rs, Rct1, and Rct2 indicate series resistance of the underlying substrate and solution, charge 

transport resistance in the photocatalytic multilayer electrodes, and charge transfer resistance 

of catalytic reaction at the photoelectrode/electrolyte interface, respectively. Warburg 

impedance (W1) represents the mass transport in the multilayer electrodes.  

 

Fitting results of Nyquist plot in Figure S13 at 1.41 V vs. RHE for OER 

Sample Rs (Ω) 
Rct1 (Ω) Rct2 (Ω) 

W1 (Ω ·s1/2) 
CPE1 (μF) CPE2 (μF) 

(TPY2Ru/nGO)30 34.48 
13.90 41.63 

198.2 
15.44 5157 

(PEI/nGO)30 33.21 
66.49 769.5 

427.5 
103.10 112.5 

(TPY2Ru/PAA)30  30.88 
1595 10847 

725 
26.2 55.65 

 

Fitting results of Nyquist plot in Figure S13 at 0 V vs. RHE for HER 

Sample Rs (Ω) 
Rct1 (Ω) Rct2 (Ω) 

W1 (Ω ·s1/2) 
CPE1 (μF) CPE2 (μF) 

(TPY2Ru/nGO)30 28.61 
12.08 1520 

19.94 
39.44 8368 

(PEI/nGO)30 33.14 
23.48 74.68 

379.5 
110.40 159.10 

(TPY2Ru/PAA)30  39.5 
1495 13895 

568.9 
75.27 43.9 
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Figure S15. Band-gap energy of (a) nGO and (b) TPY2Ru from UV/vis absorption using the 

Tauc plot method. Ultraviolet photoelectron spectroscopy (UPS) spectra for the (c) nGO and 

(d) TPY2Ru complex. The valence band maximum (VBM) and HOMO level were determined 

by the intercepts of the tangent line at the low binding energy, following the previously reported 

method.S9 The cut-off energy of the secondary electron was determined by the intercept of the 

tangent line at the high binding energy. The ionization potential was calculated by subtracting 

the width of UPS spectra.  
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Figure S16. Gas chromatography-based gas evolution by the (TPY2Ru/nGO)30 photoelectrode 

in half-cell operated at 0 V vs. RHE for HER without any cocatalyst.  
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Figure S17. Comparison of current density for (TPY2Ru/nGO)30 photoelectrodes measured in 

0.10 M potassium phosphate buffer and acetonitrile containing 0.10 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) at (a) 1.23 V vs. RHE and (b) 0 V vs. RHE.  
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