Supporting Information

for

Water Assisted Proton Transport in Confined Nanochannels

Xinyou Ma¹, Chenghan Li¹, Alex B. F. Martinson² and Gregory A. Voth^{1*}

¹Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States

²Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

Animation

Three animation files, "CNT66-charge_distribution.mov" (jp0c04493_si_002.mov), "CNT77-charge_distribution.mov" (jp0c04493_si_003.mov) and "CNT_2Gatescharge_distribution.mov" (jp0c04493_si_004.mov), show the evolution of excess protonic charge distribution as a hydrated excess proton transporting into and through a CNT (6,6) (d = 0.81 nm), a CNT (7,7) (d = 0.95 nm), and a "double-gate" CNT nanopores, respectively. These animations, plotted with the hydrated excess proton center of excess charge (CEC) distributions in the axial (z^+) and radial (r^+) dimensions, use the same scale and color scales with those in Figure 9-I, Figure 9-II, and Figure 14-II, respectively. It is worthy to notice that the animation framerate is arbitrarily set to one frame per z^+ with a uniform interval of 1 frame/0.5 Å, rather than a realistic (or quasirealistic) framerate that reflects the actual hydrated excess proton diffusion rate.