Supporting Information (SI)

for

A Reversible FRET Fluorescent Probe for Ratiometric Tracking of Endogenous Fe³⁺ in Ferroptosis

Jing Gao, †, Yueqin He, §, Yuncong Chen, †, Dongfan Song, †Yuming Zhang, †Fen
Qi, † Zijian Guo, † and Weijiang He*, †

Table of Contents

- S1. Synthesis and characterization of compound **DRhFe**
- S2. UV-Vis titration of **DRhFe** by Fe³⁺
- S3. Characterization of Fe³⁺/**DRhFe** complex
- S4. Determination of quantum yield
- S5. Spectroscopic sensing selectivity of **DRhFe** for Fe³⁺
- S6. Spectroscopic response of **DRhFe** to Fe³⁺
- S7. Fluorescent pH-dependence of **DRhFe**
- S8. Cytotoxicity determination of **DRhFe**
- S9. Ratiometric fluorescence imaging for labile Fe³⁺ in HeLa cells
- S10. Ratiometric imaging of endogenous labile Fe³⁺ in cells undergoing ferroptosis
- S11. References

S1. Synthesis and characterization of compound DRhFe

Scheme S1. Synthesis of compound DRhFe.

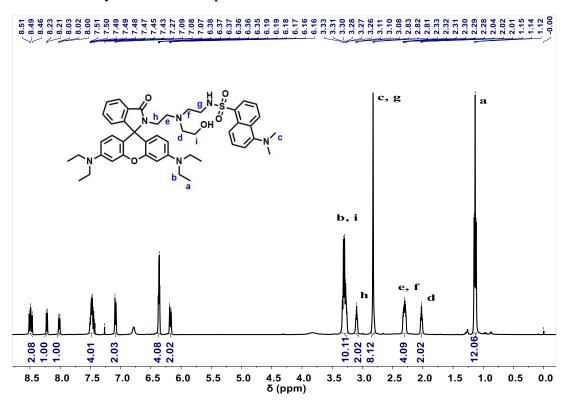


Figure S1 ¹H NMR spectrum of **DRhFe** (400 MHz, CDCl₃).

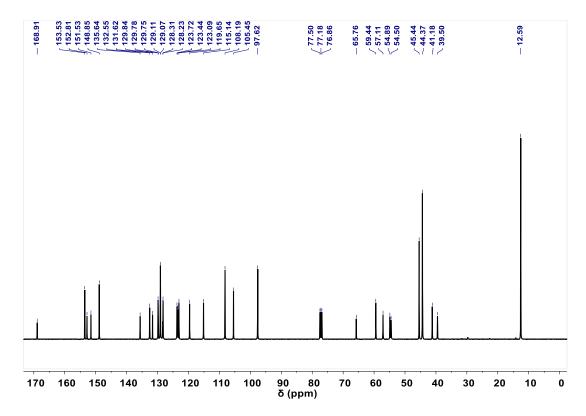
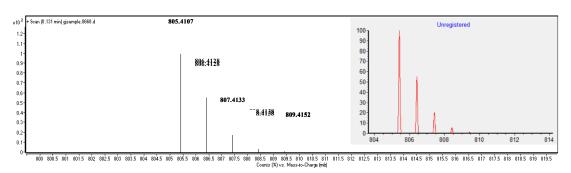
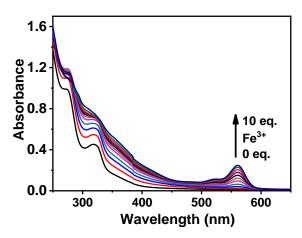
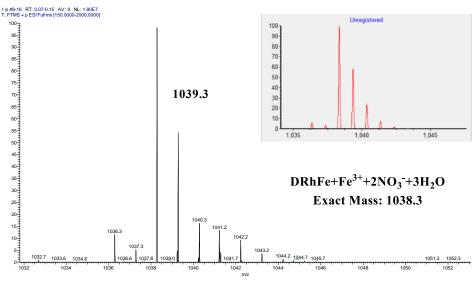




Figure S2 ¹³C NMR spectrum of **DRhFe** (101 MHz, CDCl₃).


Figure S3 High-resolution mass spectrum of **DRhFe**. The red one is the simulated isotopic distribution pattern of [**DRhFe**+H]⁺.

S2. UV-Vis titration of DRhFe by Fe³⁺

Figure S4 Absorption spectra of 25 μ M **DRhFe** in H₂O/DMSO (99:1, v/v) obtained via titration with Fe³⁺ (0-250 μ M).

S3. Characterization of Fe³⁺/DRhFe complex 1038.3

Figure S5 ESI mass spectrum of **DRhFe** mixed with excessive $Fe(NO_3)_3 \cdot 9H_2O$ in CH₃CN. The red one is the simulated isotopic distribution pattern of $[\mathbf{DRhFe} + Fe + 2NO_3 + 3H_2O]^+$.

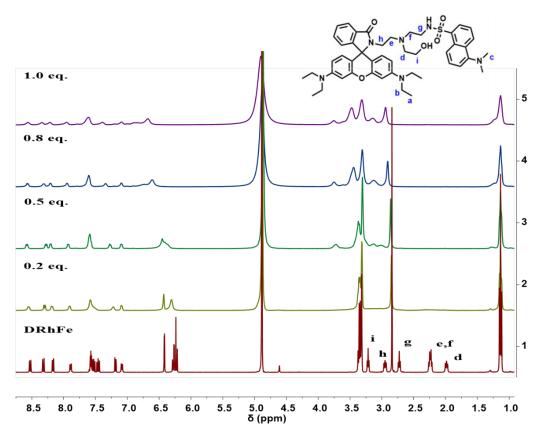


Figure S6 ¹H NMR spectra of **DRhFe** upon titration by Fe(NO₃)₃ in CD₃OD.

S4. Determination of quantum yield

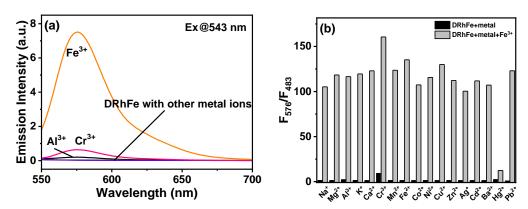
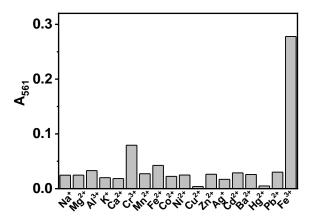

Fluorescence quantum yield of **DRhFe** and Fe³⁺/**DRhFe** complex were determined in EtOH using an integrating sphere on Horiba FluoroMax-4 spectrofluorometer, and the absorbance of samples at their respective excitation wavelengths was controlled to be lower than 0.05.

Table S1. Photoluminescence quantum yields of DRhFe.


Compounds	$\Phi_{ m dns}$	$\Phi_{ m rho}$
10 μM DRhFe	71.31%	-
10 μM DRhFe + 30 eq Fe(NO ₃) ₃	-	23.62%

S5. Spectroscopic sensing selectivity of DRhFe for Fe³⁺

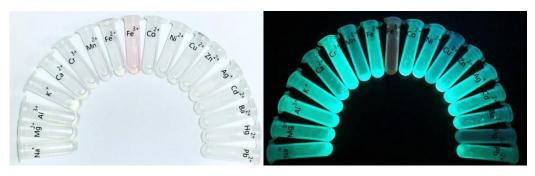
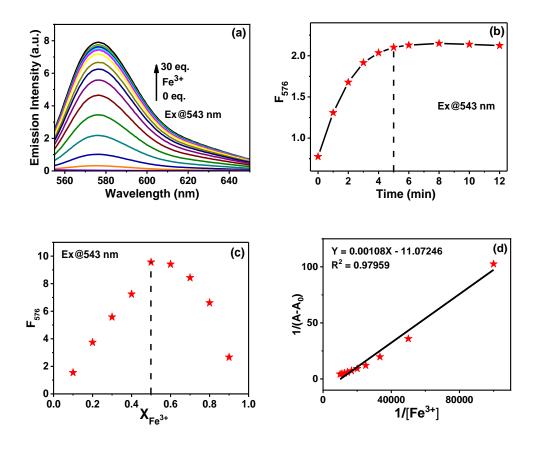

Stock solutions of Cd²⁺, Co²⁺, Cu²⁺, Mn²⁺, Ni²⁺, K⁺, Mg²⁺, Ca²⁺, Na⁺, Zn²⁺, Fe²⁺, Al³⁺, Cr³⁺, Hg²⁺, and Fe³⁺ were prepared via dissolving the related salts in the deionized water. The concentration of Al³⁺, Cr³⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Ag⁺, Cd²⁺, Ba²⁺, Hg²⁺, Pb²⁺, Fe³⁺ is 10 mM and that for K⁺, Ca²⁺, Na⁺, Mg²⁺ is 1 M. For all spectroscopic study, the stock solutions were further diluted to obtain the desired concentrations for spectroscopic determination.

Figure S7 (a) Emission spectra of **DRhFe** (10 μM) obtained in the presence of different metal ions upon excitation at 543 nm. (b) Emission ratio F₅₇₆/F₄₈₃ of **DRhFe** (9.6 μM) obtained in the presence of different metal ions (black) and the Fe³⁺-response in the presence of the marked cations (grey) upon excitation at 405 nm and 543 nm. [Fe³⁺] = $100 \, \mu M$, [Na⁺, K⁺, Mg²⁺, Ca²⁺] = $1000 \, \mu M$, and [other metal ions] = $200 \, \mu M$.



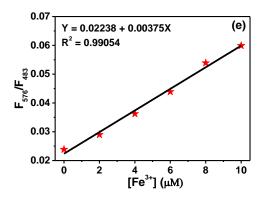

Figure S8. Absorbance changes at 561 nm of **DRhFe** (10 μ M) solution in the presence of different metal cations. [Fe³⁺] = 100 μ M, [Na⁺, K⁺, Mg²⁺, Ca²⁺] = 1000 μ M, and [other metal ions] = 200 μ M.

Figure S9 Photographs of **DRhFe** (10 μ M) in the presence of various cations recorded under sunlight (left) and UV light (365 nm, right). [Fe³⁺] = 100 μ M, [Na⁺, K⁺, Mg²⁺, Ca²⁺] = 1000 μ M, and [other metal ions] = 200 μ M.

S6. Spectroscopic response of DRhFe to Fe³⁺

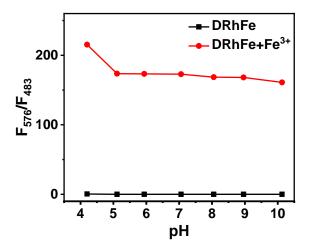


Figure S10 (a) Emission spectra of 10 μM **DRhFe** upon addition of Fe³⁺ (0-300 μM) in water (containing 1% DMSO). (b) Temporal profile of fluorescence intensity at 576 nm of **DRhFe** (10 μM) after being mixed with 150 μM Fe³⁺. λ_{ex} = 543 nm. (c) Job's plot of **DRhFe** in MeOH according to the emission intensity at 576 nm. The total concentration of **DRhFe** and Fe³⁺ was 20 μM. (d) Benesi–Hildebrand plot (λ_{abs} = 561 nm) of $1/(A - A_0) vs 1/[Fe^{3+}]$ based on a 1:1 association stoichiometry between **DRhFe** and Fe³⁺. (e) Plot of fluorescence intensity ratio of **DRhFe** as a function of Fe³⁺ concentration in the range of 0-10 μM.

S7. Fluorescent pH-dependence of DRhFe

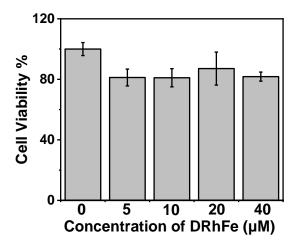
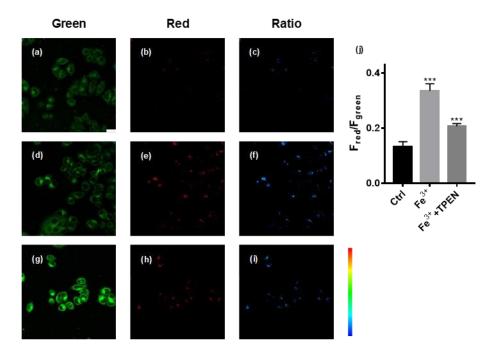

The pH values of **DRhFe** solutions (10 μ M, DMSO:H₂O = 1:99) were adjusted by KOH and HNO₃ solutions. The fluorescence spectra at different pH were collected in a 3 mL cuvette. After mixing with 10 eq. Fe³⁺, the fluorescence spectra were determined again. Then the pH-dependence was estimated according to the emission intensity ratio of F₅₇₆/F₄₈₃.

Figure S11 Emission ratio F_{576}/F_{483} of **DRhFe** at different pH upon excitation at 405 nm and 543 nm in the absence or presence of 10 eq. Fe³⁺.


S8. Cytotoxicity determination of DRhFe

HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, Invitrogen) media supplemented with 10% fetal bovine serum (FBS, heat-inactivated) and 100 U mL $^{-1}$ penicillin in 5% CO₂ atmosphere at 37°C. The cells were then seeded in the 24-well plates with 100,000 cells per well. Solutions of **DRhFe** (0, 5,10, 20, and 40 μ M) were added into the wells and incubated for 24 h at 37°C. [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] (MTT, 200 μ L, 5 mg mL $^{-1}$ in PBS buffer, 1X) was then added into each well for further incubation (4 h). Next the medium was discarded and DMSO (200 μ L) was added to dissolve the purple formazan. Then the absorbance at 570 nm of each well was recorded using a Varioskan Flash microplate reader (Thermo Scientific). The determination was carried out in triplicate to give the mean cell viability (%).

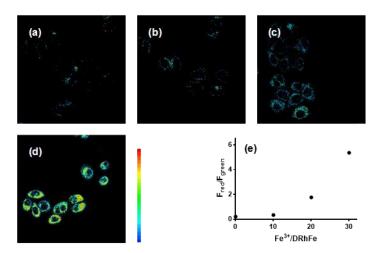


Figure S12 Cell viability of HeLa cells upon treatment (24 h at 37°C) with **DRhFe** at different concentration. Error bars represent standard deviations of 3 replicates.

S9. Ratiometric fluorescence imaging for exogenous labile Fe³⁺ in HeLa cells

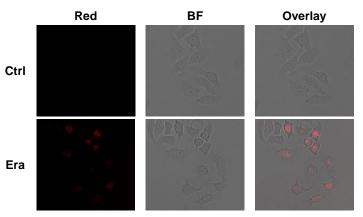


Figure S13. Confocal imaging of HeLa cells stained with **DRhFe** (10 μM, 30 min at 37°C) using a dual excitation/dual emission mode. (a-c) Cells were stained with only **DRhFe**; (d-f) **DRhFe**-stained cells preincubated with 20 μM Fe³⁺ for 8 h. (g-i) **DRhFe**-stained cells preincubated with 20 μM Fe³⁺ (8 h) and 20 μM TPEN (0.5 h) in sequence. (a), (d) and (g) Green channel images obtained with a bandpath of 440-500 nm upon excitation at 405 nm; (b), (e) and (h) red channel images obtained with a bandpath of 570-630 nm upon excitation at 561 nm; (c), (f) and (i) the corresponding ratiometric images; (j) average ratio of F_{red}/F_{green} in (c), (f) and (i). Scale bars, 25 μm. Error bars represent standard deviations of 3 replicates. ***P<0.001 versus Ctrl.

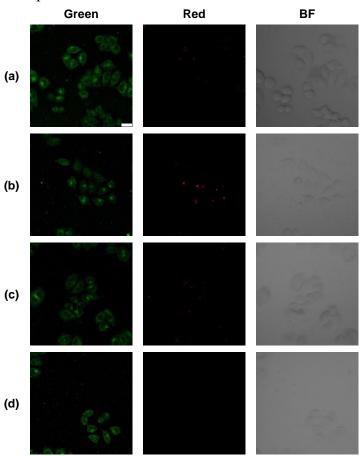


Figure S14. Confocal ratiometric images of HeLa cells stained by **DRhFe** (10 μ M) upon increasing Fe³⁺ for 6 min. The imaging mode and parameters are the same as shown in Figure 3. (a) 0 Fe³⁺, (b) 10 eq Fe³⁺, (c) 20 eq Fe³⁺, (d) 30 eq Fe³⁺; (e) average emission ratios of HeLa cells detected upon incubation at different Fe³⁺.

S10. Ratiometric imaging of endogenous labile Fe³⁺ in cells undergoing ferroptosis

Figure S15. Confocal fluorescence imaging of MitoPeDPP-stained HeLa cells pretreated with 1 μ M erastin for 8 h. The blank control without erastin incubation was also imaged for comparison.¹

Figure S16. Confocal microscopy of living HeLa cells loaded with 10 μ M **DRhFe**. Cells were pretreated with (a) control, (b) 1 μ M Era, (c) 1 μ M Era + 100 μ M DFO, and (d) 1 μ M Era + 1 μ M Fer-1 for 8 hours. Green channel images obtained with a bandpath of 440-500 nm upon excitation at 405 nm, and red channel images obtained with a bandpath of 570-630 nm upon excitation at 561 nm. Scale bars, 25 μ m.

S11. References:

(1) Shioji, K.; Oyama, Y.; Okuma, K.; Nakagawa, H., Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria. *Bioorg. Med. Chem. Lett.* **2010,** *20* (13), 3911-3915.