Supporting Information

Mass Transfer in Co/N/C Catalyst Layer for Anion Exchange Membrane Fuel Cell

Weikang Zhu, Yabiao Pei, Yang Liu, Junfeng Zhang*, Yanzhou Qin, Yan Yin* and Michael D. Guiver

State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.

*E-mail: geosign@tju.edu.cn (J. Zhang); yanyin@tju.edu.cn (Y. Yin)

Figure S1. The nitrogen adsorption-desorption isotherms of carbon black and active carbon

Figure S2. The electrochemical impedance spectroscopy (EIS) of different samples in oxygen saturated 0.1 M KOH at 0.85 V vs RHE from 100 kHz to 0.01 Hz. The inset is the corresponding equivalent circuit diagram.

Figure S3. The linear sweep voltammetry curves with *iR* correction of 0.05Co-N-CB and 0.05Co-N-AC.

Figure S4. The XRD patterns of different catalysts with various Zn and Co ratio.

Figure S5. The high resolution TEM images of (a) 0.15Co-N-CB and (b) 0.5Co-N-CB.

Figure S6. (a) The survey XPS spectra of all the catalysts with different percentages of Co. (b) The high-resolution XPS spectra and corresponding deconvoluted curves of C 1s,

Figure S7. The CV curves of different catalysts with various Zn and Co ratio.

Figure S8. The linear sweep voltammetry curves (without *iR* correction) of (a) N-CB, (c) 0.05Co-N-CB, (e) 0.15Co-N-CB, (g) 0.5Co-N-CB in oxygen saturated 0.1 M KOH at different rotation rates. (b, d, f and h) are the corresponding Koutecky-Levich (K-L) plots.

Figure S9. The low magnification TEM images of (a) N-CB, (b) 0.05Co-N-CB, (c) 0.15Co-N-CB and (d) 0.5 Co-N-CB.

Figure S10. The (a) nitrogen adsorption-desorption isotherm curves, (b) pore size distribution and (c) pore volume curves of N-CB, 0.05Co-N-CB, 0.15Co-N-CB and 0.5Co-N-CB.

			2	
Sample	C at.%	N at.%	Co at.%	Zn at.%
N-CB	97.60	2.01	0	0.39
0.05Co-N-CB	98.00	1.44	0.28	0.28
0.15Co-N-CB	97.07	2.36	0.43	0.14
0.5Co-N-CB	97.20	2.21	0.56	0.03

Table S1. The relative amount of C, N, Co and Zn via XPS analysis.

Table S2. The comparison of this catalyst with other ORR catalysts in literatures.

	ORR Catalyst	Onset potential (V vs RHE)	Half-wave potential (V vs RHE)	Diffusion current density with 1600 rpm (mA cm ⁻²)	Ref.
1	CAN-Pc(Fe/Co)	1.04	0.84	5.23	[1]
2	Polymer-modified CNT	0.87	0.7	3.52	[2]
3	NCN-1000-5	0.95	0.82	6.43	[3]
4	ZIF-CB-700	0.96	0.814	~4.7	[4]
5	α -MnO ₂ /C	0.825	-	5.2	[5]
6	SNBC12	-	0.85	4.14	[6]
7	FeCN-S-800	0.91	0.76	~5.0	[7]
8	C-MOF-C2-900	-	0.817	~5.0	[8]
9	Fe-N-C-800-acid	0.93	0.75	4.3	[9]
10	Fe-NMG	0.96	0.83	5.0	[10]
11	Mn ₃ O ₄ /MXene	0.89	0.8	3.15	[11]
12	Co/CoO@Co-N-C-800	-0.05	-0.17	~5.5	[12]
13	Fe/N/C HNSs	0.89	0.72	~5.0	[13]
14	Co ₃ O ₄ @C-MWCNTs	0.89	0.81	4.5	[14]
15	0.15Co-N-CB	0.98	0.87	5.18	This work

Reference

- Yang, S.; Yu, Y.; Dou, M.; Zhang, Z.; Dai, L.; Wang, F. Two-Dimensional Conjugated Aromatic Networks as High-Site-Density and Single-Atom Electrocatalysts for the Oxygen Reduction Reaction. *Angew. Chem. Int. Ed.* 2019, 58 (41), 14724-14730.
- Yu, Y.; Zhang, Z.; Dai, L.; Wang, F. Copolymer-Induced Intermolecular Charge Transfer: Enhancing the Activity of Metal-Free Catalysts for Oxygen Reduction. *Chem. Eur. J.* 2019, 25 (22), 5652-5657.
- Jiang, H.; Gu, J.; Zheng, X.; Liu, M.; Qiu, X.; Wang, L.; Li, W.; Chen, Z.; Ji, X.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. *Energy Environ. Sci.* 2019, *12* (1), 322-333.
- Zhang, J.; Zhu, W.; Pei, Y.; Liu, Y.; Qin, Y.; Zhang, X.; Wang, Q.; Yin, Y.; Guiver, M.
 D. Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. *ChemSusChem* 2019, *12* (18), 4165-4169.
- Shi, X.; Ahmad, S.; Pérez-Salcedo, K.; Escobar, B.; Zheng, H.; Kannan, A. M. Maximization of quadruple phase boundary for alkaline membrane fuel cell using nonstoichiometric α-MnO₂ as cathode catalyst. *Int. J. Hydrogen Energy* 2019, *44* (2), 1166-1173.
- Kim, M.-J.; Park, J. E.; Kim, S.; Lim, M. S.; Jin, A.; Kim, O.-H.; Kim, M. J.; Lee, K.-S.; Kim, J.; Kim, S.-S.; Cho, Y.-H.; Sung, Y.-E. Biomass-Derived Air Cathode Materials: Pore-Controlled S,N-Co-doped Carbon for Fuel Cells and Metal–Air Batteries. *ACS Catal*. 2019, 9 (4), 3389-3398.

- Huang, H.-C.; Su, C.-Y.; Wang, K.-C.; Chen, H.-Y.; Chang, Y.-C.; Chen, Y.-L.; Wu, K. C. W.; Wang, C.-H. Nanostructured Cementite/Ferrous Sulfide Encapsulated Carbon with Heteroatoms for Oxygen Reduction in Alkaline Environment. *ACS Sustainable Chem. Eng.* 2019, 7 (3), 3185-3194.
- Zhang, M.; Dai, Q.; Zheng, H.; Chen, M.; Dai, L. Novel MOF-Derived Co@ N-C Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. *Adv. Mater.* 2018, 30 (10), 1705431.
- Li, C.; He, C.; Sun, F.; Wang, M.; Wang, J.; Lin, Y. Incorporation of Fe₃C and Pyridinic N Active Sites with a Moderate N/C Ratio in Fe–N Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. *ACS Appl. Nano Mater.* 2018, *1* (4), 1801-1810.
- Hossen, M. M.; Artyushkova, K.; Atanassov, P.; Serov, A. Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. *J. Power Sources* 2018, 375, 214-221.
- Xue, Q.; Pei, Z.; Huang, Y.; Zhu, M.; Tang, Z.; Li, H.; Huang, Y.; Li, N.; Zhang, H.; Zhi,
 C. Mn₃O₄ nanoparticles on layer-structured Ti₃C₂ MXene towards the oxygen reduction reaction and zinc–air batteries. *J. Mater. Chem. A* 2017, *5* (39), 20818-20823.
- 12. Zhang, X.; Liu, R.; Zang, Y.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for

oxygen reduction, oxygen evolution and hydrogen evolution reactions. *Chem. Commun.* **2016**, *52* (35), 5946-5949.

- Zhou, D.; Yang, L.; Yu, L.; Kong, J.; Yao, X.; Liu, W.; Xu, Z.; Lu, X. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonpreciousmetal electrocatalysts for oxygen reduction. *Nanoscale* 2015, 7 (4), 1501-1509.
- Li, X.; Fang, Y.; Lin, X.; Tian, M.; An, X.; Fu, Y.; Li, R.; Jin, J.; Ma, J. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. *J. Mater. Chem. A* 2015, *3* (33), 17392-17402.