Supporting Information

Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes

Federico M. Pesci,^{1*} Antonio Bertei,² Rowena H. Brugge,¹ Steffen P. Emge,³ A. K. Ola Hekselman,¹ Lauren E. Marbella,⁴ Clare P. Grey³ and Ainara Aguadero^{1*}

- 1. Department of Materials, Imperial College London, London, SW7 2BP, UK
- 2. Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy
- 3. Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- 4. Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

Structural Characterisation

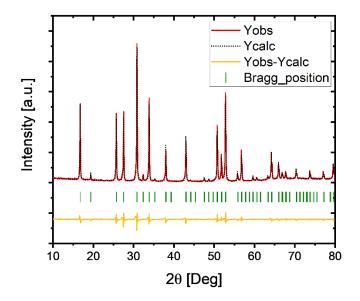


Figure S1: X-ray diffraction patterns (red line) and Rietveld refinement fittings (black dotted line) of $Li_{6.55}Ga_{0.15}La_3Zr_2O_{12}$ indicating a cubic crystal structure with the $Ia\overline{3}d$ space group.

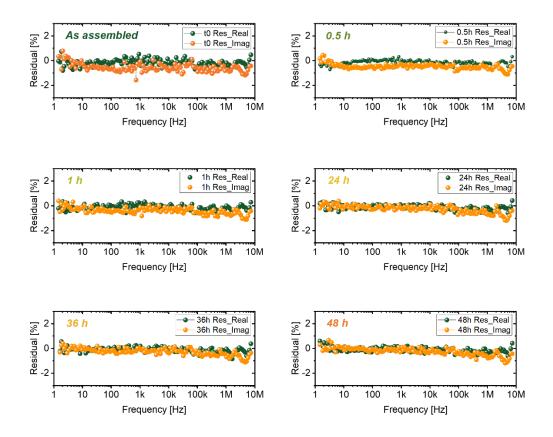


Figure S2: Kramers-Kronig residuals analysis for the EIS spectra recorded for a Ga-LLZO pellet at different times following cell assembly.

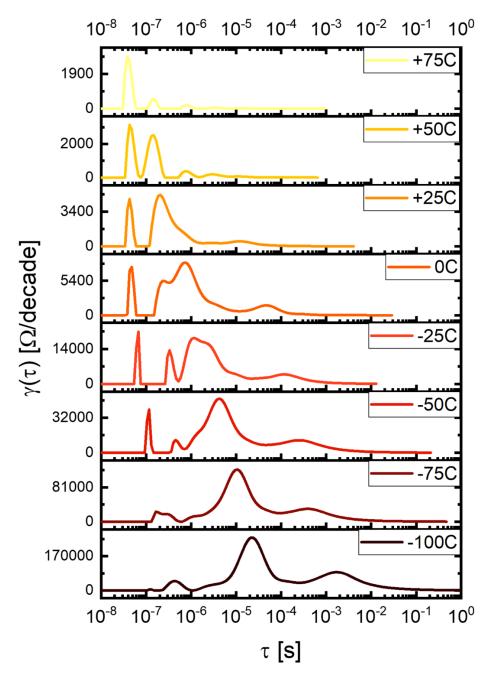


Figure S3: DRT analysis carried out on a symmetric cell of Ga-doped LLZO at different temperatures between -100°C to $+75^{\circ}C$.

Fitting Results Calculated from Variable Temperature EIS Spectra

Table S1: EIS fitting results calculated from the EIS spectra recorded in the T range -100 °C to +75°C for a Li/LLZO/Li symmetrical cell. The numbers in brackets indicate the % error calculated from the fitting of the spectra.

	$R_b(oldsymbol{\Omega} cm)$	Сь (F)	$R_{gb}\left(oldsymbol{\Omega} cm ight)$	C _{gb} (F)	R_{int} ($oldsymbol{\Omega}$ cm ²)	Cint (F)
-100°C	32100 (2%)	1.28x10 ⁻¹¹ (2%)	561673 (1%)	3.97x10 ⁻¹¹ (4%)	18570 (2%)	2.35x10 ⁻⁸ (7%)
-75°C	16017 (2%)	1.41x10 ⁻¹¹ (2%)	268492 (1%)	3.85x10 ⁻¹¹ (4%)	5824 (3%)	1.79x10 ⁻⁸ (11%)
-50°C	7090 (1%)	1.54x10 ⁻¹¹ (1%)	114126 (1%)	3.65x10 ⁻¹¹ (1%)	2324 (2%)	2.82x10 ⁻⁸ (6%)
-25°C	2785 (1%)	1.74x10 ⁻¹¹ (2%)	48997 (0.5%)	3.34x10 ⁻¹¹ (2%)	593 (2%)	5.16x10 ⁻⁸ (5%)
0°C	1621 (3%)	1.49x10 ⁻¹¹ (14%)	21144 (0.5%)	3.03x10 ⁻¹¹ (4%)	165 (3%)	7.15x10 ⁻⁸ (16%)
+25°C	1167 (2%)	1.83x10 ⁻¹¹ (2%)	8190 (0.7%)	3.04x10 ⁻¹¹ (4%)	65 (4%)	4.68x10 ⁻⁸ (8%)
+50°C	816 (1%)	1.65x10 ⁻¹¹ (0.4%)	3017 (0.3%)	3.49x10 ⁻¹¹ (0.7%)	29 (2%)	1.88x10 ⁻⁸ (5%)
+75⁰C	535 (1%)	1.74x10 ⁻¹¹ (0.6%)	803 (1%)	7.79x10 ⁻¹¹ (2%)	18 (3%)	6.47z10 ⁻⁹ (7%)

Activation Energy of Interfacial Processes

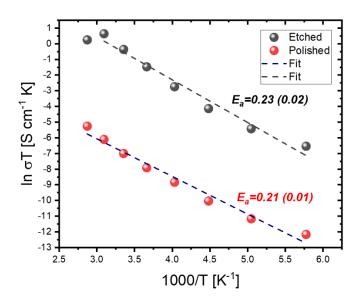


Figure S4: Arrhenius-type plot for E_a calculations of interfacial processes in Ga-LLZO polished and thermally etched samples, showing similar values for both cases.

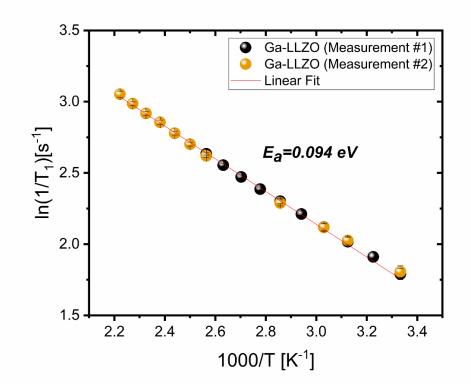


Figure S5: Variable temperature T1 data for Ga-doped LLZO used to extract activation energies, resulting in 0.094 eV. Measurement #1 was performed for ascending temperatures, while Measurement #2 was performed for the same sample and set-up but descending temperatures. The overlap shows a sufficient equilibration time between each experiment and stable sample behavior.

PFG-NMR analysis

The root mean square displacement (RMSD) $\sqrt{\langle x^2 \rangle}$ can be calculated from the diffusion coefficient, *D*, and the diffusion time, Δ :¹ (Equation S1)

$$\sqrt{\langle x^2 \rangle} = \sqrt{2D\Delta}$$
 Equation S1

In this case a factor of 2 is used since the PFG experiment measures transport only in one direction (along the z-Gradient).²

	T/K	D/10 ⁻¹³ [m²/s]	∆/ms	$\sqrt{\langle x^2 \rangle} / \mu m$
	453	45.58	60	0.74
Ga-LLZO	433	38.21	60	0.68
	413	31.42	60	0.61
	453	4.939	150	0.39
Al-LLZO	433	3.446	150	0.32
	413	2.235	150	0.26
	393	1.39	150	0.20

Table S2: Overview of PFG-NMR analysis of Al/Ga-LLZO samples at different temperatures.

Given that the RMSD value in Table S2 is much lower than the grain size as seen in Figure 1 it is safe to assume that we are probing the bulk diffusion with only limited grain boundary contributions.

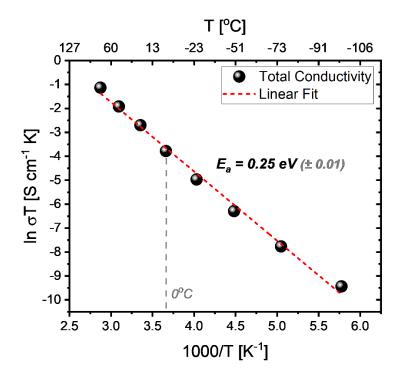


Figure S6: Arrhenius-type plot for E_a calculations of an Al-doped LLZO pellet, showing a constant E_a across the whole measured T range.

Activation Energies from Different Sets of Samples

Table S3: Values of activation energy of several LLZO samples calculated from variable temperature EIS measurements

	Bulk	GB above 0°C	GB below 0 °C	Total above 0°C	Total below 0 °C
Sample 1	0.15 eV	0.38 eV	0.14 eV	0.33 eV	0.14 eV
Sample 2 (Au)	0.14 eV	0.30 eV	0.12 eV	0.30 eV	0.12 eV
Sample 3	0.10 eV	0.46 eV	0.13 eV	0.23 eV	0.12 eV
Sample 4 (Au)	0.14 eV	0.36 eV	0.14 eV	0.25 eV	0.14 eV
Sample 5	0.11 eV	0.40 eV	0.10 eV	0.22 eV	0.10 eV

ToF-SIMS maps

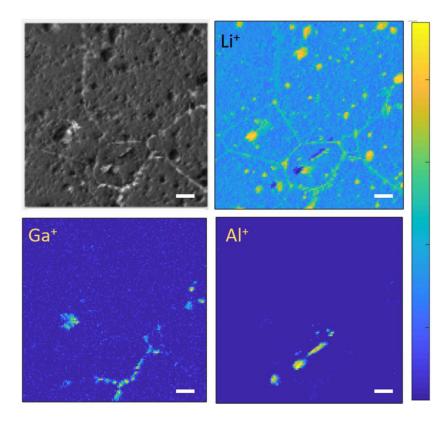


Figure S7: ToF-SIMS positive secondary ion images and elemental maps for Li^+ , Al^+ and Ga^+ , highlighting the segregation of dopants at the grain boundaries (scale bars: 20 μ m).

Bibliography

- (1) von Smoluchowski, M. Zur Kinetischen Theorie Der Brownschen Molekularbewegung Und Der Suspensionen. *Ann. Phys.* **1906**, *326* (14), 756–780. https://doi.org/10.1002/andp.19063261405.
- (2) Engelke, S.; Marbella, L. E.; Trease, N. M.; De Volder, M.; Grey, C. P. Three-Dimensional Pulsed Field Gradient NMR Measurements of Self-Diffusion in Anisotropic Materials for Energy Storage Applications. *Phys. Chem. Chem. Phys.* **2019**, *21* (8), 4538–4546. https://doi.org/10.1039/c8cp07776b.