Supporting Information

Mechanism for Transition of Reverse Cylindrical Micelles to Spherical Micelles Induced by Diverse Alcohols

Hwa-Jin Lee,^{a,+} Hyun-Jin Kim,^{a,+} Da-Gyun Park,^a Kyeong Sik Jin,^b Ji Woong Chang,^{a,*} and Hee-Young Lee,^{a,*}

^aDepartment of Chemical Engineering, The Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea

^bPohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Republic of Korea

Corresponding Authors

Ji Woong Chang - Department of Chemical Engineering, The Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea

Email: jwchang@kumoh.ac.kr

Hee-Young Lee - Department of Chemical Engineering, The Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea

Email: <u>lhysshr@kumoh.ac.kr</u>

Number of pages: 6

Number of figures: 5

Contents

Zero-shear viscosity of the lecithin/CaCl ₂ solutions in decane	S2
Steady-shear rheology of lecithin/CaCl ₂ gel with various alcohols	.83
FT-IR measurements of the lecithin/CaCl ₂ gels containing various concentration of propanol	S4
FT-IR measurements of the lecithin/CaCl ₂ gels containing various concentration of pentanol	S5
FT-IR measurements of the lecithin/CaCl ₂ gels containing various concentration of octanol	S6

1. Zero-shear viscosity of the lecithin/CaCl₂ solutions in decane

Figure S1. Zero-shear viscosity (η_0) of the lecithin/CaCl₂ solutions in decane. The solution consists of 40 mM lecithin and varying concentrations of CaCl₂. At 15 mM CaCl₂, the viscosity is at its maximum and the sample has gel-like properties. Phase separation occurs at CaCl₂ concentrations >30 mM.

2. Steady-shear rheology of lecithin/CaCl₂ gel with various alcohols

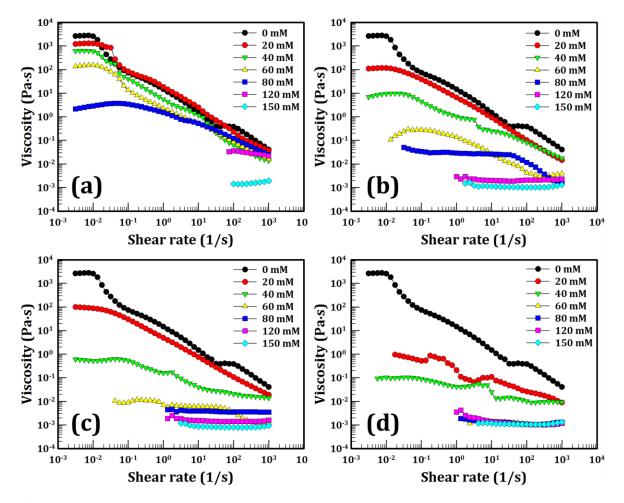
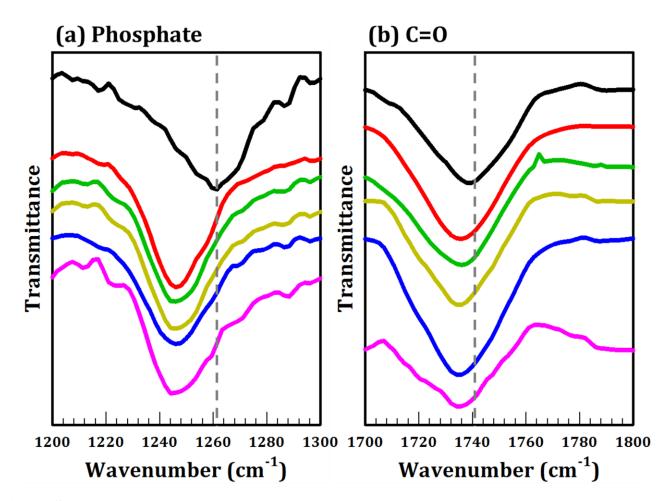
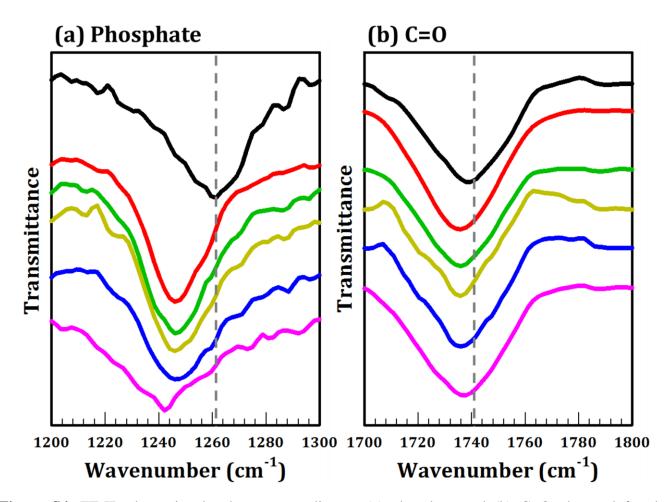




Figure S2. Steady-shear rheology of lecithin/CaCl₂ gel containing (a) propanol, (b) pentanol, (c) hexanol, and (d) octanol.

3. FT-IR measurements of the lecithin/CaCl₂ gels containing various concentration of propanol

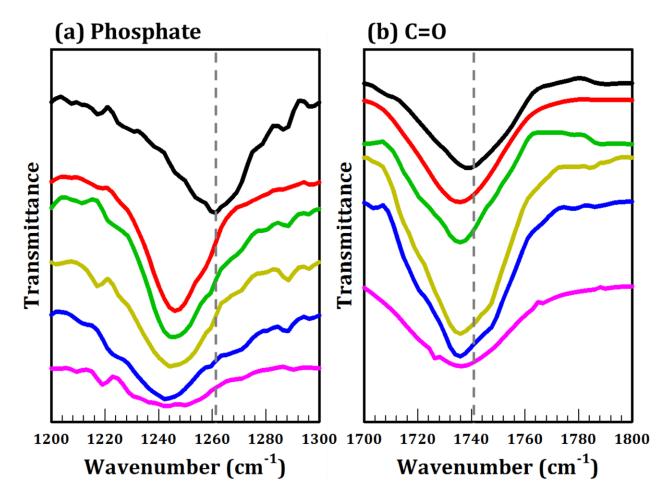


Figure S3. FT-IR absorption bands corresponding to (a) phosphate and (b) C=O observed for the lecithin/CaCl₂ gels containing propanol (lecithin (-), lecithin/CaCl₂ (-), lecithin/CaCl₂/propanol 20 mM (-), lecithin/CaCl₂/propanol 120 mM (-) and lecithin/CaCl₂/propanol 150 mM (-)). The sample concentration was 100 mM lecithin and 37.5 mM CaCl₂ in decane.

4. FT-IR measurements of the lecithin/CaCl₂ gels containing various concentration of pentanol

Figure S4. FT-IR absorption bands corresponding to (a) phosphate and (b) C=O observed for the lecithin/CaCl₂ gels containing pentanol (lecithin (-), lecithin/CaCl₂ (-), lecithin/CaCl₂/pentanol 20 mM (-), lecithin/CaCl₂/pentanol 60 mM (-), lecithin/CaCl₂/pentanol 120 mM (-) and lecithin/CaCl₂/pentanol 150 mM (-)). The sample concentration was 100 mM lecithin and 37.5 mM CaCl₂ in decane.

5. FT-IR measurements of the lecithin/CaCl₂ gels containing various concentration of octanol

Figure S5. FT-IR absorption bands corresponding to (a) phosphate and (b) C=O observed for the lecithin/CaCl₂ gels containing octanol (lecithin (-), lecithin/CaCl₂ (-), lecithin/CaCl₂/octanol 20 mM (-), lecithin/CaCl₂/octanol 60 mM (-), lecithin/CaCl₂/octanol 120 mM (-) and lecithin/CaCl₂/octanol 150 mM (-)). The sample concentration was 100 mM lecithin and 37.5 mM CaCl₂ in decane.