Supporting Information

Silver-Catalyzed C-H Aryloxydifluoromethylation and

Arylthiodifluoromethylation of Heteroarenes

Xiao-Lei Zhu,[†] Yangen Huang,[†] Xiu-Hua Xu,[‡] and Feng-Ling Qing*,[†],[‡]

† College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

‡Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China E-mail: flq@mail.sioc.ac.cn

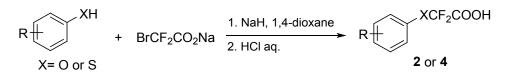
Contents

1. General Information			S2	
2. Preparation	of	ArOCF ₂ CO ₂ H	and	
ArSCF ₂ CO ₂ H	S3	}		
3. Screening of the Solvents	•••••		S4	
4. General Procedures	for	Aryloxydifluoromethylation	of	
Heteroarenes85				
5. General Procedures for Arylthiodifluoromethylation of HeteroarenesS15				
6. Scale-up Experiments	•••••		S22	
7. Competition Experiments				
8. Radical Inhibition Experiments			S25	
9. ORTEP Drawing of the X-Ray Crystallographic Structure of Product 5kc527				
10. Copies of ¹ H, ¹⁹ F, and ¹³ C NMR Spectra for the ProductsS29				
11. Copies of HRMS Analysis Reports for the ProductsS80				

1. General Information

¹H NMR (TMS as the internal standard) were recorded on a Bruker AM 400 or 600 spectrometer, ¹³C NMR and ¹⁹F NMR (CFCl₃ as outside standard and low field is positive) spectra were recorded on a Bruker AM 400 or 600 spectrometer. For the determination of ¹⁹F NMR yield, PhCF₃ was used as an internal standard and the relaxation delay (d1) was set to 5 s. Chemical shifts (δ) were reported in per million (ppm), and coupling constants (*J*) were in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra (HRMS) were obtained on a GC-TOF mass spectrometer.

Materials: Unless otherwise noted, all reagents were obtained commercially and used without further purification. Substrates were purchased from commercial sources or prepared according to literature procedures. Reactions were performed using glassware that was flame-dried under vacuum.


2. Preparation of ArOCF₂CO₂H and ArSCF₂CO₂H

Preparation of BrCF₂COONa.

BrCF₂CO₂Et + NaOH → BrCF₂CO₂Na

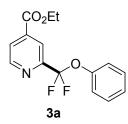
To a 500 mL oven-dried round-bottom flask equipped with a stir bar were added sodium hydroxide (8.0 g, 200 mmol) and MeOH (180 mL). Then, BrCF₂CO₂Et (41.0 g, 202 mmol) was added to the resulting solution at 0 °C. Upon addition, the mixture was warmed to room temperature and stirred for 24 h. The solvent was evaporated under vacuum and the residue was further dried under reduced pressure to give BrCF₂CO₂Na as a white solid (39.1 g, 99%).

General Procedures for the Synthesis of Aryloxydifluoroacetic acid (ArOCF₂CO₂H) and Arylthiodifluoroacetic acid (ArSCF₂CO₂H).

ArOCF₂CO₂H and ArSCF₂CO₂H were prepared following the reported procedures (Zhou, M.; Ni, C.; He, Z.; Hu, J. *Org. Lett.* **2016**, *18*, 3754). To a 50 mL oven-dried Schlenk tube equipped with a stir bar was added phenol (3.0 mmol, 1.0 equiv) or thiophenol (3.0 mmol, 1.0 equiv) under N₂ atmosphere. 1,4-Dioxane (10.0 mL) was added to dissolve the phenol or thiophenol. Then, NaH (60% purity) (132.0 mg, 3.3 mmol, 1.1 equiv) and 1,4-dioxane (2.0 mL) were added under N₂ atmosphere. The solution was stirred at room temperature for 30 min. Then BrCF₂COONa (647.1 mg, 3.3 mmol, 1.1 equiv) and 1,4-dioxane (3.0 mL) were added. After the mixture was heated at 60-100 °C in an oil bath for hours (monitor by TLC), then the mixture was cooled down to room temperature and acidified with 3M HCl (aq) to pH = 1. The mixture was extracted with ethyl acetate for three times. The combined organic phase was washed by saturated brines and dried over MgSO₄. After the solution was filtered and the solvent was evaporated under vacuum, the crude product was purified by flash column chromatography using petroleum ether and ethyl acetate as eluent to give the product **2** or **4**.

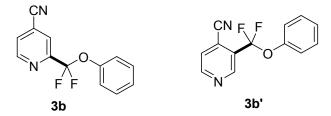
3. Screening of the Solvents^a

CO ₂ Et	+ Pho C	$\begin{array}{r} AgNO_3 (20 \text{ mol\%}) \\ selectfluor (2.0 \text{ equiv}) \\ solvent, 90 {}^{\circ}C, N_2, 20 \text{ h} \end{array}$	CO ₂ Et
	entry	solvent	yield $(\%)^b$
	1	DCE	0
	2	H_2O	50
	3	MeCN	0
	4	DMSO	0
	5	DCE/H ₂ O (1:1)	78
	6	toluene/H ₂ O (1:1)	60
	7	MeCN/H ₂ O (1:1)	6
	8	MeOH/H ₂ O (1:1)	0
	9	DMSO/H ₂ O (1:1)	0
	10	DCE/H ₂ O (2:1)	73
	11	DCE/H ₂ O (1:2)	59


^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), AgNO₃ (0.04 mmol), selectfluor (0.4 mmol), solvent (2.0 mL), N₂, 90 °C, 20 h. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using trifluoromethoxybenzene as an internal standard.

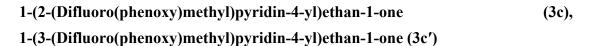
4. General Procedures for Aryloxydifluoromethylation of Heteroarenes

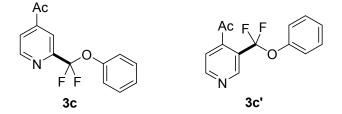
To a sealed tube equipped with a stir bar were added 1 (0.6 mmol, 1.0 equiv), AgNO₃ (20.4 mg, 0.12 mmol, 20 mol%), and selectfluor (425.1 mg, 1.2 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then aryloxydifluoroacetic acid 2 (1.8 mmol, 3.0 equiv) in DCE/H₂O (3.0/3.0 mL) were added. The tube was sealed and the mixture was heated at 90 °C in an oil bath for 20 h. After the reaction was complete, saturated NaHCO₃ solution was added. The resulting mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography to give the product **3**.


Ethyl 2-(difluoro(phenoxy)methyl)isonicotinate (3a)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3a** (105.5 mg, 60%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.78 (d, *J* = 4.9 Hz, 1H), 8.24 (s, 1H), 7.90 (dd, *J* = 4.9, 1.3 Hz, 1H), 7.28-7.20 (m, 4H), 7.14-7.06 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -70.26 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 163.1, 151.1 (t, *J* = 34.3 Hz), 149.5, 149.1, 138.2, 128.4, 124.9, 123.9, 121.1, 119.2 (t, *J* = 2.8 Hz), 118.6 (t, *J* = 264.6 Hz), 114.4, 61.2, 13.1; **IR** (thin film) *v* 1728, 1592, 1491, 1326, 1249, 1150, 1055, 897, 762, 689 cm⁻¹; **MS** (ESI): *m/z* 294 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₄F₂NO₃ 294.0936; Found 294.0934.

2-(Difluoro(phenoxy)methyl)isonicotinonitrile


3-(Difluoro(phenoxy)methyl)isonicotinonitrile (3b')



The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to afford **3b** (69.3 mg, 47%) and **3b'** (35.4 mg, 24%) as yellowish liquids.

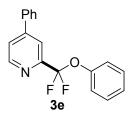
3b: ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.96 (d, J = 4.9 Hz, 1H), 8.05 (s, 1H), 7.71 (d, J = 4.8 Hz, 1H), 7.42-7.38 (m, 2H), 7.32-7.27 (m, 3H); ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm -70.49 (s, 2F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 152.7 (t, J = 35.1 Hz), 150.8, 149.8, 129.6, 127.3, 126.3, 122.8 (t, J = 2.9 Hz), 122.0, 118.9 (t, J = 265.1 Hz), 115.7; **IR** (thin film) *v* 1592, 1491, 1415, 1321, 1199, 1153, 1056, 854, 739, 688 cm⁻¹; **MS** (ESI): m/z 247 [M+H]⁺; **HRMS** (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₉F₂N₂O 247.0677; Found 247.0673.

3b': ¹**H NMR** (400 MHz, CDCl₃) δ ppm 9.22 (s, 1H), 8.99 (d, J = 4.8 Hz, 1H), 7.75 (d, J = 4.8 Hz, 1H), 7.45-7.39 (m, 3H), 7.35-7.23 (m, 2H); ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm -65.94 (s, 2F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 152.8, 149.6, 147.9 (t, J = 5.3 Hz), 129.7, 127.0, 126.6, 122.2, 119.8 (t, J = 265.0 Hz), 119.1, 114.1; **IR** (thin film) v 1589, 1490, 1278, 1190, 1138, 1060, 837, 739, 687 cm⁻¹; **MS** (ESI): m/z 247 [M+H]⁺; **HRMS** (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₉F₂N₂O 247.0677; Found 247.0672.



The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **3c** (88.4 mg, 56%) as a yellowish solid and **3c'** (28.4 mg, 18%) as a yellowish liquid.

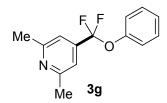
3c: m.p. 57-59 °C; ¹**H** NMR (400 MHz, CDCl₃) δ ppm 8.84 (d, *J* = 4.9 Hz, 1H), 8.13 (s, 1H), 7.80 (d, *J* = 4.9 Hz, 1H), 7.31-7.27 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.18-7.15 (m, 1H), 2.59 (s, 3H); ¹⁹**F** NMR (377 MHz, CDCl₃) δ ppm -70.26 (s, 2F); ¹³**C** NMR (101 MHz, CDCl₃) δ ppm 195.2, 151.6 (t, *J* = 34.3 Hz), 149.9, 149.1, 143.1, 128.5, 125.0, 122.3, 121.1, 118.6 (t, *J* = 264.7 Hz), 117.5 (t, *J* = 2.8 Hz), 25.7; **IR** (thin film) *v* 1696, 1588, 1489, 1323, 1239, 1165, 1053, 855, 748, 688 cm⁻¹; **MS** (ESI): *m/z* 264 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₂F₂NO₂ 264.0831; Found 264.0825.


3c': ¹**H NMR** (400 MHz, CDCl₃) δ ppm 9.00 (s, 1H), 8.78 (s, 1H), 7.34-7.30 (m, 2H), 7.22-7.18 (m, 4H), 2.53 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm -61.73 (s, 2F). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 199.9, 151.6, 148.6, 1 47.1 (t, *J* = 5.0 Hz), 146.9, 128.6, 125.3, 120.9, 119.9 (t, *J* = 264.7 Hz), 118.7, 29.9. **IR** (thin film) *v* 1712, 1591, 1491, 1325, 1283, 1190, 1049, 1026, 732, 688 cm⁻¹; **MS** (ESI): *m/z* 264 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₂F₂NO₂ 264.0831; Found 264.0825.

4-(*Tert*-butyl)-2-(difluoro(phenoxy)methyl)pyridine (3d)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3d** (69.9 mg, 42%) as a yellowish solid. m.p. 54-56 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.65 (d, *J* = 5.2 Hz, 1H), 7.77 (s, 1H), 7.41 (dd, *J* = 5.2, 1.8 Hz, 1H), 7.38-7.32 (m, 4H), 7.24-7.20 (m, 1H), 1.33 (s, 9H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -70.30 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 161.8, 151.1 (t, *J* = 33.1 Hz), 150.4, 149.6, 129.4, 125.8, 122.6, 122.3, 120.2 (t, *J* = 264.5 Hz), 117.8 (t, *J* = 2.9 Hz), 35.0, 30.4; **IR** (thin film) *v* 1777, 1592, 1491, 1324, 1259, 1161, 1051, 869, 733, 688 cm⁻¹; **MS** (ESI): *m/z* 278 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₆H₁₈F₂NO 278.1351; Found 278.1345.

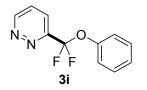
2-(Difluoro(phenoxy)methyl)-4-phenylpyridine (3e)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3e** (67.7 mg, 38%) as a yellowish liquid. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.79 (d, *J* = 5.1 Hz, 1H), 8.01 (s, 1H), 7.69-7.64 (m, 3H), 7.54-7.46 (m, 3H), 7.40-7.34 (m, 4H), 7.27-7.22 (m, 1H); ¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm -70.31 (s, 2F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 151.9 (t, *J* = 33.5 Hz), 150.3, 150.2, 150.0, 137.3, 129.7, 129.5, 129.3, 127.2, 125.9, 123.5, 122.2, 120.1 (t, *J* = 264.6 Hz), 118.9 (t, *J* = 2.8 Hz); **IR** (thin film) *v* 1602, 1490, 1413, 1330, 1256, 1147, 1048, 849, 760, 688 cm⁻¹; **MS** (ESI): *m/z* 298 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₈H₁₄F₂NO 298.1038; Found 298.1035.

2-(Difluoro(phenoxy)methyl)-6,7-dihydro-5H-cyclopenta[b]pyridine (3f)

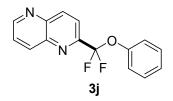
The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to afford **3f** (84.6 mg, 54%) as a yellowish liquid. ¹H **NMR** (400 MHz, CDCl₃) δ ppm 8.39 (d, *J* = 5.1 Hz, 1H), 7.30-7.26 (m, 3H), 7.17-7.13 (m, 3H), 3.12 (t, *J* = 7.5 Hz, 2H), 2.99 (t, *J* = 7.8 Hz, 2H), 2.11-2.04 (m, 2H); ¹⁹F **NMR** (377 MHz, CDCl₃) δ ppm -67.86 (s, 2F); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm 167.8, 150.1, 148.2, 137.4 (t, *J* = 33.2 Hz), 134.2, 129.5, 125.9, 121.8, 121.3 (t, *J* = 264.3 Hz), 117.0 (t, *J* = 4.4 Hz), 34.1, 30.0, 22.7; **IR** (thin film) *v* 1593, 1491, 1393, 1305, 1203, 1139, 1204, 1140, 1044, 831, 732, 689 cm⁻¹; **MS** (ESI): *m/z* 262 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₄F₂NO 262.1038; Found 262.1036.

3-(Difluoro(phenoxy)methyl)-2,6-dimethylpyridine (3g)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3g** (76.2 mg, 51%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.30-7.26 (m, 2H), 7.21 (s, 2H), 7.18-7.13 (m, 3H), 2.51 (s, 6H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -67.32 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 157.8, 149.0, 141.3 (t, *J* = 32.9 Hz), 128.5, 124.9, 120.9, 120.0 (t, *J* = 263.6 Hz), 118.6, 115.5 (t, *J* = 3.5 Hz), 114.6, 23.4; **IR** (thin film) *v* 1588, 1491, 1387, 1346, 1234, 1142, 1049, 865, 728, 689 cm⁻¹; **MS** (ESI): *m/z* 250 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₄F₂NO 250.1038; Found 250.1036.

2-(Difluoro(phenoxy)methyl)pyrazine (3h)

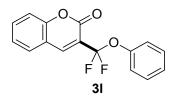
The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3h** (60.0 mg, 45%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.02 (s, 1H), 8.71 (s, 1H), 8.66 (s, 1H), 7.34-7.31 (m, 2H), 7.26-7.18 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -69.91 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 148.8, 145.8, 145.8 (t, *J* = 34.2 Hz), 143.1, 141.4 (t, *J* = 3.2 Hz), 128.5, 125.2, 121.0, 118.3 (t, *J* = 264.6 Hz); **IR** (thin film) *v* 1591, 1491, 1326, 1190, 1058, 1017, 859, 754, 723, 689 cm⁻¹; **MS** (ESI): *m/z* 223 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₁H₉F₂N₂O 223.0677; Found 223.0676.


3-(Difluoro(phenoxy)methyl)pyridazine (3i)

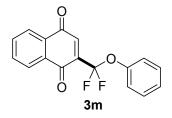
The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **3i** (53.3 mg, 40%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.46 (s, 1H), 9.33 (d, J = 5.2 Hz, 1H), 7.70 (d, J = 3.9 Hz, 1H), 7.33-7.29 (m, 2H), 7.21-7.17 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -66.98 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 150.6, 148.4, 146.6 (t, J = 2.9 Hz), 131.3 (t, J = 35.1 Hz), 128.7, 125.5, 121.5 (t, J = 3.5 Hz), 120.8, 119.0 (t, J = 263.8 Hz); **IR** (thin film) v 1592, 1491, 1363, 1322, 1152, 1046, 865, 748, 706, 688 cm⁻¹;

MS (ESI): m/z 223 [M+H]⁺; **HRMS** (ESI) m/z: [M+H]⁺ Calcd. for C₁₁H₉F₂N₂O 223.0677; Found 223.0676.

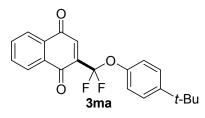
2-(Difluoro(phenoxy)methyl)-1,5-naphthyridine (3j)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **3j** (106.1 mg, 65%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.15 (dd, J = 4.0, 1.3 Hz, 1H), 9.06 (d, J = 4.3 Hz, 1H), 8.45 (dd, J = 8.5, 1.3 Hz, 1H), 8.01 (d, J = 4.4 Hz, 1H), 7.68 (dd, J = 8.5, 4.1 Hz, 1H), 7.39-7.32 (m, 4H), 7.21-7.18 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -64.46 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 151.7, 150.7, 150.4, 144.6, 139.9, 138.4 (t, J = 31.5 Hz), 137.6, 129.5, 125.9, 124.8, 122.1, 121.7 (t, J = 5.1 Hz), 121.0 (t, J = 265.0 Hz); IR (thin film) v 1593, 1492, 1319, 1270, 1200, 1135, 974, 869, 736, 648 cm⁻¹; MS (ESI): m/z 273 [M+H]⁺; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₅H₁₁F₂N₂O 273.0834; Found 273.0832.

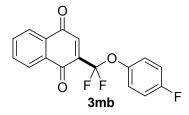
6-(Difluoro(phenoxy)methyl)phenanthridine (3k)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 15:1) to afford **3k** (61.8 mg, 32%) as a white solid. m.p. 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.55 (d, *J* = 8.3 Hz, 1H), 8.50 (d, *J* = 8.3 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 7.73-7.71 (m, 1H), 7.67-7.58 (m, 3H), 7.33-7.24 (m, 4H), 7.13-7.09 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -67.21 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 149.4, 148.2 (t, *J* = 31.5 Hz), 140.8, 132.9, 129.9, 128.5, 128.0, 127.6, 126.6, 125.8 (t, *J* = 2.9 Hz), 124.7, 123.9, 121.3, 121.2, 120.9, 120.6, 119.3 (t, *J* = 265.1 Hz); **IR** (thin film) *v* 1589, 1490, 1374, 1255, 1063, 865, 789, 724, 687 cm⁻¹; **MS** (ESI): *m/z* 322 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₂₀H₁₄F₂NO 322.1038; Found 322.1034. These assignments matched with those previously reported (Xiao, P.; Ni, C.; Miao, W.; Zhou, M.; Hu, J.; Chen, D.; Hu, J. *J. Org. Chem.* **2019**, *84*, 8345).

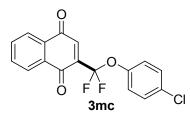
3-(Difluoro(phenoxy)methyl)-2*H*-chromen-2-one (3l)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to afford **31** (60.5 mg, 35%) as a white solid. m.p. 100-102 °C; ¹H NMR (600 MHz, CDCl₃) δ ppm 8.25 (s, 1H), 7.67-7.62 (m, 2H), 7.41-7.34 (m, 6H), 7.28-7.26 (m, 1H); ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -69.13 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.5, 154.6, 150.0, 142.7 (t, *J* = 5.0 Hz), 133.7, 129.5, 129.3, 126.1, 125.0, 122.2, 120.5 (t, *J* = 33.2 Hz), 119.5 (t, *J* = 264.6 Hz), 117.3, 116.9; **IR** (thin film) *v* 1728, 1636, 1568, 1489, 1249, 1042, 962, 745, 689 cm⁻¹; **MS** (ESI): *m/z* 289 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₆H₁₁F₂O₃ 289.0671; Found 289.0669.

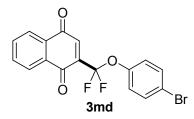
2-(Difluoro(phenoxy)methyl)naphthalene-1,4-dione (3m)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3m** (135 mg, 75%) as a bright yellow solid. m.p. 88-90 °C; ¹H NMR (400 MHz, DMSO-*d*6) δ ppm 8.09 (d, *J* = 6.5 Hz, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.99-7.89 (m, 2H), 7.50-7.46 (m, 3H), 7.35-7.32 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -68.47 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 184.3, 180.3, 149.7, 139.2 (t, *J* = 30.3 Hz), 136.5 (t, *J* = 4.9 Hz), 134.7, 134.3, 132.1, 131.6, 129.6, 127.0, 126.4, 126.2, 122.2, 119.0 (t, *J* = 265.9 Hz); **IR** (thin film) *v* 1664, 1590, 1366, 1149, 1062, 929, 781, 683 cm⁻¹; **MS** (ESI): *m*/*z* 323 [M+Na]⁺; **HRMS** (ESI) *m*/*z*: [M+Na]⁺ Calcd. for C₁₇H₁₀F₂NaO₃ 323.0490; Found 323.0483.

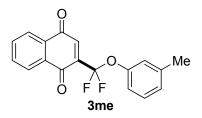
2-((4-(*Tert*-butyl)phenoxy)difluoromethyl)naphthalene-1,4-dione (3ma)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3ma** (119.6 mg, 56%) as a yellow solid. m.p. 84-86 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.18 (d, *J* = 6.9 Hz, 1H), 8.10 (d, *J* = 6.8 Hz, 1H), 7.83-7.80 (m, 2H), 7.40-7.38 (m, 3H), 7.22 (d, *J* = 8.5 Hz, 2H), 1.32 (s, 9H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -68.47 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 184.4, 180.3, 149.1, 147.3, 139.4 (t, *J* = 30.9 Hz), 136.5 (t, *J* = 4.9 Hz), 134.6, 134.2, 132.1, 131.6, 127.0, 126.4, 126.3, 121.6, 119.0 (t, *J* = 265.7 Hz), 34.5, 31.4; **IR** (thin film) *v* 1671, 1594, 1508, 1364, 1245, 1152, 1065, 923, 779, 717 cm⁻¹; **MS** (ESI): *m/z* 379 [M+Na]⁺; **HRMS** (ESI) *m/z*: [M+Na]⁺ Calcd. for C₂₁H₁₈F₂NaO₃ 379.1116; Found 379.1109.

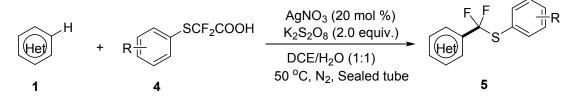
2-(Difluoro(4-fluorophenoxy)methyl)naphthalene-1,4-dione (3mb)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3mb** (152.6 mg, 80%) as a bright yellow solid. m.p. 109-111 °C; ¹**H** NMR (400 MHz, CD₃CN) δ ppm 8.15 (d, *J* = 6.9 Hz, 1H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.95-7.85 (m, 2H), 7.43 (s, 1H), 7.36 (dd, *J* = 8.6, 4.5 Hz, 2H), 7.22-7.18 (m, 2H); ¹⁹**F** NMR (377 MHz, CD₃CN) δ ppm -69.10 (s, 2F), -117.54–-117.75 (m, 1F); ¹³**C** NMR (101 MHz, CDCl₃) δ ppm 184.2, 180.2, 160.6 (d, *J* = 246.4 Hz), 145.4, 139.1 (t, *J* = 31.3 Hz), 136.6 (t, *J* = 5.0 Hz), 134.6, 134.3, 132.1, 131.6, 127.0, 126.4, 123.9 (d, *J* = 8.0 Hz), 118.9 (t, *J* = 266.7 Hz), 116.2 (d, *J* = 23.5 Hz); **IR** (thin film) *v* 1666, 1591, 1501, 1369, 1142, 1048, 922, 777, 716 cm⁻¹; **MS** (ESI): *m/z* 341 [M+Na]⁺; **HRMS** (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₇H₉F₃NaO₃ 341.0396; Found 341.0391.

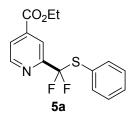
2-((4-Chlorophenoxy)difluoromethyl)naphthalene-1,4-dione (3mc)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3mc** (156.3 mg, 78%) as a bright yellow solid. m.p. 98-100 °C; ¹H NMR (400 MHz, CD₃CN) δ ppm 8.14 (d, *J* = 6.6 Hz, 1H), 8.08 (d, *J* = 6.8 Hz, 1H), 7.93-7.87 (m, 2H), 7.3-7.40 (m, 3H), 7.33 (d, *J* = 8.4 Hz, 2H); ¹⁹F NMR (377 MHz, CD₃CN) δ ppm -68.95 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 184.2, 180.2, 148.1, 139.0 (t, *J* = 30.3 Hz), 136.6 (t, *J* = 5.1 Hz), 134.7, 134.3, 132.0, 131.8, 131.6, 129.6, 127.0, 126.4, 123.6, 119.0 (t, *J* = 266.6 Hz); **IR** (thin film) *v* 1670, 1597, 1489, 1370, 1248, 1072, 918, 778, 714 cm⁻¹; **MS** (EI): *m/z* 334 M⁺; **HRMS** (EI) *m/z*: M⁺ Calcd. for C₁₇H₉ClF₂O₃ 334.0203; Found 334.0204.

2-((4-Bromophenoxy)difluoromethyl)naphthalene-1,4-dione (3md)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3md** (161 mg, 71%) as a yellow solid. m.p. 102-104 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.18 (d, *J* = 7.0 Hz, 1H), 8.11 (d, *J* = 7.1 Hz, 1H), 7.85-7.81 (m, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.37 (s, 1H), 7.20 (d, *J* = 8.4 Hz, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -68.92 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 184.2, 180.2, 148.7, 138.9 (t, *J* = 30.3 Hz), 136.6 (t, *J* = 5.0 Hz), 134.7, 134.4, 132.7, 132.0, 131.5, 127.0, 126.4, 124.0, 119.5, 118.9 (t, *J* = 266.8 Hz); IR (thin film) *v* 1671, 1587, 1488, 1371, 1143, 1050, 919, 775, 669 cm⁻¹; MS (EI): *m/z* 378 M⁺; HRMS (EI) *m/z*: M⁺ Calcd. for C₁₇H₉BrF₂O₃ 377.9698; Found 377.9694.

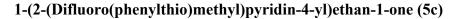
2-(Difluoro(*m*-tolyloxy)methyl)naphthalene-1,4-dione (3me)

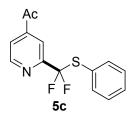

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3me** (135.6 mg, 72%) as a yellow solid. m.p. 87-89 °C; ¹H NMR (600 MHz, CDCl₃) δ ppm 8.15 (d, *J* = 6.1 Hz, 1H), 8.07 (d, *J* = 6.0 Hz, 1H), 7.81-7.76 (m, 2H), 7.36 (s, 1H), 7.27-7.24 (m, 1H), 7.13-7.11 (m, 1H), 7.06 (d, *J* = 7.6 Hz, 2H), 2.37 (s, 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -68.36 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 184.1, 180.2, 149.6, 139.8, 139.2 (t, *J* = 30.8 Hz), 136.5 (t, *J* = 4.9 Hz), 134.6, 134.3, 132.0, 131.5, 129.3, 127.0, 126.9, 126.3, 122.8, 119.1, 118.9 (t, *J* = 265.6 Hz), 21.3; **IR** (thin film) *v* 1671, 1593, 1488, 1364, 1246, 1146, 1055, 919, 779, 686 cm⁻¹; **MS** (ESI): *m/z* 337 [M+Na]⁺; **HRMS** (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₈H₁₂F₂NaO₃ 337.0647; Found 337.0641.

5. General Procedures for Arylthiodifluoromethylation of Heteroarenes

To a sealed tube equipped with a stir bar were added 1 (0.6 mmol, 1.0 equiv), AgNO₃ (20.4 mg, 0.12 mmol, 20 mol %), and $K_2S_2O_8$ (324.4 mg, 1.2 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then arylthiodifluoroacetic acid 4 (1.8 mmol, 3.0 equiv) in DCE/H₂O (3.0/3.0 mL) were added. The tube was sealed and the mixture was heated at 50 °C in an oil bath for 20 h. After the reaction was complete, saturated NaHCO₃ solution was added. The resulting mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography to give the product 5.

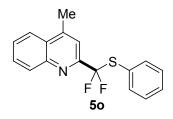
Ethyl 2-(difluoro(phenylthio)methyl)isonicotinate (5a)




The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5a** (142.8 mg, 77%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.85 (d, *J* = 4.9 Hz, 1H), 8.13 (s, 1H), 7.96 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.68-7.65 (m, 2H), 7.46-7.42 (m, 1H), 7.40-7.36 (m, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.79 (s, 2F); ¹³C NMR (151 MHz, CDCl₃) δ ppm 164.1, 154.4 (t, *J* = 28.2 Hz), 150.3, 139.1, 136.8, 130.2, 129.1, 126.3, 126.2 (t, *J* = 278.8 Hz), 124.7, 119.6 (t, *J* = 3.2 Hz), 62.2, 14.2; IR (thin film) *v* 1727, 1566, 1368, 1307, 1224, 1016, 961, 867, 749 cm⁻¹; MS (ESI): *m/z* 310 [M+H]⁺; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₄F₂NO₂S 310.0708; Found 310.0706.

2-(Difluoro(phenylthio)methyl)isonicotinonitrile (5b)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to afford **5b** (102.2 mg, 65%) as a white solid. m.p. 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.89 (d, *J* = 4.9 Hz, 1H), 7.75 (s, 1H), 7.64-7.61 (m, 3H), 7.49-7.45 (m, 1H), 7.41-7.37 (m, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -75.64 (s); ¹³C NMR (151 MHz, CDCl₃) δ ppm 154.9 (t, *J* = 28.9 Hz), 150.6, 136.8, 130.5, 129.3, 127.0, 125.7, 125.6 (t, *J* = 279.3 Hz), 122.0, 121.7, 115.6; **IR** (thin film) *v* 1599, 1473, 1289, 1048, 969, 860, 804, 710, 640 cm⁻¹; **MS** (ESI): *m/z* 263 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₃H₉F₂N₂S 263.0449; Found 263.0448.


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **5c** (95.4 mg, 57%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.89 (d, *J* = 5.0 Hz, 1H), 7.97 (s, 1H), 7.83 (d, *J* = 4.9 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.47-7.43 (m, 1H), 7.40-7.37 (m, 2H), 2.62 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.95 (s, 2F); ¹³C NMR (151 MHz, CDCl₃) δ ppm 196.1, 154.8 (t, *J* = 28.2 Hz), 150.8, 144.0, 136.8, 130.2, 129.1, 126.3, 126.2 (t, *J* = 278.8 Hz), 122.9, 118.0 (t, *J* = 3.2 Hz), 26.7; **IR** (thin film) *v* 1698, 1560, 1360, 1295, 1213, 1054, 947, 847, 690 cm⁻¹; **MS** (ESI): *m/z* 280 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₂F₂NOS 280.0602; Found 280.0600.

1-(6-(Difluoro(phenylthio)methyl)pyridin-2-yl)ethan-1-one (5n)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **5n** (100.4 mg, 60%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.63 (d, *J* = 5.0 Hz, 1H), 8.05 (s, 1H), 7.47-7.43 (m, 3H), 7.36-7.32 (m, 1H), 7.28-7.24 (m, 2H), 2.63 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -75.05 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 198.9, 154.1, 149.5, 145.1 (t, *J* = 27.2 Hz), 136.6, 130.5, 129.3, 126.1 (t, *J* = 280.1 Hz), 126.0, 122.7 (t, *J* = 4.2 Hz), 117.8 (t, *J* = 4.4 Hz), 25.8; **IR** (thin film) *v* 1700, 1353, 1213, 1052, 906, 845, 749, 659, 589 cm⁻¹; **MS** (ESI): *m/z* 280 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₄H₁₂F₂NOS 280.0602; Found 280.0600.

2-(Difluoro(phenylthio)methyl)-4-methylquinoline (50)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **50** (81.3 mg, 45%) as a white solid. m.p. 79-81 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.37 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.66-7.62 (m, 1H), 7.52-7.47 (m, 3H), 7.34-7.23 (m, 4H), 2.60 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -71.27 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 157.1, 147.7, 138.4 (t, *J* = 24.1 Hz), 135.5, 129.3, 128.7, 128.4, 128.1, 128.0, 125.5 (t, *J* = 280.1 Hz), 125.4, 124.1 (t, *J* = 3.0 Hz), 120.7, 117.8 (t, *J* = 6.7 Hz) 24.3; **IR** (thin film) *v* 1603, 1510, 1440, 1329, 1236, 1134, 1024, 964, 750, 642 cm⁻¹; **MS** (ESI): *m/z* 302 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₇H₁₄F₂NS 302.0810; Found 302.0807.

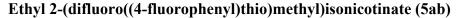
2-(Difluoro(phenylthio)methyl)pyrazine (5h)

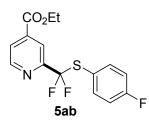

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 8:1) to afford **5h** (42.8 mg, 30%) as a yellow solid. m.p. 62-64 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.74 (s, 1H), 8.62-8.59 (m, 2H), 7.55 (d, *J* = 7.3 Hz, 2H), 7.39-7.36 (m, 1H), 7.32-7.29 (m, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -75.90 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 147.9 (t, J = 28.5 Hz), 145.4, 142.8, 140.8 (t, J = 3.8 Hz), 135.8, 129.4, 128.2, 124.8 (t, J = 279.5 Hz), 124.7; **IR** (thin film) *v* 1475, 1407, 1283, 1078, 1018, 927, 849, 747, 688 cm⁻¹; **MS** (ESI): *m/z* 239 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₁H₉F₂N₂S 239.0449; Found 239.0447.

3-(((4-Chlorophenyl)thio)difluoromethyl)pyridazine (5ic)

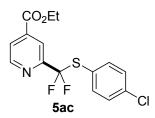
The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 4:1) to afford **5ic** (138.7 mg, 85%) as a white solid. m.p. 102-104 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.33 (d, *J* = 5.4 Hz, 2H), 7.52-7.48 (m, 3H), 7.39-7.36 (m, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -76.25 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 151.2, 147.1 (t, *J* = 3.8 Hz), 137.9, 137.7, 134.4 (t, *J* = 27.9 Hz), 129.8, 125.0 (t, *J* = 280.6 Hz), 123.6, 121.9 (t, *J* = 4.4 Hz); **IR** (thin film) *v* 1568, 1472, 1386, 1265, 1046, 926, 824, 718 cm⁻¹; **MS** (ESI): *m/z* 273 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₁H₈ClF₂N₂S 273.0059; Found 273.0057.

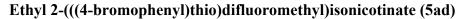
6-(((4-Chlorophenyl)thio)difluoromethyl)phenanthridine (5kc)

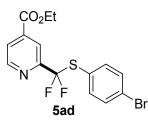



The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 15:1) to afford **5kc** (140.2 mg, 63%) as a white solid. m.p. 124-126 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.61 (d, *J* = 8.3 Hz, 1H), 8.53-8.50 (m, 2H), 8.25 (d, *J* = 7.5 Hz, 1H), 7.85-7.81 (m, 1H), 7.77-7.65 (m, 5H), 7.40 (d, *J* = 8.3 Hz, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -65.59 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 150.8 (t, *J* = 28.3 Hz), 141.6, 138.4, 136.6, 134.0, 131.2, 130.8, 129.7 (t, *J* = 280.1 Hz), 129.3, 129.2, 128.9, 127.7, 126.8 (t, *J* = 5.4 Hz), 126.0, 125.0, 122.5, 122.1, 121.8; **IR** (thin film) *v* 1571, 1474, 1363, 1133, 1048, 874, 824, 778, 724 cm⁻¹; **MS** (ESI): *m*/*z* 372 [M+H]⁺; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd. for C₂₀H₁₃ClF₂NS 372.0420; Found 372.0416.

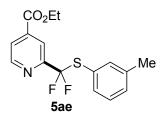
9-(Difluoro(phenylthio)methyl)acridine (5p)

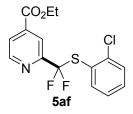

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **5p** (117.3 mg, 58%) as a yellow solid. m.p. 169-171 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.53 (d, *J* = 8.2 Hz, 2H), 8.16 (d, *J* = 8.3 Hz, 2H), 7.70-7.64 (m, 4H), 7.51-7.48 (m, 2H), 7.37-7.31 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -59.30 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 149.0, 136.8, 135.7 (t, *J* = 23.4 Hz), 130.5, 130.4, 129.7, 129.3, 129.1 (t, *J* = 283.2 Hz), 127.0, 126.4, 125.6 (t, *J* = 8.4 Hz), 122.8; **IR** (thin film) *v* 1521, 1439, 1344, 1128, 1037, 981, 864, 749, 687 cm⁻¹; **MS** (ESI): *m/z* 338 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₂₀H₁₄F₂NS 338.0810; Found 338.0808.



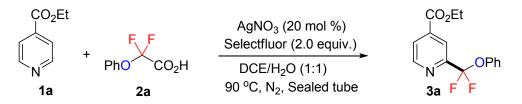

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5ab** (153 mg, 78%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.86 (d, *J* = 4.9 Hz, 1H), 8.13 (s, 1H), 7.98 (d, *J* = 4.9 Hz, 1H), 7.67-7.63 (m, 2H), 7.11-7.07 (m, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -75.06 (s, 2F), -109.92–-110.00 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 164.2 (d, *J* = 251.5 Hz), 164.1, 154.2 (t, *J* = 28.2 Hz), 150.4, 139.2, 139.0 (d, *J* = 8.8 Hz), 126.0 (t, *J* = 279.8 Hz), 124.8, 121.5, 119.6 (t, *J* = 3.3 Hz), 116.4 (d, *J* = 22.1 Hz), 62.3, 14.2; IR (thin film) *v* 1727, 1589, 1490, 1307, 1223, 1060, 960, 833, 718 cm⁻¹; MS (ESI): *m/z* 328 [M+H]⁺; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₃F₃NO₂S 328.0614; Found 328.0611.

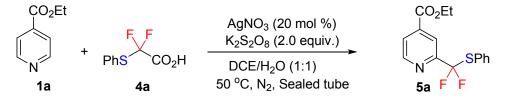
Ethyl 2-(((4-chlorophenyl)thio)difluoromethyl)isonicotinate (5ac)


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5ac** (154.4 mg, 75%) as a white solid. m.p. 44-46 °C; ¹H NMR (600 MHz, CDCl₃) δ ppm 8.86 (d, *J* = 4.9 Hz, 1H), 8.14 (s, 1H), 7.98 (d, *J* = 4.9 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.48 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 164.1, 154.1 (t, *J* = 28.1 Hz), 150.4, 139.2, 138.0, 136.9, 129.4, 126.0 (t, *J* = 280.1 Hz), 124.9, 124.8, 119.6 (t, *J* = 3.3 Hz), 62.3, 14.2; IR (thin film) *v* 1724, 1567, 1477, 1368, 1302, 1225, 1093, 996, 824, 760 cm⁻¹; MS (ESI): *m/z* 344 [M+H]⁺; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₃ClF₂NO₂S 344.0318; Found 324.0317.


The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5ad** (150.9 mg, 65%) as a white solid. m.p. 58-60 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.85 (d, *J* = 4.9 Hz, 1H), 8.14 (s, 1H), 7.98 (d, *J* = 4.9 Hz, 1H), 7.59-7.52 (m, 4H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.37 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 164.1, 154.1 (t, *J* = 28.0 Hz), 150.4, 139.3, 138.2, 132.4, 126.0 (t, *J* = 280.2 Hz), 125.4, 125.2, 124.9, 119.6 (t, *J* = 3.3 Hz), 62.3, 14.2; **IR** (thin film) *v* 1724, 1561, 1474, 1369, 1303, 1262, 1065, 819, 760, 718 cm⁻¹; **MS** (ESI): *m/z* 388 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₃BrF₂NO₂S 387.9813; Found 387.9809.

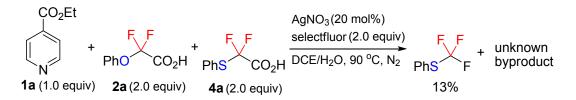
Ethyl 2-(difluoro(m-tolylthio)methyl)isonicotinate (5ae)

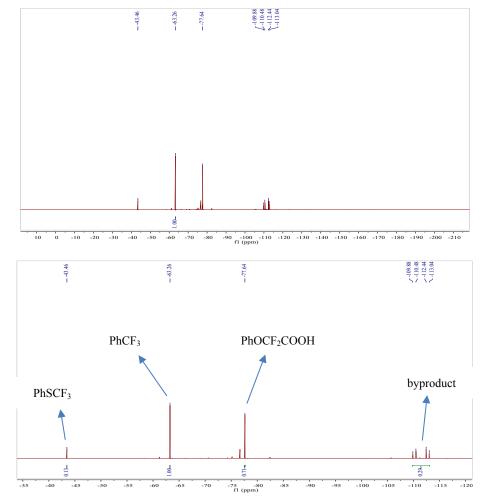

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5ae** (139.5 mg, 72%) as a yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.76 (d, *J* = 4.9 Hz, 1H), 8.04 (s, 1H), 7.87 (d, *J* = 4.9 Hz, 1H), 7.39-7.36 (m, 2H), 7.20-7.14 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.27 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.87 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 164.2, 154.5 (t, *J* = 28.2 Hz), 150.3, 139.1, 139.0, 137.3, 133.7, 131.0, 128.9, 126.2 (t, *J* = 279.7 Hz), 126.0, 124.6, 119.6 (t, *J* = 3.3 Hz), 62.2, 21.2, 14.2; **IR** (thin film) *v* 1728, 1565, 1475, 1368, 1289, 1224, 1060, 960, 866, 762 cm⁻¹; **MS** (ESI): *m/z* 324 [M+H]⁺; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₆H₁₆F₂NO₂S 324.0864; Found 324.0863.



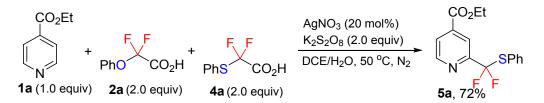
The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **5af** (127.6 mg, 62%) as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.85 (d, *J* = 4.9 Hz, 1H), 8.15 (s, 1H), 7.98 (d, *J* = 4.9 Hz, 1H), 7.84 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.49 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.40-7.36 (m, 1H), 7.33-7.28 (m, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -74.14 (s, 2F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 164.1, 154.1 (t, *J* = 27.9 Hz), 150.3, 140.2, 139.2, 139.1, 131.6, 130.3, 127.3, 126.2 (t, *J* = 281.4 Hz), 126.0, 124.8, 119.5 (t, *J* = 3.4 Hz), 62.3, 14.2; **IR** (thin film) *v* 1727, 1565, 1452, 1289, 1224, 1063, 959, 815, 754 cm⁻¹; **MS** (ESI): *m/z* 344 [M+H]+; **HRMS** (ESI) *m/z*: [M+H]+ Calcd. for C₁₅H₁₃ClF₂NO₂S 344.0318; Found 324.0315.

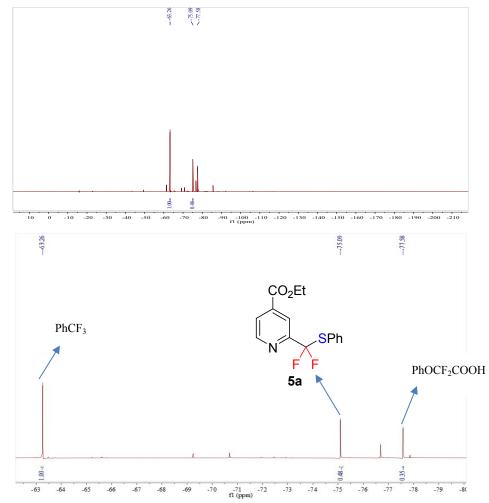
6. Scale-up Experiments


To a sealed tube equipped with a stir bar were added **1a** (181.2 mg, 1.2 mmol, 1.0 equiv), AgNO₃ (40.8 mg, 0.24 mmol, 20 mol %), and selectfluor (850.2 mg, 2.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenoxydifluoroacetic acid **2a** (677.2 mg, 3.6 mmol, 3.0 equiv) in DCE/H₂O (6.0/6.0 mL) were added. The tube was sealed and the mixture was heated at 90 °C in an oil bath for 20 h. After the reaction was complete, saturated NaHCO₃ solution was added. The resulting mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **3a** (204.8 mg, 58%) as a yellowish liquid.

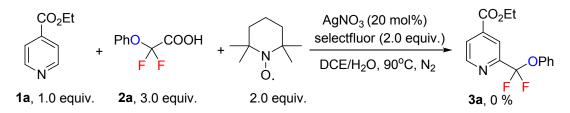

To a sealed tube equipped with a stir bar were added **1a** (181.2 mg, 1.2 mmol, 1.0 equiv), AgNO₃ (40.8 mg, 0.24 mmol, 20 mol %), and $K_2S_2O_8$ (648.7 mg, 2.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenylthiodifluoroacetic acid **4a** (735.1 mg, 3.6 mmol, 3.0 equiv) in DCE/H₂O (6.0/6.0 mL) were added. The tube was sealed and the mixture was heated at 50 °C in an oil bath for 20 h. After the reaction was complete, saturated NaHCO₃ solution was added. The resulting mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **5a** (273.9 mg, 74%) as a yellowish liquid.

7. Competition Experiments

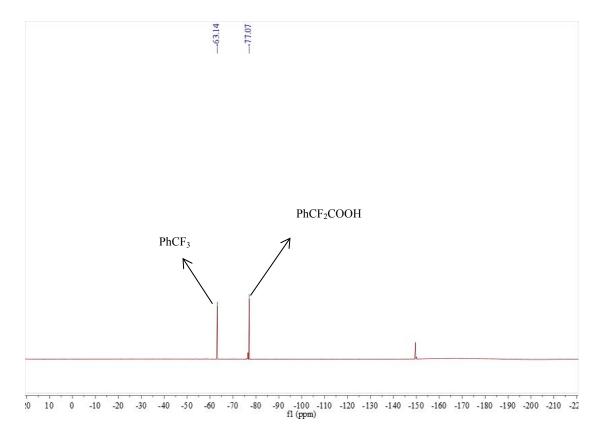

Under AgNO₃/selectfluor reaction system


To a sealed tube equipped with a stir bar were added **1a** (90.7 mg, 0.6 mmol, 1.0 equiv), AgNO₃ (20.4 mg, 0.12 mmol, 20 mol%), and selectfluor (425.1 mg, 1.2 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenoxydifluoroacetic acid **2a** (225.7 mg, 1.2 mmol, 2.0 equiv) and phenylthiodifluoroacetic acid **4a** (245.0 mg, 1.2 mmol, 2.0 equiv) in DCE/H₂O (3.0/3.0 mL) were added. The tube was sealed and the mixture was heated at 90 °C in an oil bath for 20 h. The internal standard PhCF₃ (73.7 μ L, 0.6 mmol, 1.0 equiv) was added, and the solution was then analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated the formation of PhSCF₃ (13%) and an unknown byproduct.

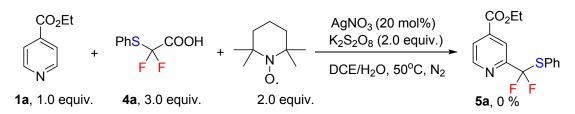
Under $AgNO_3/K_2S_2O_8$ reaction system

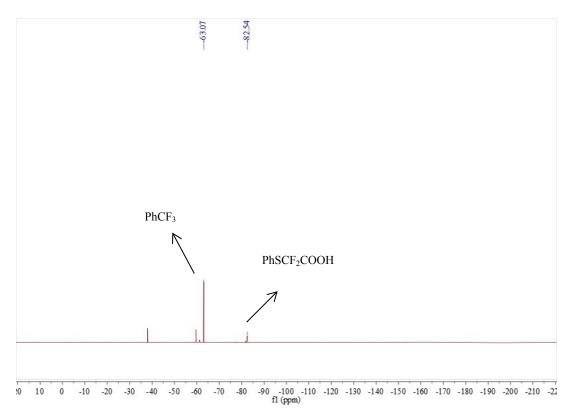


To a sealed tube equipped with a stir bar were added **1a** (90.7 mg, 0.6 mmol, 1.0 equiv), AgNO₃ (20.4 mg, 0.12 mmol, 20 mol %), and K₂S₂O₈ (324.4 mg, 1.2 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenoxydifluoroacetic acid **2a** (225.7 mg, 1.2 mmol, 2.0 equiv) and phenylthiodifluoroacetic acid **4a** (245.0 mg, 1.2 mmol, 2.0 equiv) in DCE/H₂O (3.0/3.0 mL) were added. The tube was sealed and the mixture was heated at 50 °C in an oil bath for 20 h. The internal standard PhCF₃ (73.7 μ L, 0.6 mmol, 1.0 equiv) was added, and the solution was then analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated the formation of **5a** (72%).



8. Radical Inhibition Experiments


Aryloxydifluoromethylation in the presence of TEMPO

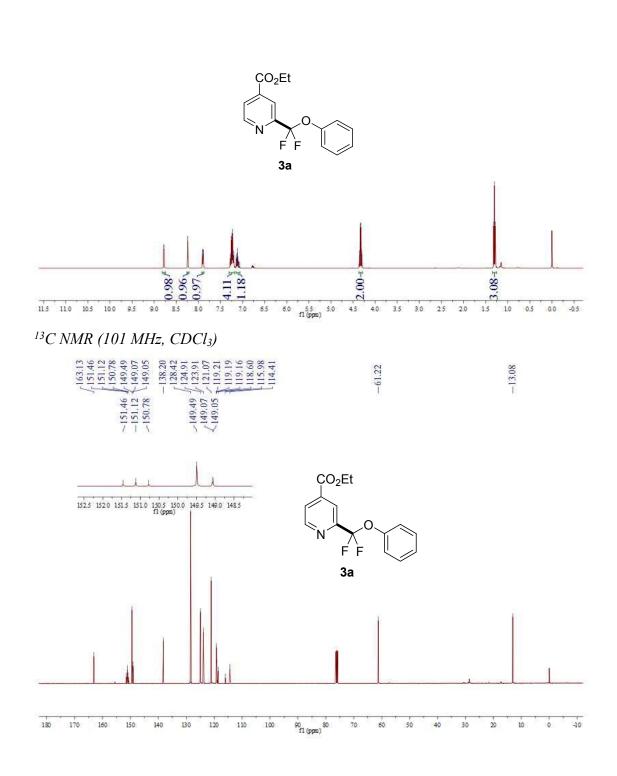

To a sealed tube equipped with a stir bar were added **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv), AgNO₃ (6.8 mg, 0.04 mmol, 20 mol%), and selectfluor (141.7 mg, 0.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenoxydifluoroacetic acid **2a** (112.8 mg, 0.6 mmol, 3.0 equiv) in DCE/H₂O (1.0/1.0 mL) were added. The tube was sealed and the mixture was heated at 90 °C in an oil bath for 20 h. The internal standard PhCF₃ (24.6 μ L, 0.2 mmol, 1.0 equiv) was added, and the solution was then analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated that the desired product **3a** was completely inhibited in the presence of 2.0 equiv. of TEMPO.

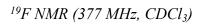
Arylthiodifluoromethylation in the presence of TEMPO

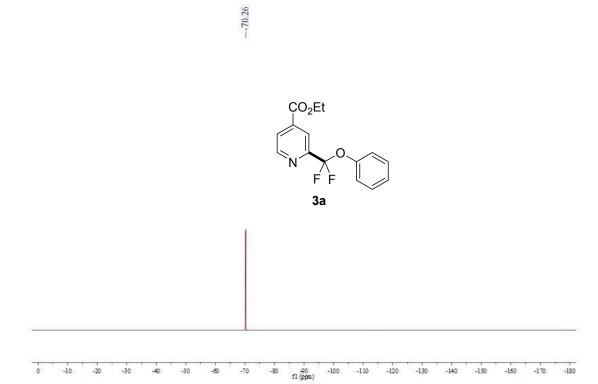
To a sealed tube equipped with a stir bar were added **1a** (30.2 mg, 0.2 mmol, 1.0 equiv), TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv), AgNO₃ (6.8 mg, 0.04 mmol, 20 mol%), and K₂S₂O₈ (108.1 mg, 0.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then phenoxydifluoroacetic acid **4a** (122.4 mg, 0.6 mmol, 3.0 equiv) in DCE/H₂O (1.0/1.0 mL) were added. The tube was sealed and the mixture was heated at 50 °C in an oil bath for 20 h. The internal standard PhCF₃ (24.6 μ L, 0.2 mmol, 1.0 equiv) was added, and the solution was then analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated that the desired product **5a** was completely inhibited in the presence of 2.0 equiv. of TEMPO.

9. ORTEP Drawing of the X-Ray Crystallographic Structure of Product 5kc

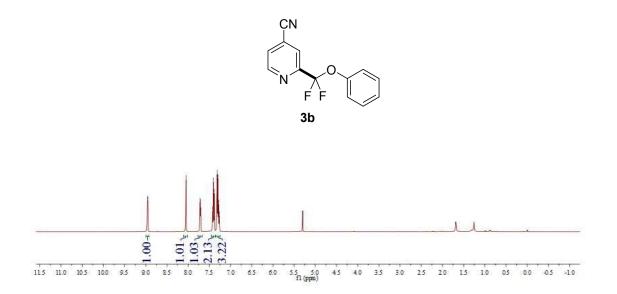
The crystals were obtained from a solution of dichloromethane and hexane upon slow volatilization. The X-ray intensity data were measured at 293(2) K, on a Rigaku AFC7R diffractometer.

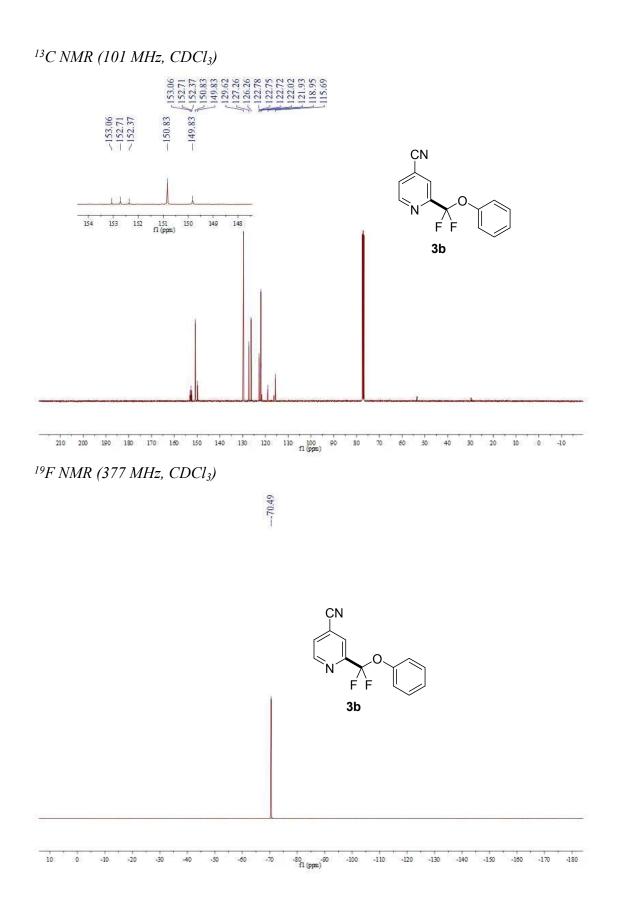

The crystal structure has been deposited at the Cambridge Crystallographic Date Center and allocated the deposition number CCDC 2001370. The thermal ellipsoids are shown at the 30% probability level. This data can be obtained free of charge from the Cambridge Crystallographic Date Center via www.ccdc.cam.ac.uk/data request/cif

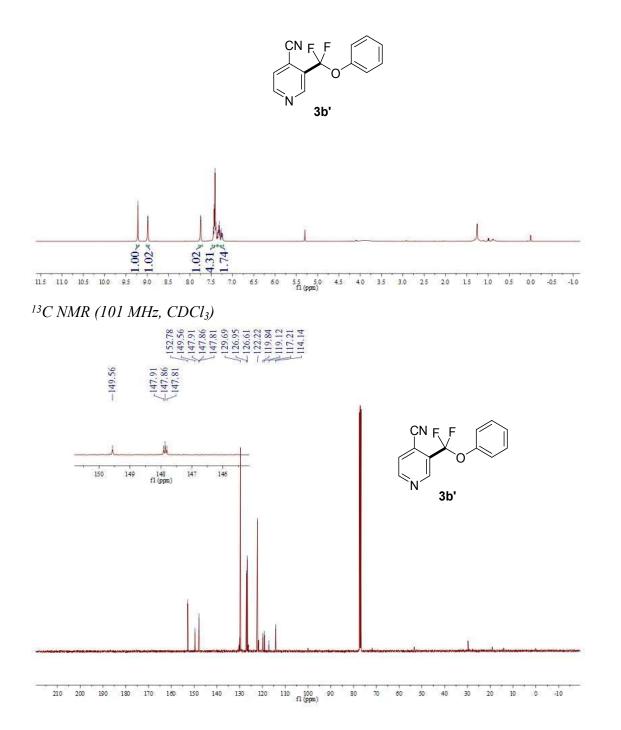

Crystal data and structure refinement for 5kc

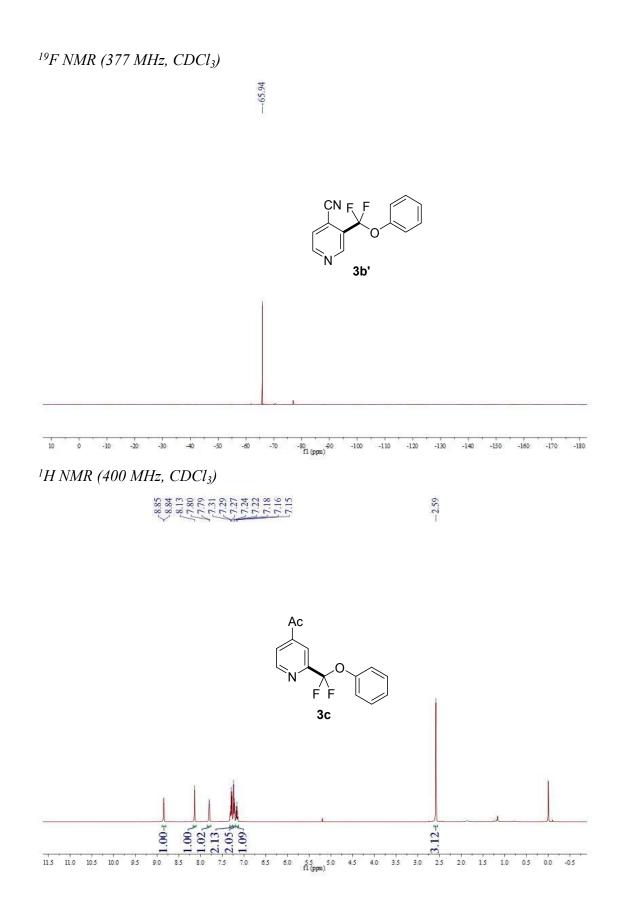

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	5kc C20 H12 Cl F2 N S 371.82 293(2) K 0.71073 Å Triclinic P -1 a = 8.2778(12) Å b = 9.4259(13) Å c = 11.5784(17) Å	$\alpha = 71.910(4)^{\circ}.$ $\beta = 80.287(4)^{\circ}.$ $\gamma = 85.508(4)^{\circ}.$	
Volume	846.1(2) Å ³	,	
Z	2		
Density (calculated)	1.459 Mg/m ³		
Absorption coefficient F(000)	0.371 mm ⁻¹ 380		
Crystal size	$0.200 \ge 0.160 \ge 0.130 \text{ mm}^3$		
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	2.884 to 25.998°. -10<=h<=10, -11<=k<=2 20622 3286 [R(int) = 0.0320] 98.7 % Semi-empirical from equ 0.7456 and 0.6652		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3286 / 0 / 227		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	R1 = 0.0350, wR2 = 0.0870 R1 = 0.0402, wR2 = 0.0907 0.025(8)		
Largest diff. peak and hole	0.233 and -0.253 e.Å ⁻³		

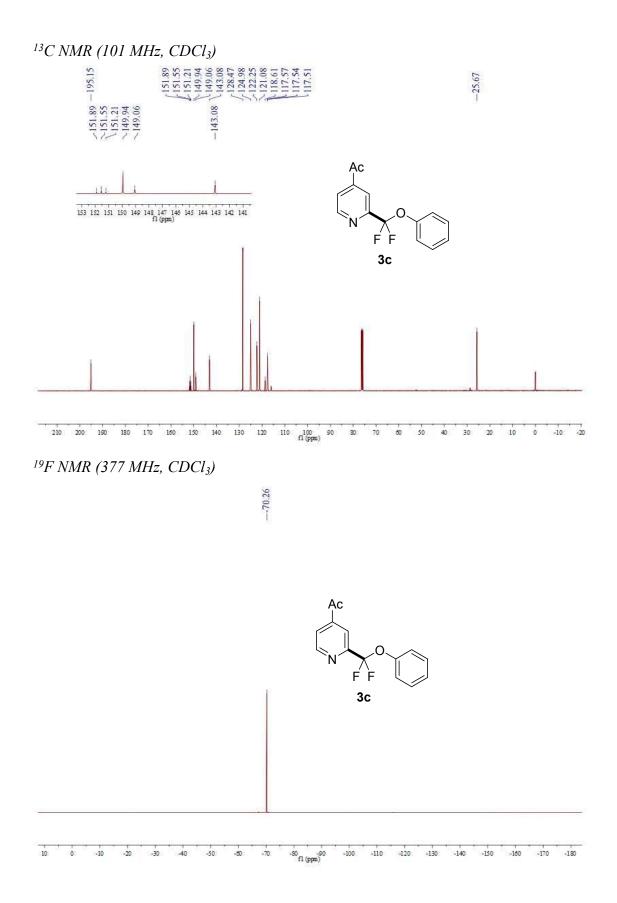
10.Copies of ¹H, ¹⁹F, and ¹³C NMR Spectra for the Products

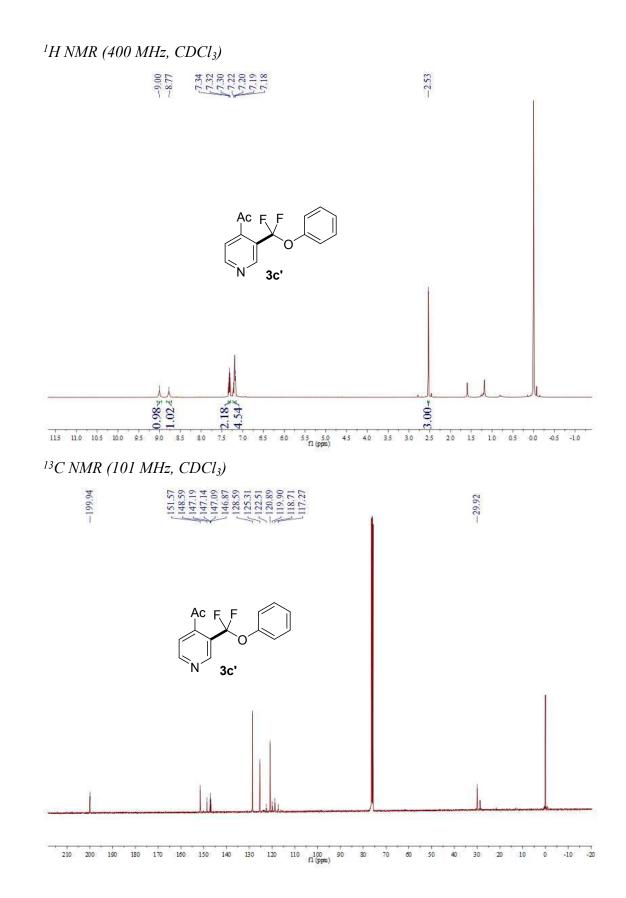

¹H NMR (400 MHz, CDCl₃)

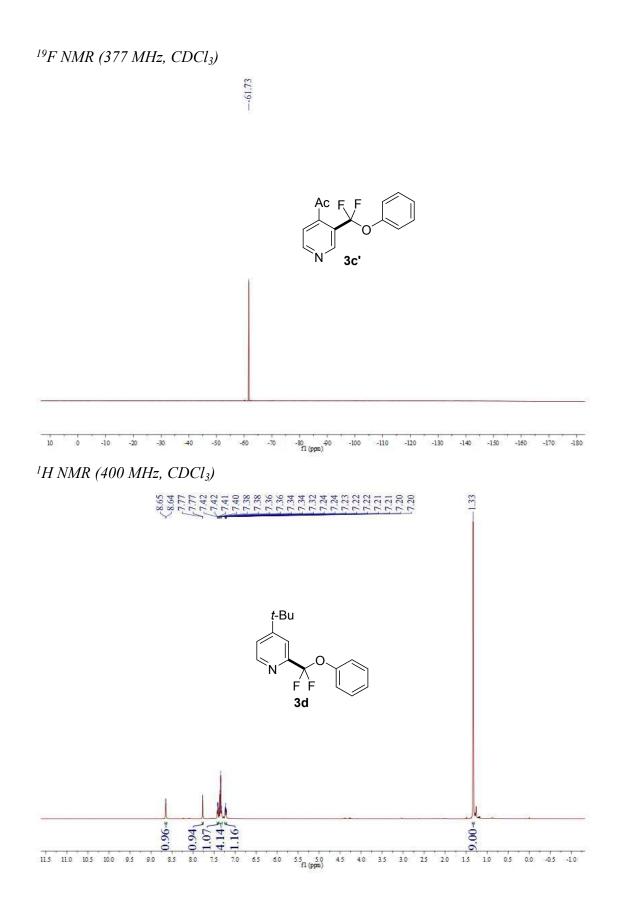


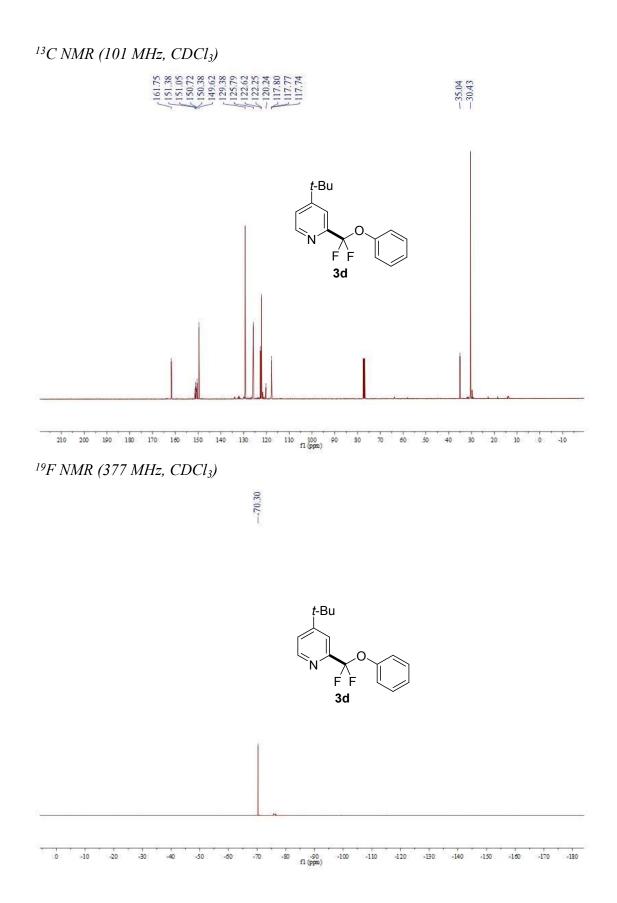

¹H NMR (400 MHz, CDCl₃)

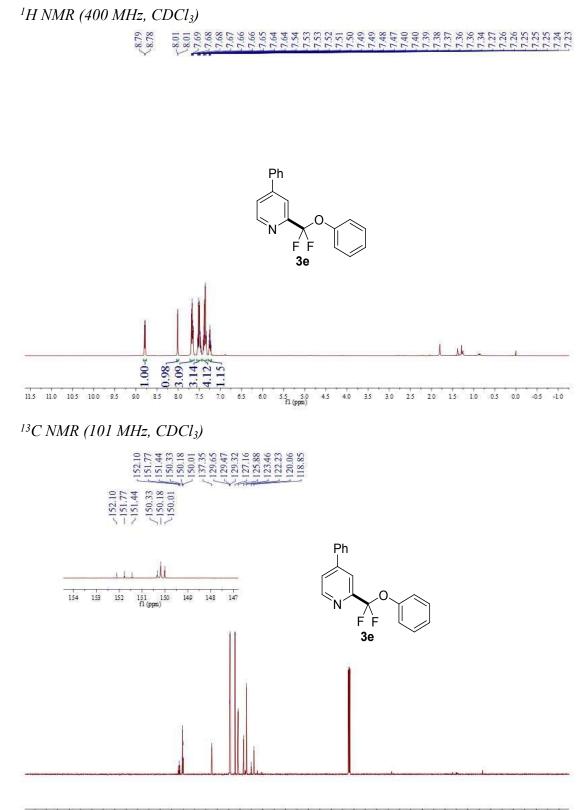


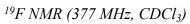


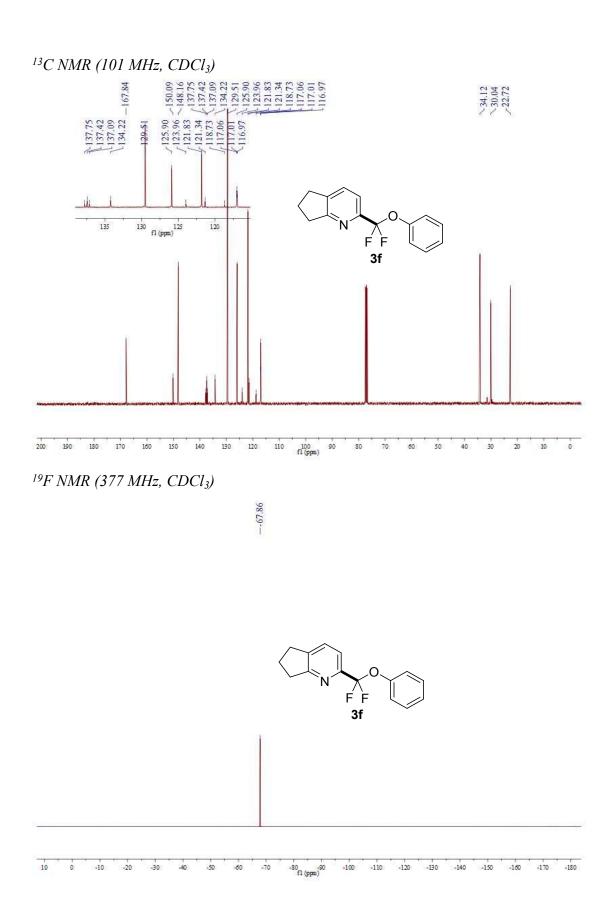

¹HNMR (400 MHz, $CDCl_3$)

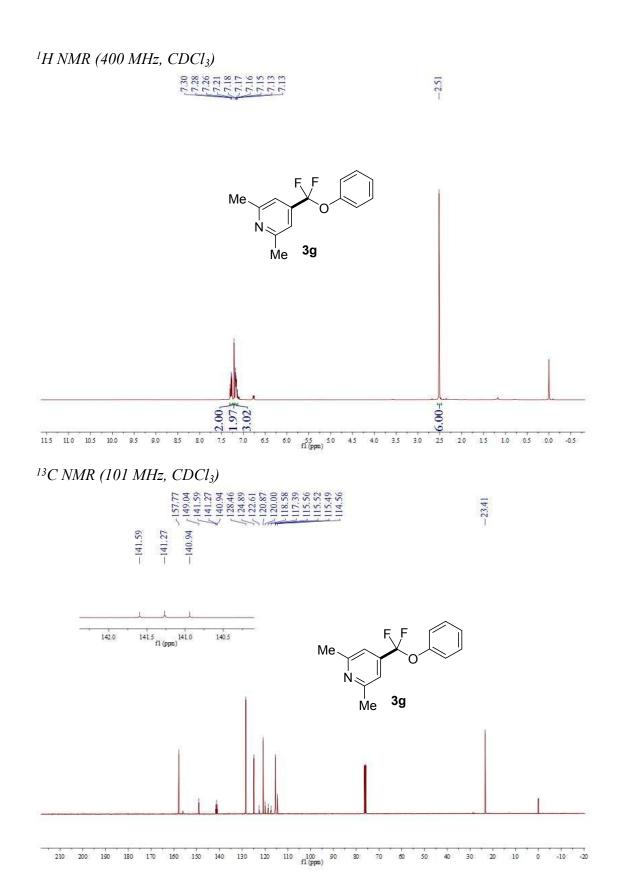


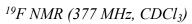


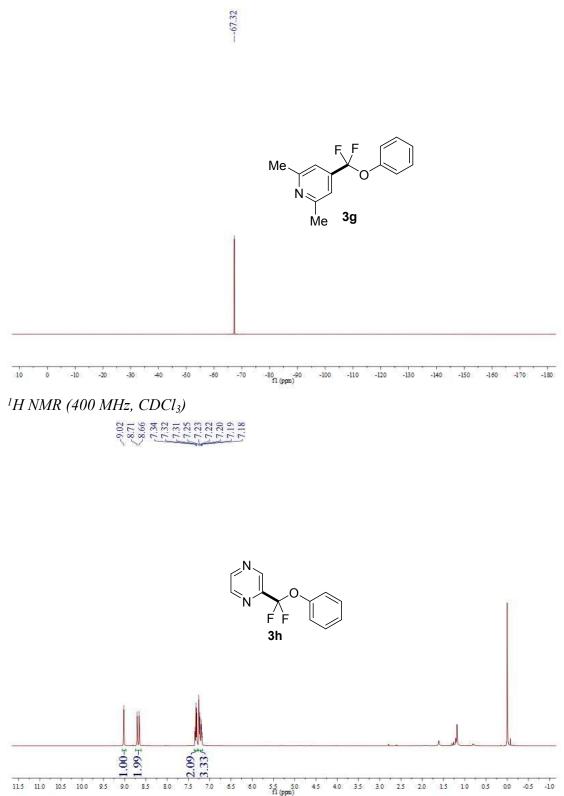


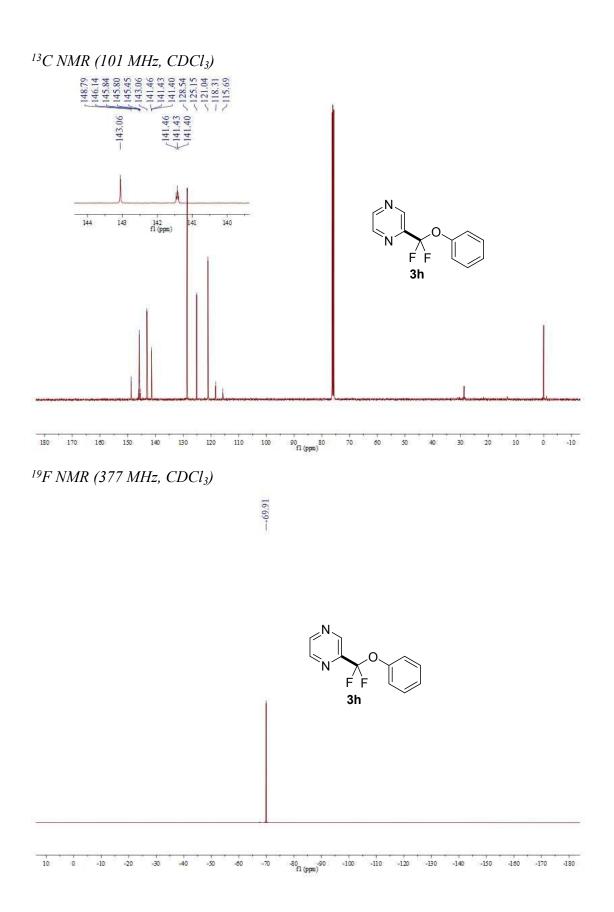


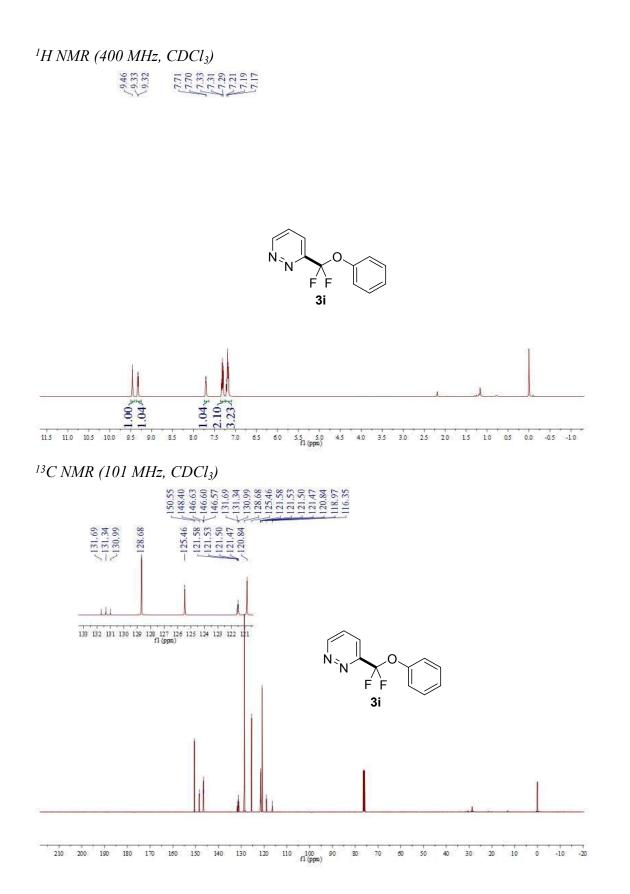


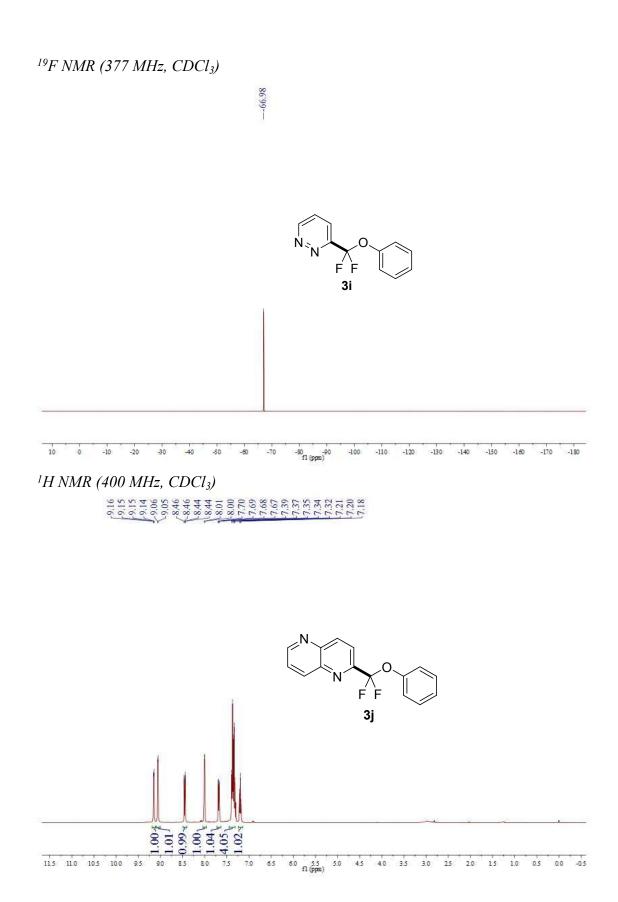


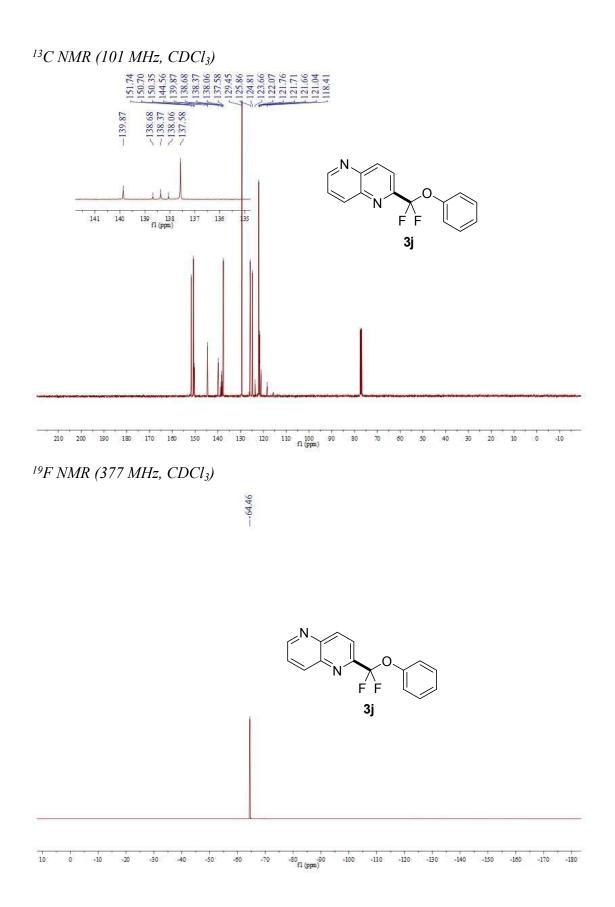

210 200 180 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



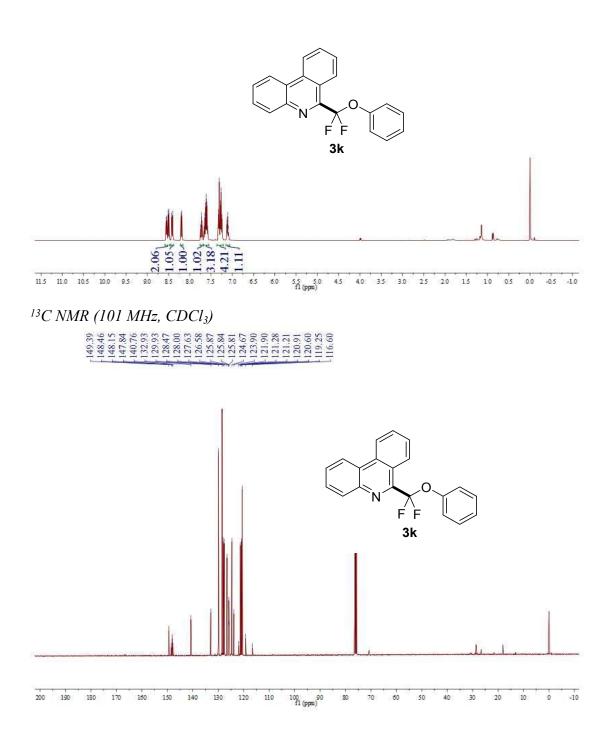


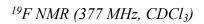


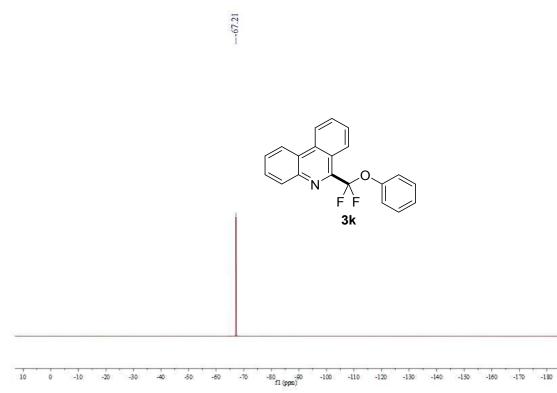




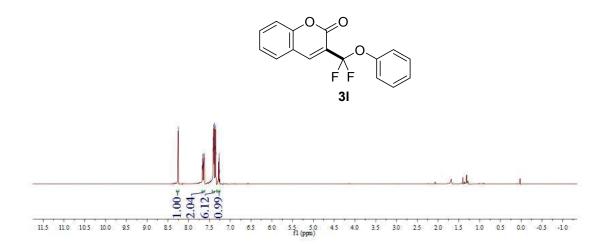
55 50 45 40 35 30 25 20 15 10 05 00 -05 -10 fl(ppn) 65 60

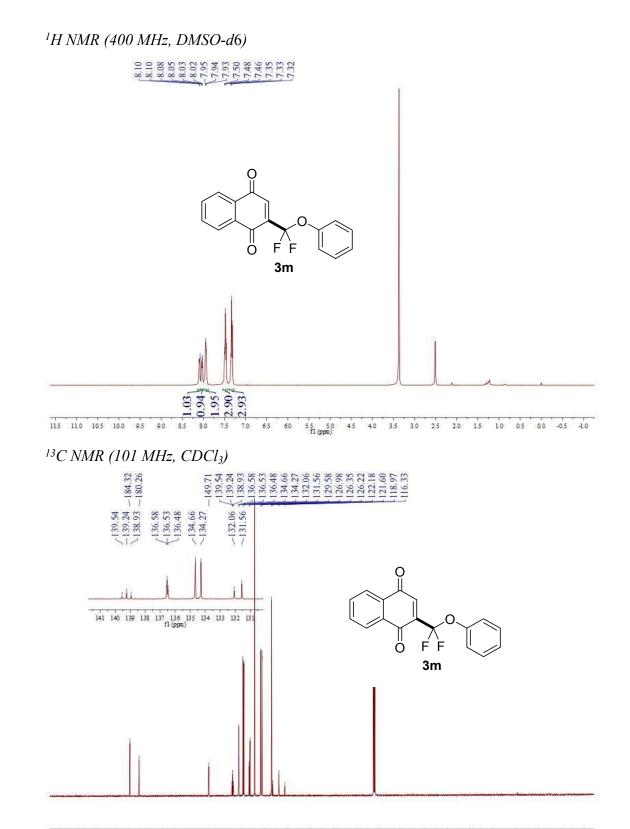




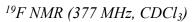


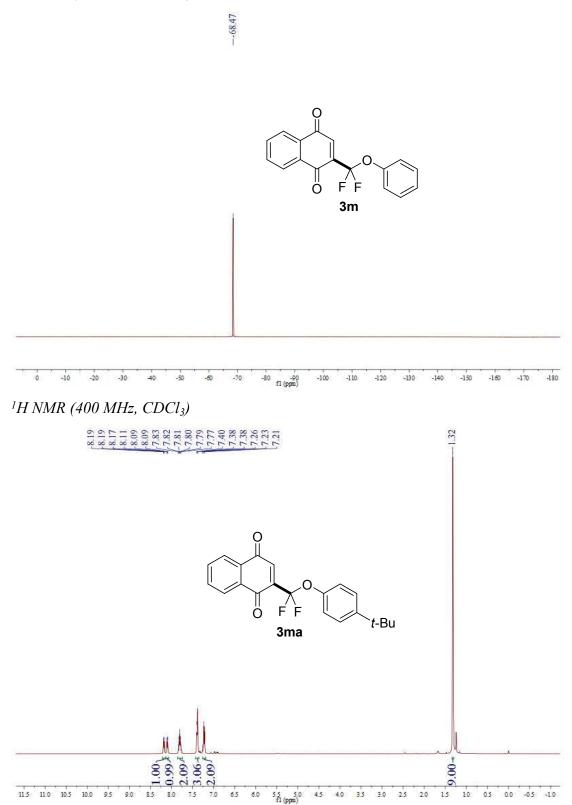
¹H NMR (400 MHz, CDCl₃) ⁸⁸⁴ ⁸⁸⁵ ⁸⁹⁵

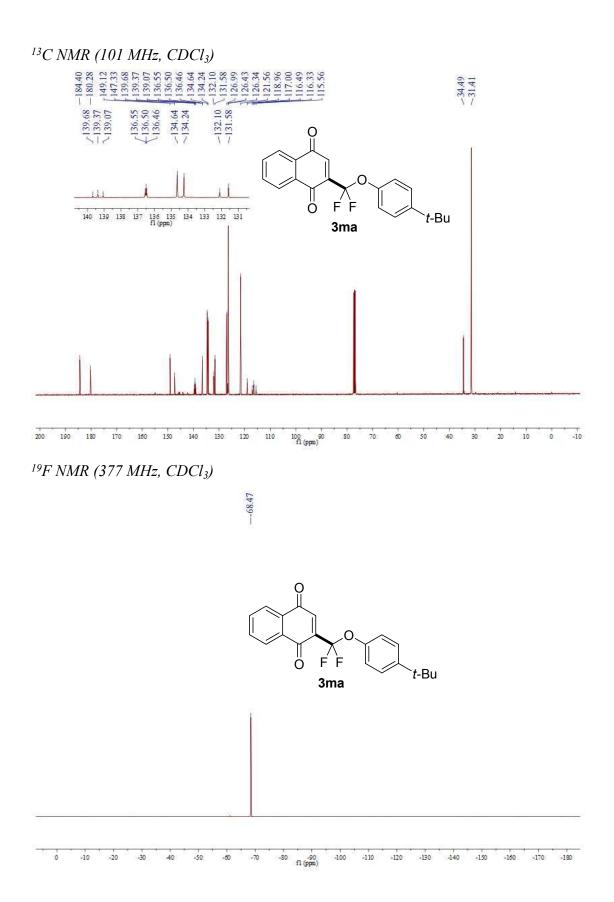


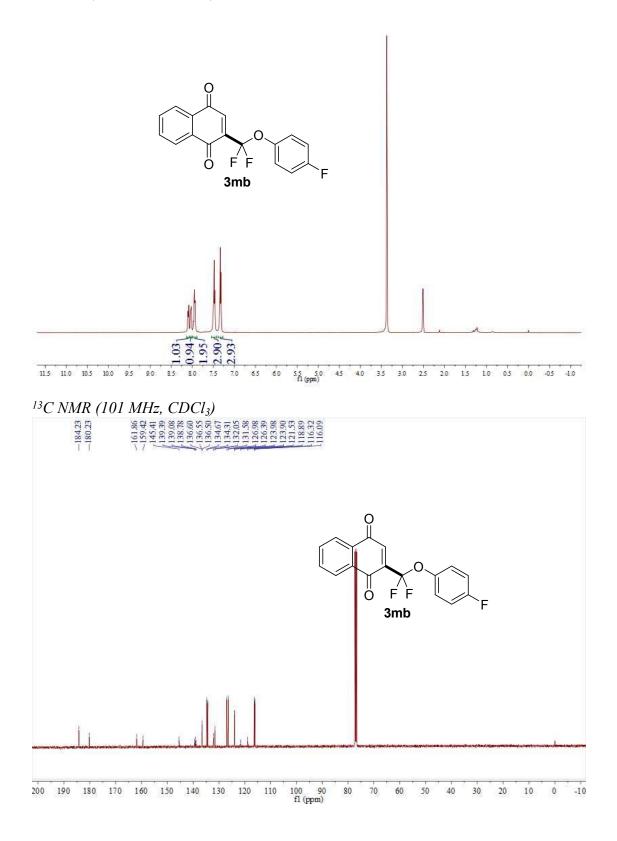


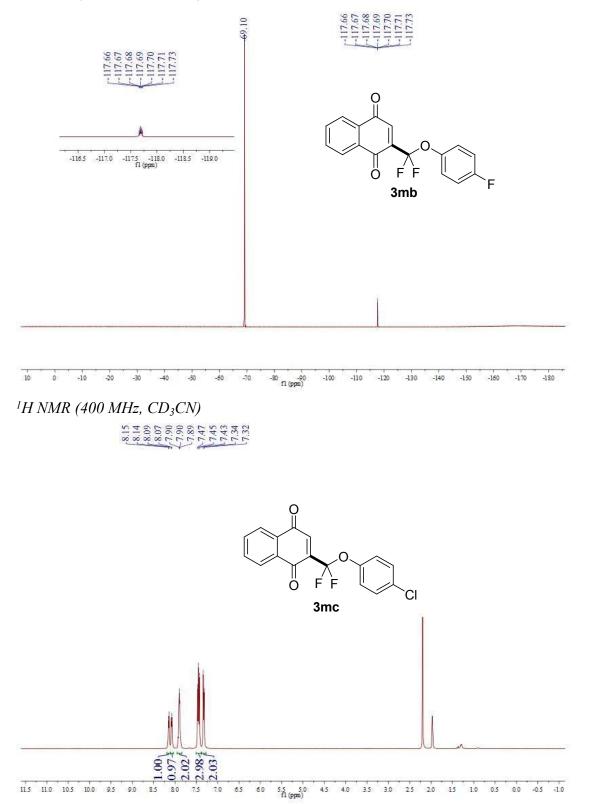
¹H NMR (600 MHz, CDCl₃)

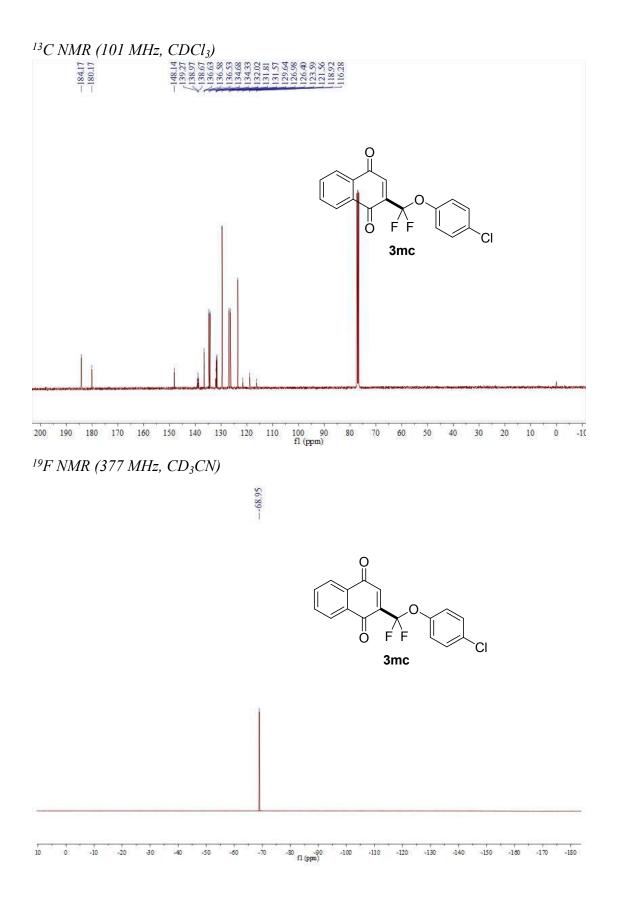


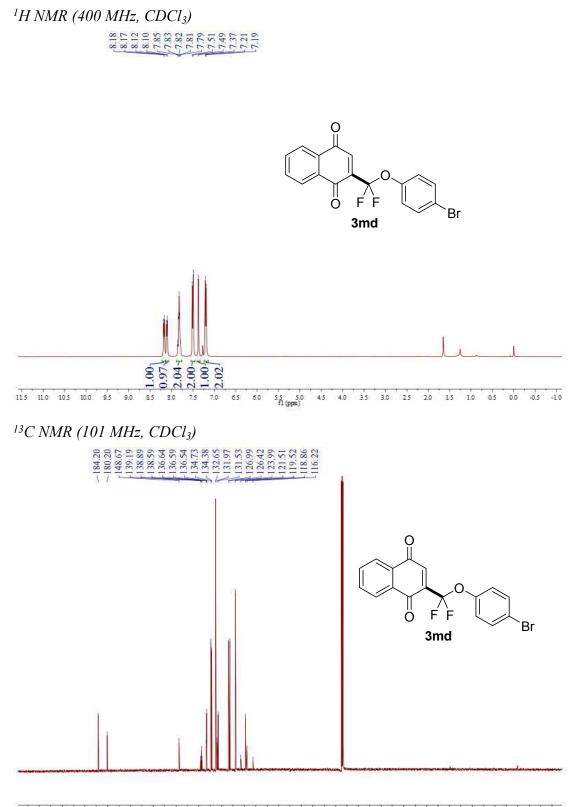


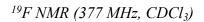


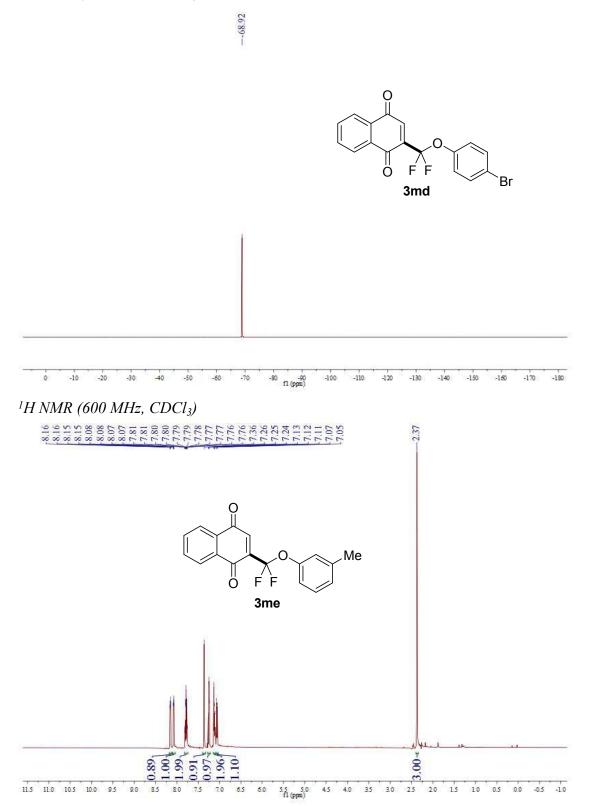

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

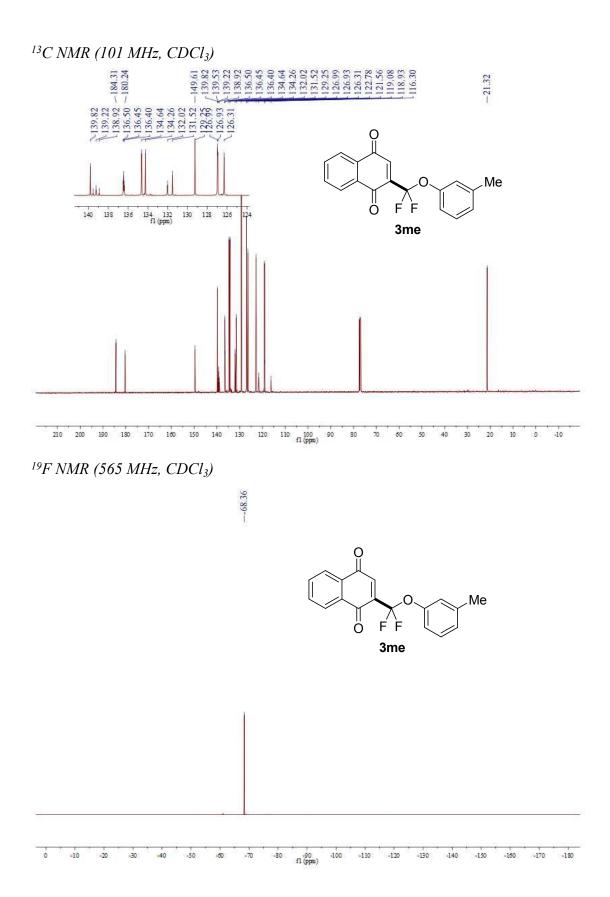


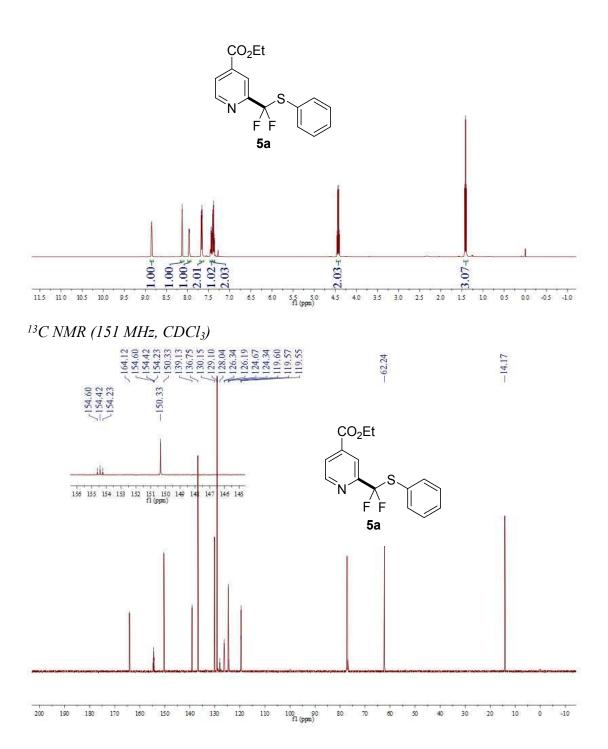


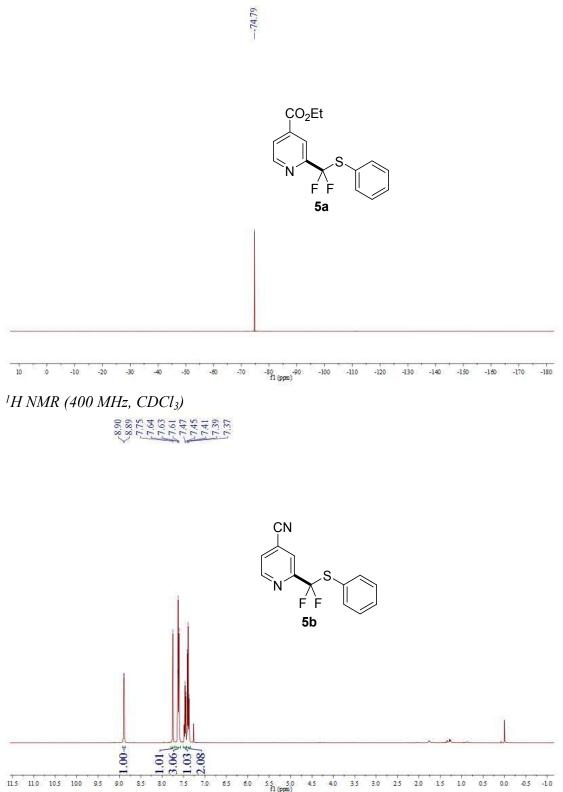

¹HNMR (400 MHz, CD_3CN)

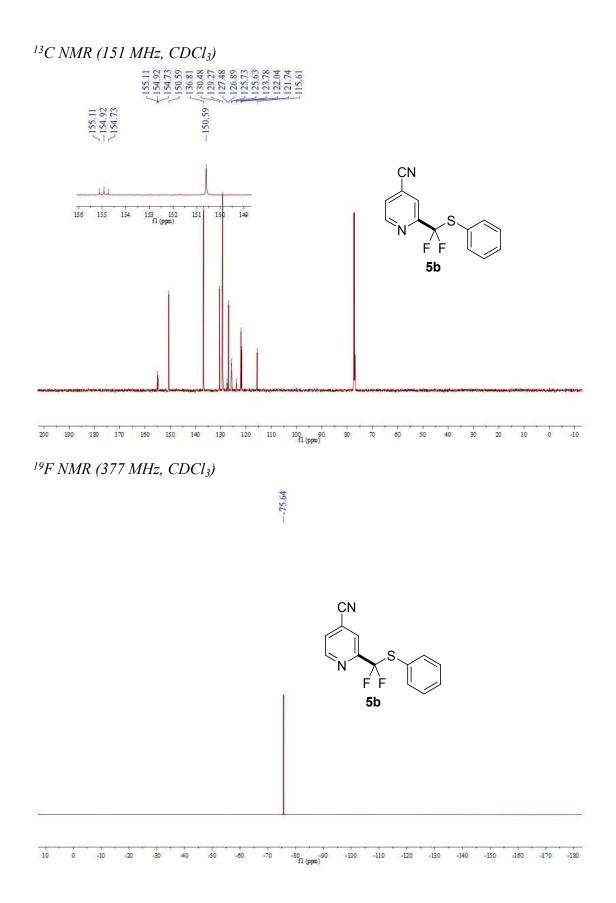

¹⁹F NMR (377 MHz, CD₃CN)

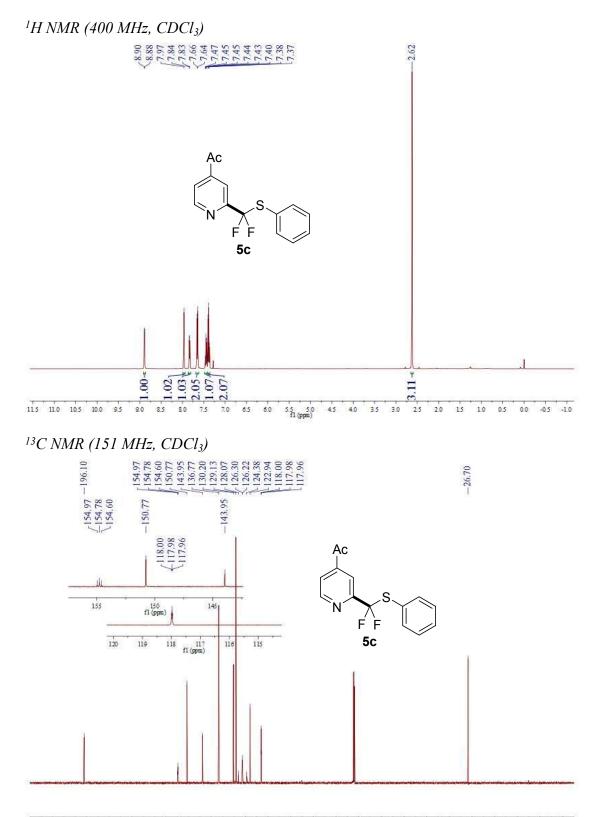


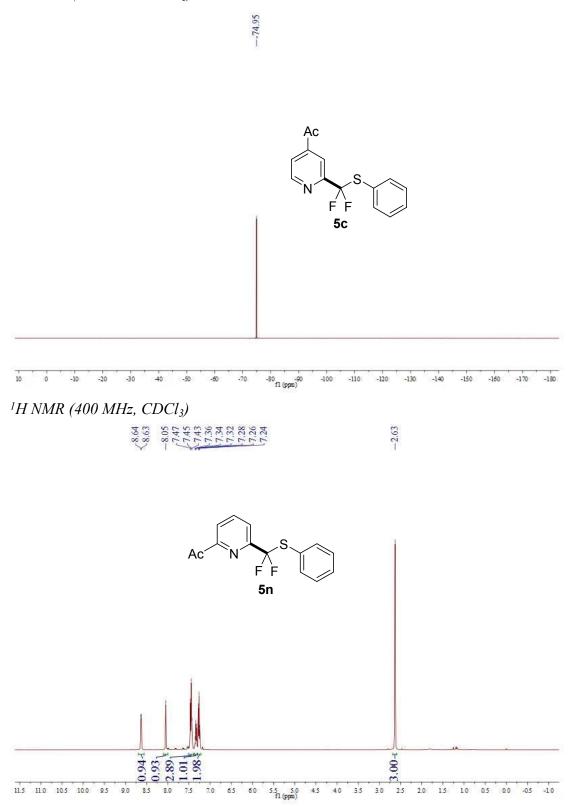


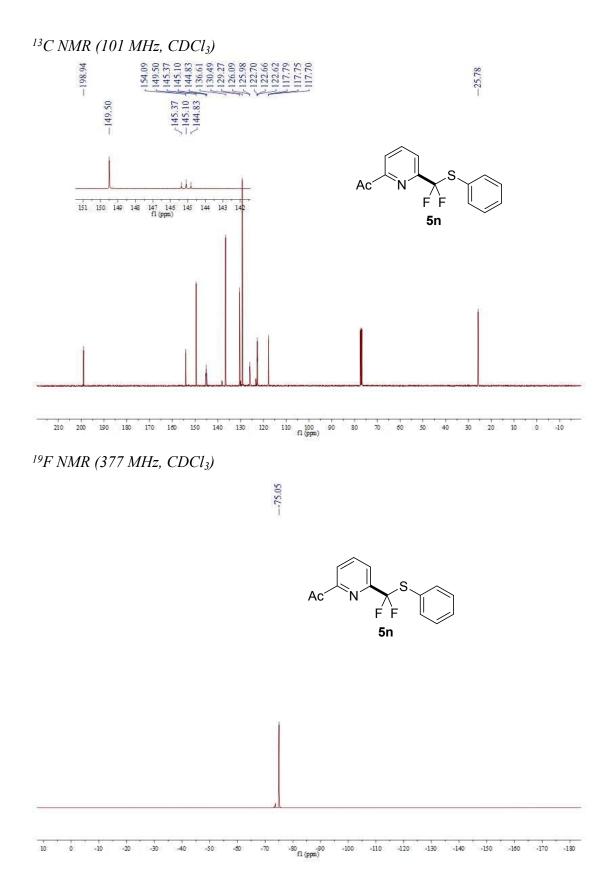

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

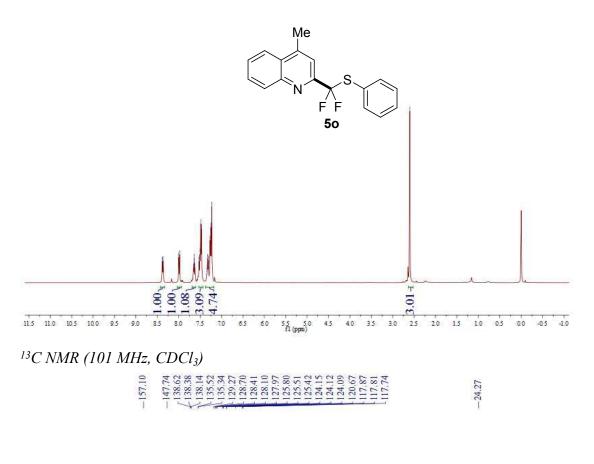




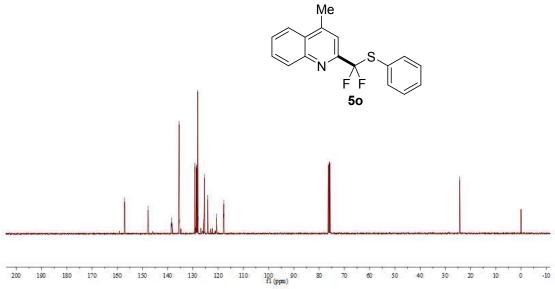

¹H NMR (400 MHz, CDCl₃) ⁸⁸⁸ ⁸¹⁹ ⁸¹⁰

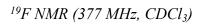


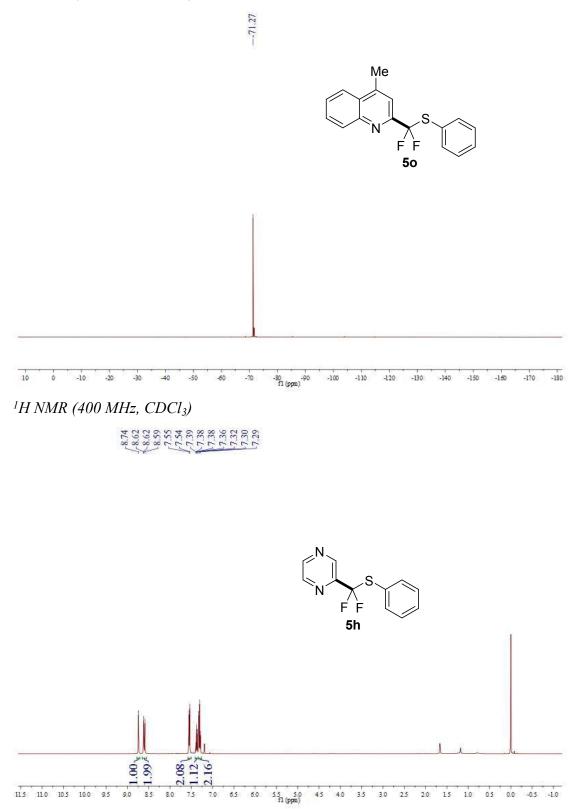

9.0 65 6.0 5.5 5.0 4.5 4.0 3.5 3.0 fl(ppn) 11.5 11.0 10.5 10.0 9.5 8.5 25 20 15 10 05 0.0 -0.5 -10

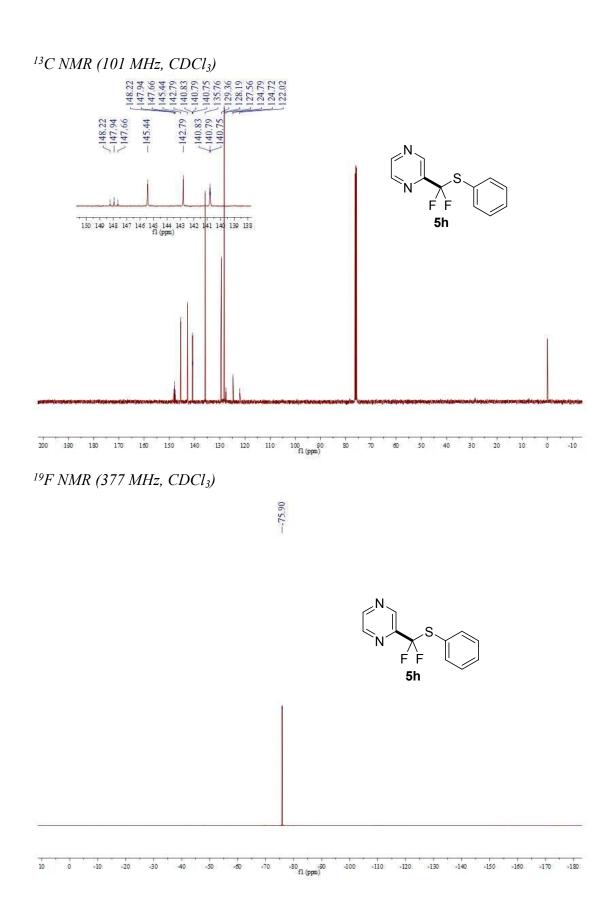


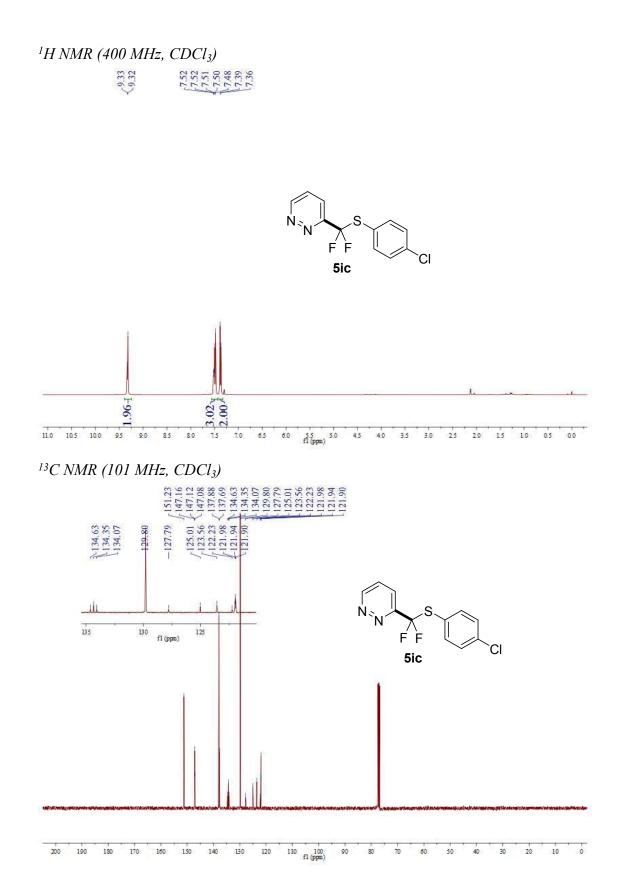
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

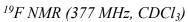


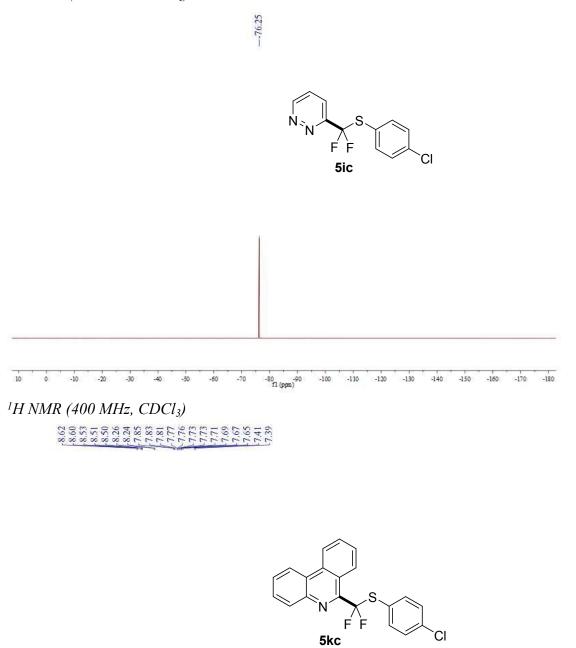


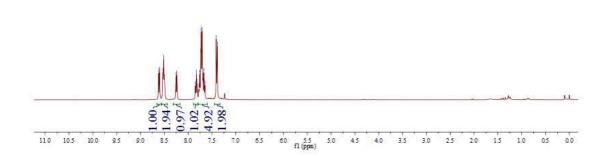


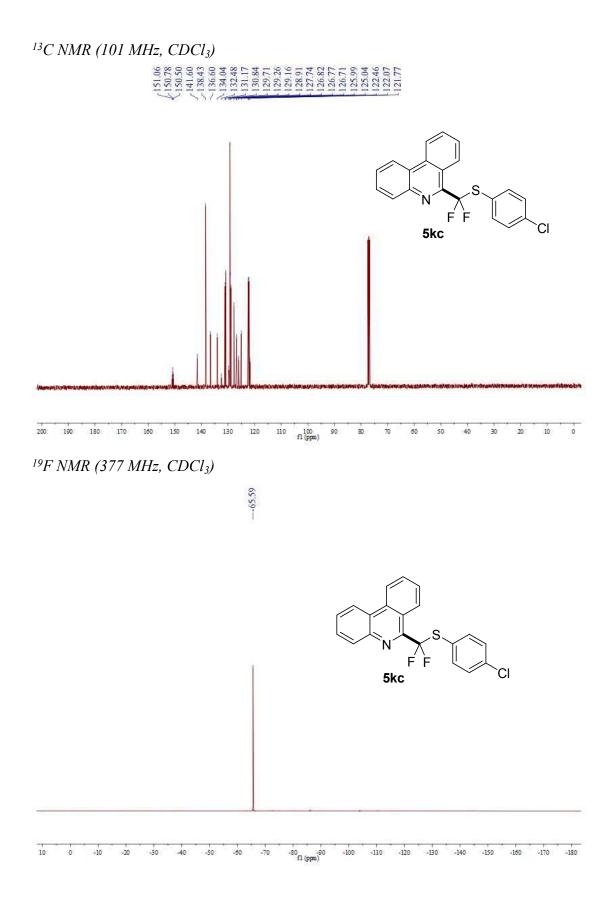


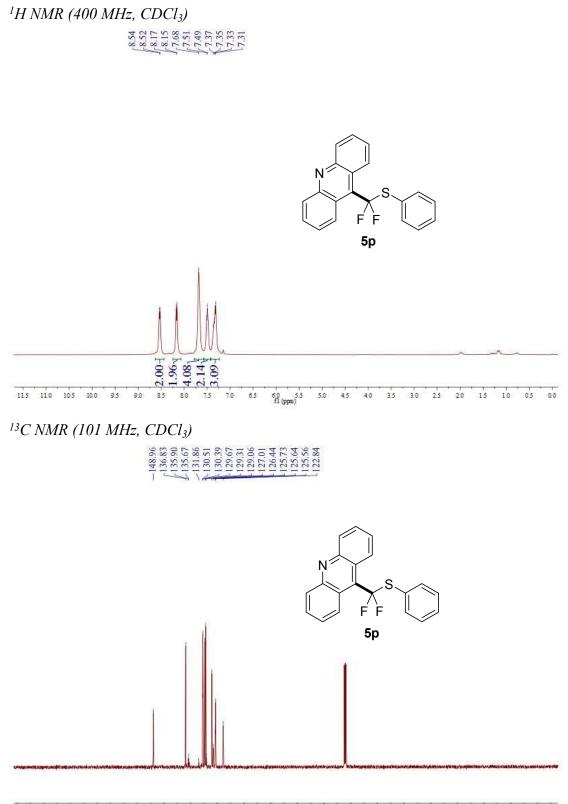

-2.60

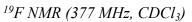


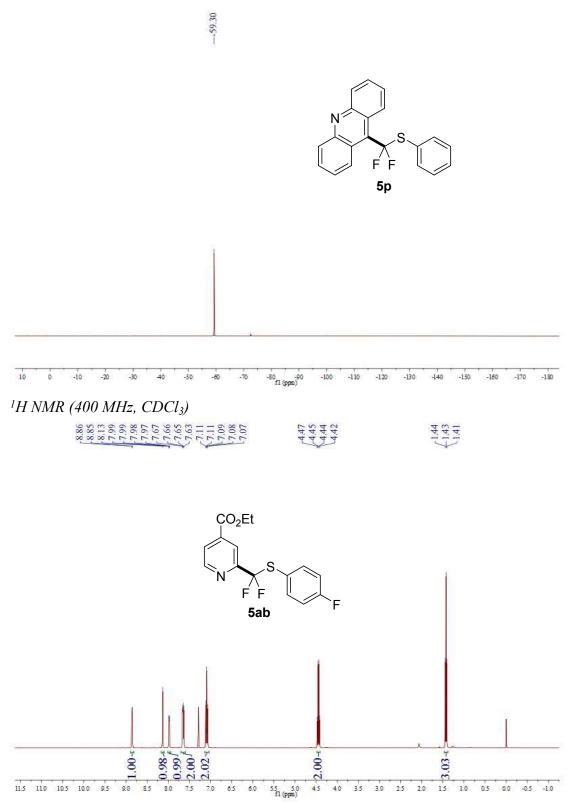


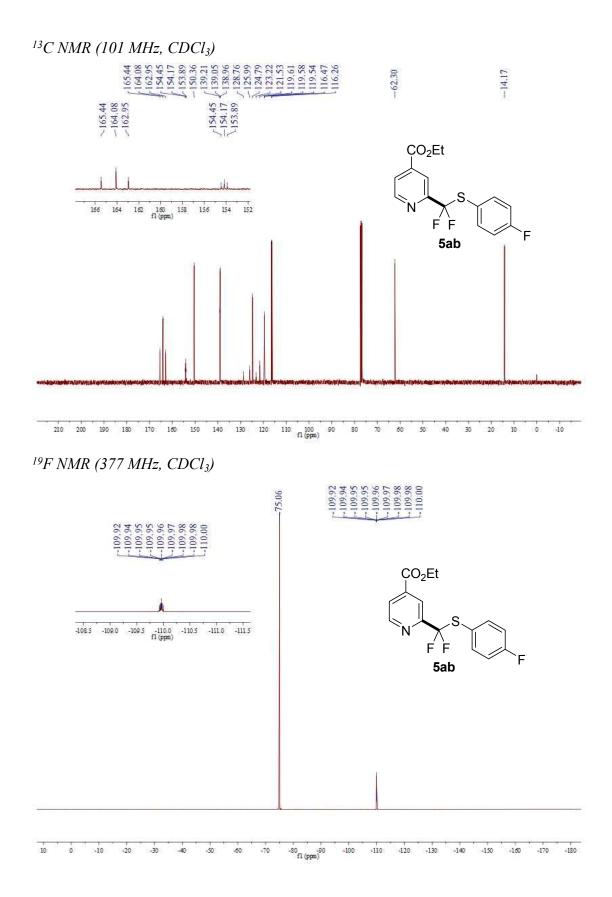


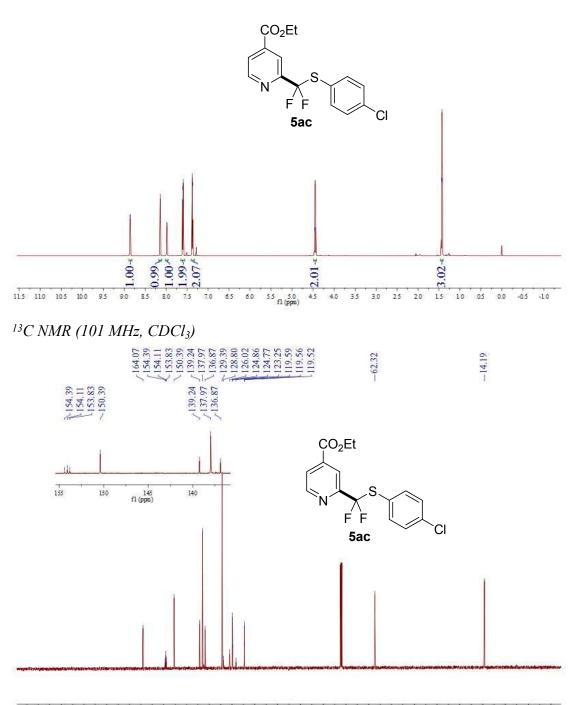


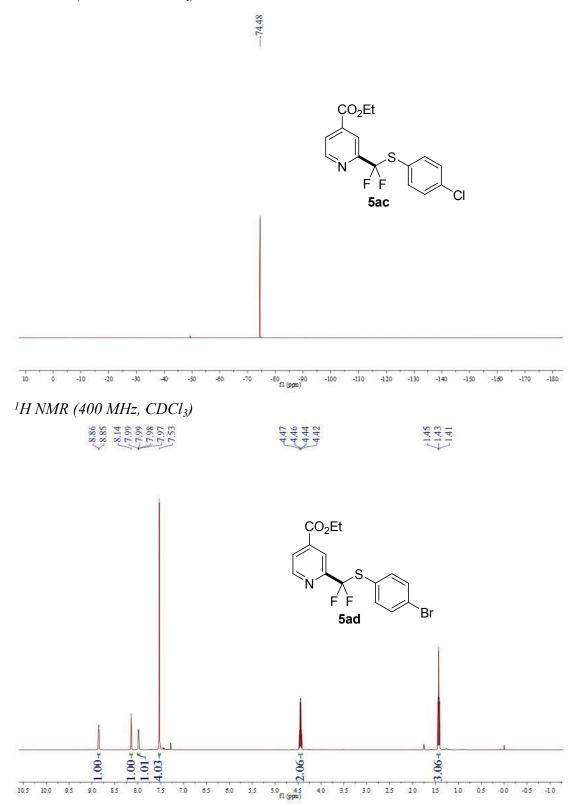


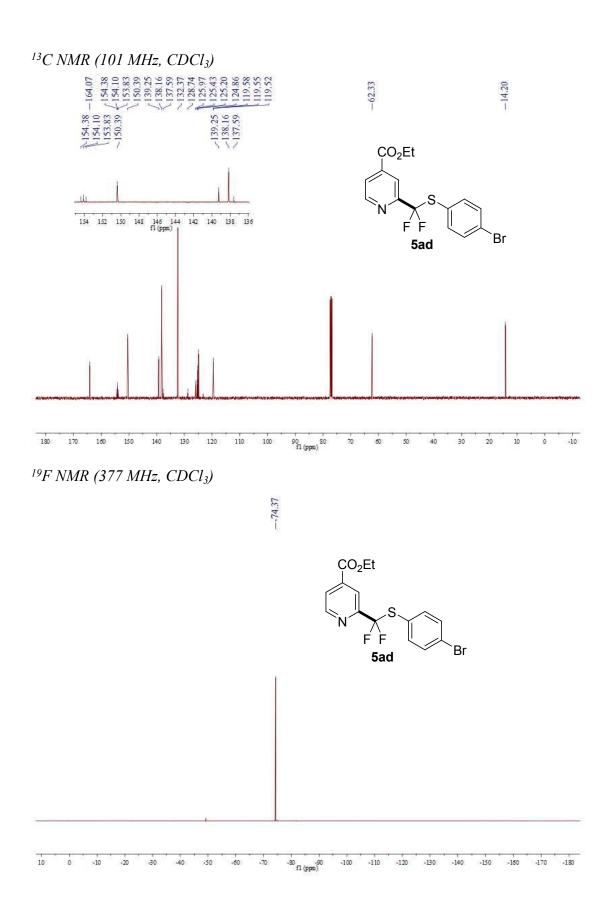


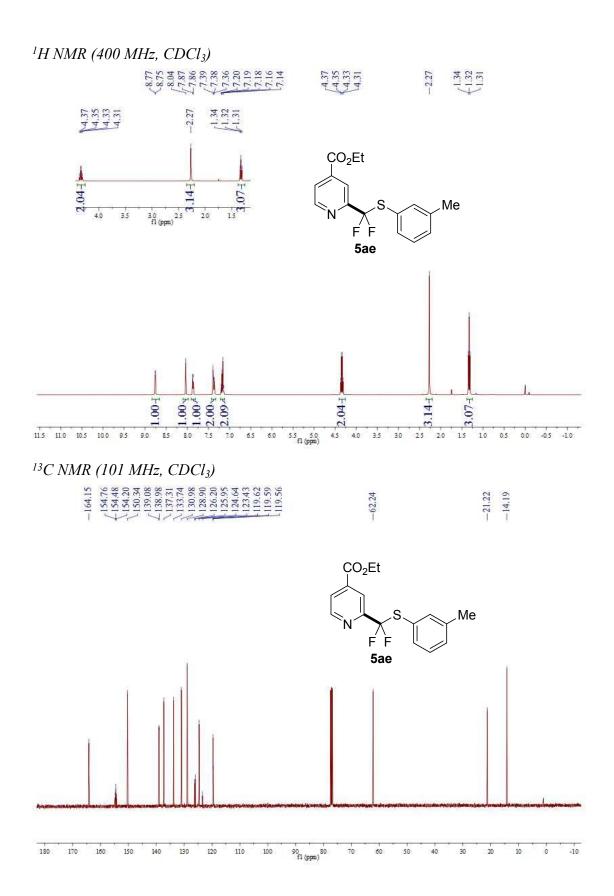


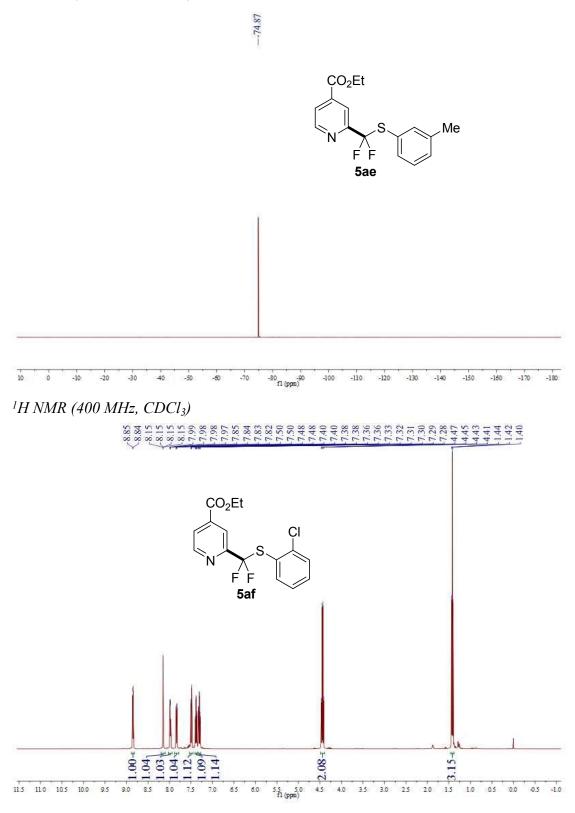


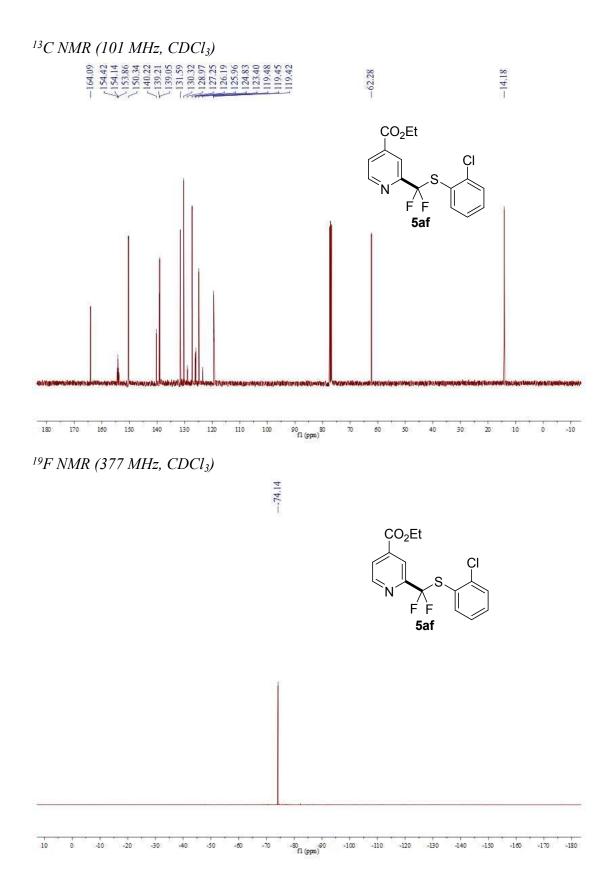




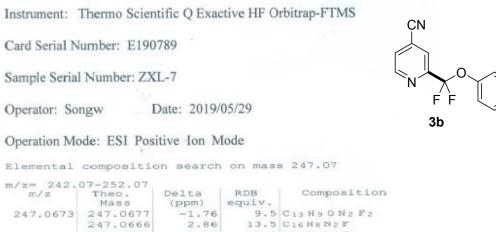





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



S77



11.Copies of HRMS Analysis Reports for the Products

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument:	Thermo F	isher Scie	ntific LT	'Q FT Ultra	
Card Serial	Number : I	0191543			CO ₂ Et
Sample Ser	rial Number	: ZXL-12	1		
Operator : I	DONG	Date	2019/05	5/27	
Operation N	/lode: DA	RT POS	ITIVE		3a
Elemental	compositi	on search	on mas	s 294.09	
m/z= 289.	09-299.09				
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
294.0934	294.0934	0.00	12.0	C16 H14 N4 S	
	294.0934	-0.19	5.0	C10 H13 O3 N4 F3	
	294.0935	-0.31	-5.0	C4H21O4N4ClF2S	
	294.0932	0.67	3.0	C12 H19 O5 F S	
	294.0936	-0.87	8.5	C15 H14 O3 N F2	
	294.0937	-0.99	-1.5	C9H22O4NClFS	

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS ESI REPORT

3.67

247.0664

10.0 C11 H7 N5 F2

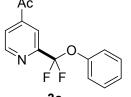
Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E190788

Sample Serial Number: ZXL-8

Operator: Songw Date: 2019/05/29

Operation Mode: ESI Positive Ion Mode


Elemental composition search on mass 247.07

07-252.07			
Theo. Mass	(ppm)	RDB equiv,	Composition
247.0677	-2.29	9.5	C13 H9 O N2 F2
247.0666	2.34	13.5	C16HBN2F
247.0664	3.14	10.0	C11 H7 N5 F2
	Mass 247.0677 247.0666	Theo. Delta Mass (ppm) 247.0677 -2.29 247.0666 2.34	Theo. Delta RDB Mass (ppm) equiv. 247.0677 -2.29 9.5 247.0666 2.34 13.5

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS ESI REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Ac Card Serial Number: E190787 Sample Serial Number: ZXL-9 Operator: Songw Date: 2019/05/29 3c Operation Mode: ESI Positive Ion Mode Elemental composition search on mass 264,08 m/z= 259.08-269.08

m/z	Theo. Mass	(ppm)	RDB equiv.	Composition
264.0825	264.0831	-2.28	8.5	C14 H12 O2 N F2
	264.0817	2.81	9.0	C12 H13 ON 4 F2
	264.0813	4.45	4.0	C 6 H 12 O 6 N 6

CN F

3b'

Instrument:	Thermo Scier	ntific Q Exac	tive HF O	rbitrap-FTMS	
Card Serial N	umber: E190	786			
Sample Serial	Number: ZX	L-10			N N
Operator: So	ngw l	Date: 2019/	05/29		3c'
Operation Mc	de: ESI Pos	itive Ion M	lode		
Elemental	compositi	on search	on mas	s 264.08	
m/z= 259.0	08-269.08				
m/z	Theo.	Delta	RDB	Composition	
264.0825	Mass 264.0831	(ppm) -2.16		C14 H12 O2 N F2	
20410020	264.0817	2.92		C12 H10 ON4 F2	
	264.0813			C 6 H 12 O 6 N 6	

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS ESI REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Card Serial Number: E190785 Sample Serial Number: ZXL-11 Operator: Songw Date: 2019/05/29 Operation Mode: ESI Positive Ion Mode Elemental composition search on mass 278.13 m/z= 273.13-283.13

m/z	Theo. Mass	(ppm)	RDB equiv.	Composition
278,1345	278.1351	-1.97	7.5	C 16 H 18 O N F 2
	278.1340	2.14	11.5	C 19 H 17 N F
	278.1338	2.86	8.0	C14 H16 N4 F2

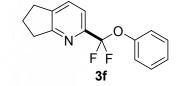
Instrument: Thermo Fisher Scientific LTQ FT Ultra Card Serial Number : D191542 Sample Serial Number: ZXL-13 Operator : DONG Date: 2019/05/27 Operation Mode: DART POSITIVE Elemental composition search on mass 298.10 m/z= 293.10-303.10 Theo. Delta RDB (ppm) equiv. Composition m/z Mass 298.1035 298.1036 -0.36 8.0 C13 H13 O N4 F3 298.1036 -0.48 -2.0 C7H21O2N4C1F2S 298.1033 0.49 6.0 C15 H19 03 FS 298.1038 -1.03 11.5 C18 H14 ON F2 298,1038 -1.15 1.5 C12 H22 O2 NC1 FS 298.1031 1.16 2.5 C10 H18 O3 N3 F2 S -1.20 2.0 C9H19O5N4C1 298.1038

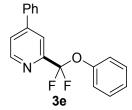
> National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI- MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E201006

Sample Serial Number: ZXC-32


.....


Operator: Songw Date: 2020/06/19

Operation Mode: ESI Positive Ion Mode

Elemental composition search on mass 262.10

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
262.1036	262.1038	-0.83	8.5	C15 H14 ON F2
20303200000000000000000000000000000000	262.1027	3.53	12.5	C18 H13 N F
	262.1025	4.29	9.0	C13 H12 N4 F2

Instrument: Thermo Fisher Scientific LTQ FT Ultra Card Serial Number : D191541 Me Sample Serial Number: ZXL-14 Operator : DONG Date: 2019/05/27 Operation Mode: DART POSITIVE Elemental composition search on mass 250.10 m/z= 245.10-255.10 m/z Theo. Delta RDB Composition Mass (ppm) equiv. 250.1036 250.1036 -0.05 -6.0 C3 H21 O2 N4 C1 F2 S 0.09 250.1036 4.0 C9H13ON4F3 -0.71 7.5 C14 H14 ON F2 250.1038 -0.85 250.1038 -2.5 C8H22O2NC1FS -2.0 C5 H19 O5 N4 C1 -0.92 250.1038

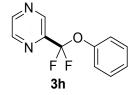
> National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

1.10 2.0 C11 H19 03 FS

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191540

Sample Serial Number: ZXL-15


250.1033

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 223.07

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
223.0676	223.0676	0.04	-6.0	H16 02 N5 Cl F2 S
	223.0675	0.20	4.0	C6H8ON5F3
	223.0677	-0.70	7.5	C11 H9 O N2 F2
	223.0678	-0.86	-2.5	C5 H17 O2 N2 C1 F S
	223.0678	-0.93	-2.0	C2 H14 O5 N5 C1

3g

Me

Instrument: Thermo Fisher Scientific LTQ FT Ultra Card Serial Number : D191539 -Sample Serial Number: ZXL-16 Operator : DONG Date: 2019/05/27 Operation Mode: DART POSITIVE Elemental composition search on mass 223.07 m/z= 218.07-228.07 m/z Theo. Delta RDB Composition equiv. Mass (ppm) 223.0676 223.0676 -0.05 -6.0 H16 O2 N5 Cl F2 S 223.0675 0.11 4.0 C6H8ON5F3

 223.0675
 0.11
 4.0 C 6 H8 O N5 F3

 223.0677
 -0.79
 7.5 C 11 H9 O N2 F2

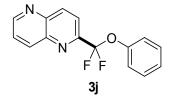
 223.0678
 -0.95
 -2.5 C 5 H17 O2 N2 C1 FS

 223.0678
 -1.02
 -2.0 C 2 H14 O5 N5 C1

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191536 ·


Sample Serial Number: ZXL-19

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 273.08

m/z= 268.08-278.08 RDB Composition m/z Theo. Delta Mass (ppm) equiv. 7.0 C10 H10 ON5 F3 273.0832 273.0832 0.01 273.0832 -0.11 -3.0 C4H18O2N5ClF2S 273.0834 -0.72 10.5 C15 H11 ON2 F2 273.0834 -0.85 0.5 C9 H19 O2 N2 C1 FS 273.0834 -0.91 1.0 C6H16O5N5Cl

Instrument: Thermo Fisher Scientific LTQ FT Ultra Card Serial Number : D191538 Sample Serial Number: ZXL-17 Date: 2019/05/27 Operator : DONG Operation Mode: DART POSITIVE Elemental composition search on mass 322.10 m/z= 317.10-327.10 Composition RDB Delta m/z Theo. (ppm) equiv. Mass 8.0 C17 H19 O3 F S 322.1034 322.1033 0.30 10.0 C15 H13 O N4 F3 322.1036 -0.49 0.0 C9 H21 O2 N4 CL F2 S -0.60 322.1036 4.5 C12 H18 O3 N3 F2 S 0.92 322.1031 13.5 C20 H14 ON F2 322.1038 -1.11 3.5 C16 H22 O2 N CL F S -1.22 322.1038

-1.27

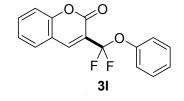
National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

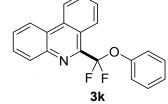
4.0 C11 H19 O5 N4 Cl

Instrument: Thermo Fisher Scientific LTQ FT Ultra

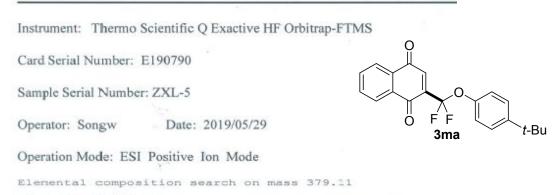
Card Serial Number : D191537

Sample Serial Number: ZXL-18


Operator : DONG Date: 2019/05/27

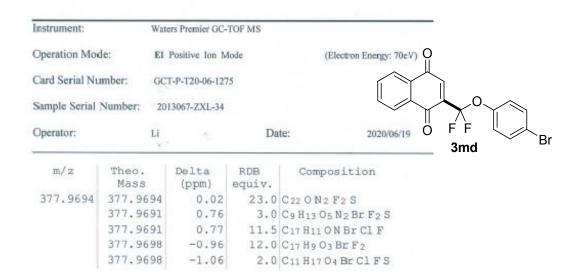

Operation Mode: DART POSITIVE

322.1038

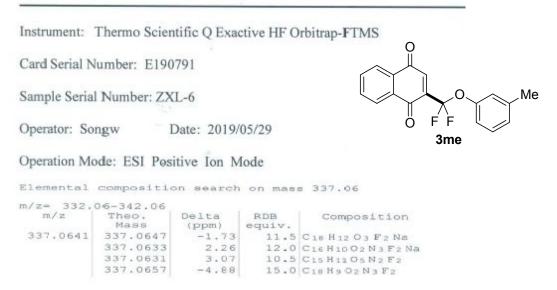

Elemental composition search on mass 289.07

m/z= 284.07-294.07 m/z Theo. Delta RDB Composition equiv. Mass (ppm) 289.0669 289.0669 -0.01 -3.0 C5 H13 O4 N3 C1 F2 S 289.0669 0.11 7.0 C11 H10 O3 N3 F3 289.0668 0.31 14.0 C17 H11 N3S 10.5 C16 H11 O3 F2 289.0671 -0.58 289.0671 -0.70 0.5 C10 H19 04 CL FS

		hanghai Ins Chinese	titute of O Academic	s Spectrometry in Shana rganic Chemistry of Sciences ESI REPORT	gnar
Instrument:	Thermo Scien	tific Q Exac	tive HF O	rbitrap-FTMS	
Card Serial N	umber: E190	792			
Sample Serial	Number: ZX	L-1			
Operator: So	ngw I	Date: 2019/	05/29	ö	FF 3m
Operation Mo	de: ESI Pos	itive Ion M	lode		•
Elemental	compositio	on search	on mas	s 323.05	
m/z= 318. m/z	05-328.05 Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
323.0483	323.0477	1.86	12.0	C 15 H = O 2 N 3 F 2 Na	
	323.0490	-2.30		C17 H10 O3 F2 Na	
	323.0474	2.71	10.5	C14 H9 O5 N2 F2	


m/z= 374.11-384.11 m/z | Theo. m/z Theo. 379.1109 379.1116 Delta RDB Composition equiv. 12.0 C19 H16 O2 N3 F2 Na (ppm) 1.72 -1.83 11.5 C21 H18 O3 F2 Na 10.5 C18 H17 O5 N2 F2 15.0 C21 H15 O2 N3 F2 379,1100 2.44 379.1127 -4.63 379,1091 4.73 16.0 C22 H150 N3 F Na

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Card Serial Number: E190792 Sample Serial Number: ZXL-2 Operator: Songw Date: 2019/05/29 Operation Mode: ESI Positive Ion Mode


Elemental composition search on mass 341.04 m/z= 336.04-346.04 Theo. Mass rn/z Delta RDB Composition equiv. (ppm) 11.5 C17 H9 O3 F3 Na 341.0391 341.0396 -1.58 341.0383 2.35 12.0 C15H7O2N3F3Na 341.0380 3.04 10.5 C14 H10 O7 N2 Na 3.16 10.5 C14 H8 05 N2 F3 341.0380 -4.01 341.0404 13.5 C16 H9 07 N2 341.0407 -4.70 15.0 C17 H6 O2 N3 F3 341.0407 -4.81 15.0 C17 H8 04 N3 Na

> National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution EI-MS REPORT

Instrument:	Wat	ers Premier GC-	TOF MS	
Operation Mod	ie: EI	Positive Ion M	lode	(Electron Energy: 70e)
Card Serial Nu	imber: GC	T-P-T20-06-127	4	
Sample Serial	Number: 20	13067-ZXL-33		
Operator:	Li	÷	Da	te: 2020/06/19
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
334.0204	334.0203	0.36	10000000	C17 H9 O3 Cl F2
	334.0207	-0.83		C ₁₈ H ₇ O ₂ N ₂ FS
	334.0208 334.0196	-1.11 2.31		C6H14O6N2ClF3S C9H13O5N2ClF2S
	334.0196			C15 H5 O4 N2 F3

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS ESI REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra Card Serial Number: D191535 Sample Serial Number: ZXL-20 Operator: DONG Date: 2019/05/27 Operation Mode: DART POSITIVE Elemental composition search on mass 310.07 m/z 305.07-315.07 m/z Theo. Delta RDB Composition

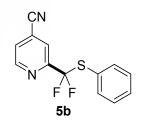
m/z	Mass	(ppm)	RDB equiv.	Composition
310,0706	310.0706	0.12	5.0	C10 H13 O2 N4 F3 S
	310.0708	-0.52	8.5	C15 H14 O2 N F2 S
	310.0708	-0.58	9.0	C12 H11 O5 N4 F
	310.0710	-1.22	12.5	C17 H12 O5 N
	310.0711	-1.45	0.5	C7H16ON5ClF3S

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191529

Sample Serial Number: ZXL-26

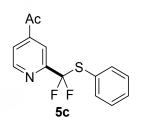

Operator : DONG

Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 263.04

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
263.0448	263.0449	-0.35	9.5	C13 H9 N2 F2 S
	263.0449	-0.41	10.0	C10H6O3N5F
	263.0450	-0.55	0.0	C4H14O4N5ClS
	263.0451	-1.17	13.5	C15 H7 O3 N2



CO₂Et

5a

Instrument:	Thermo Fis	sher Scient	ific LTQ	FT Ultra
Card Serial 1	Number : D	191528		
Sample Seri	al Number:	ZXL-27		
Operator : D	ONG	Date:	2019/05/	27
Operation M	lode: DAF	RT POSIT	TIVE	
Elemental	compositio	on search	on mas:	s 280.06
m/z= 275.0	06-285.06			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
280.0600	280.0602	-0.74	8.5	C14 H12 ON F2 S
	280.0602	-0.80	9.0	C11 H9 O4 N4 F
	280.0603	-0.93	-1.0	C5H17O5N4ClS
	280.0604	-1.52	12.5	C16 H10 O4 N

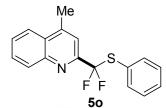
National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI- MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E201007

Sample Serial Number: ZXC-35

Operator: Songw Date: 2020/06/19


Operation Mode: ESI Positive Ion Mode

Elemental composition search on mass 280.06

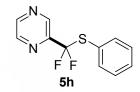
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
280.0600	280.0602	-0.88	8,5	C14 H12 ON F2 S
	280.0604	-1.66	12.5	C16 H10 O4 N
	280.0591	3,20	12.5	C ₁₇ H ₁₁ NFS

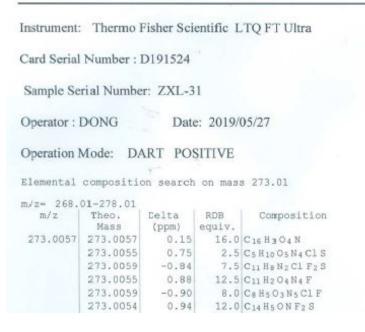
Instrument:	Thermo Fi	isher Scier	ntific LT	Q FT Ultra	
Card Serial	Number : D	191527			
Sample Ser	ial Number	: ZXL-28			(
Operator : I	DONG	Date:	2019/05	/27	
Operation N	fode: DA	RT POSI	TIVE		
Elemental	compositio	on search	on mas	s 302.08	
m/z= 297.0	08-307.08				
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
302.0807	302.0805	0.60	5.5	C11 H16 O5 N3 S	
	302.0810	-0.84	10.5	C17 H14 N F2 S	
	302.0810	-0.89	11.0	C14 H11 O3 N4 F	
	302,0810	-1,01	1.0	C8 H19 O4 N4 C1 S	
_	302.0803	1.28	10.5	C14 H13 ON5 C1	

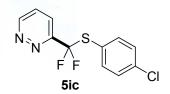
National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191526


Sample Serial Number: ZXL-29


Operator : DONG Date: 2019/05/27


Operation Mode: DART POSITIVE

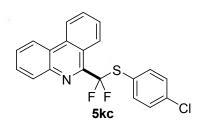
Elemental composition search on mass 239.04

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
239,0447	239.0449	-0.89	7.5	C11 H9 N2 F2 S
	239.0445	0.93	2.5	C5H11O5N4S
	239.0449	-0.96	8.0	CaHeO3N5F
	239.0450	-1.10	-2.0	C2 H14 O4 N5 CI S
	239.0451	-1.79	11.5	C13H1O3N2

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191525


Sample Serial Number: ZXL-30

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 372.04

m/z= 367. m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
372.0416	372.0415	0.15	8.5	C14 H15 O5 N3 Cl S
	372.0415	0.24	18.5	C20 H7 O4 N3 F
	372.0415	0.29	18.0	C23 H10 O F2 S
	372.0417	-0.30	22.0	C 25 H 8 O 4
	372.0420	-1.02	13.5	C20 H13 NCl F2 S
	372.0420	-1.07	14.0	C17 H10 O3 N4 Cl F

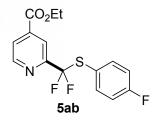
Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Card Serial Number: E201008 Sample Serial Number: ZXC-36 Operator: Songw Date: 2020/06/19 Operation Mode: ESI Positive Ion Mode Elemental composition search on mass 338.08 m/z = 333.08-343.08m/z = Delta | RDB | Composition

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
338.0808	338.0810	-0.42	13.5	C20 H14 N F2 S
	338.0812	-1.06	17.5	C22 H12 O3 N
	338.0823	-4.44	13.5	C19 H13 O4 N F

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191534


Sample Serial Number: ZXL-21

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 328.06

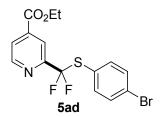
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
328.0611	328.0609	0.67	12.0	C17 H13 O3 N2 C1
	328.0614	-0.67	8.5	C15 H13 O2 N F3 S
	328.0614	-0.72	9.0	C12 H10 O5 N4 F2
	328.0607	1.28	8.5	C12 H12 O3 N5 C1 F
	328.0607	1,33	8.0	C15 H15 N2 C1 F2 S

Instrument:	Thermo F	isher Scier	ntific LT	Q FT Ultra	
Card Serial	Number : D	191533			CO ₂ Et
Sample Ser	rial Number	: ZXL-22			S S
Operator : I	DONG	Date:	2019/05	5/27	F F
Operation N	Aode: DA	RT POSI	TIVE		5ac 01
Elemental	compositio	on search	on mas:	s 34 4 .03	
m/z= 339.	03-349.03				
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
344.0317	344.0318	-0.32	8.5	C15 H13 O2 N C1 F2 S	
	344.0318	-0.37	9.0	C12 H10 O5 N4 C1 F	
	344.0320	-0.95	12.5	C17 H11 O5 N Cl	
	344.0313	1.10	13.0	C18 H10 O3 F2 S	

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191532


Sample Serial Number: ZXL-23

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 387.98

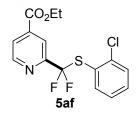
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
387.9809	387.9807	0.39	19.5	C21 H4 O4 N CL F
	387.9807	0.60	8.5	C12 H12 O3 N5 Br Cl
	387.9811	-0.64	23.5	C22 H2 O3 N3 S
	387.9806	0.65	8.0	C15 H15 N2 Br Cl FS
	387.9805	0.90	16.0	C16 H3 O4 N4 C1 F2

Instrument:	Thermo F	isher Scie	ntific LT	Q FT Ultra	
Card Serial	Number : D	0191531			
Sample Ser	ial Number	: ZXL-24			
Operator : D	DONG	Date:	2019/05	5/27	
Operation N	lode: DA	RT POSI	TIVE		
Elemental	compositio	on search	on mas	s 324.09	
m/z= 319.0	09-329.09				
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
324.0863	324.0864	-0.35	8.5	C16 H16 O2 N F2 S	
	324.0864	-0.40	9.0	C13H13O5N4F	
	324.0866	-1.02	12.5	C18 H14 O5 N	
	324.0858	1.62	8.5	C13H15O3N5Cl	
	324.0858	1.68	8.0	C16 H18 N2 C1 F S	

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : D191530


Sample Serial Number: ZXL-25

Operator : DONG Date: 2019/05/27

Operation Mode: DART POSITIVE

Elemental composition search on mass 344.03

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
344.0315	344.0313	0.46	13.0	C18 H10 O3 F2 S
	344.0318	-0.96	8.5	C15 H13 O2 N Cl F2 S
	344.0318	-1.01	9.0	C12 H10 O5 N4 Cl F
	344.0320	-1.59	12.5	C17 H11 O5 N C1

CO₂Et

F F 5ae Me

S96