
SI.1 
 

Supporting Information 1 

Title: Using compliance data to understand uncertainty in drinking water lead levels in 2 
southwestern Pennsylvania 3 

Authors:  Sara E. Schwetschenau; Mitchell J. Small; Jeanne M. VanBriesen 4 

Number of Pages: 35 5 

Number of Figures: 35 6 

Number of Tables: 4  7 



SI.2 
 

1 Overview of Lead and Copper Rule sample site selection 8 

requirements 9 

The Lead and Copper Rule sets specific requirements for how sites are selected for compliance 10 

sampling. The current requirements are outlined in Figure SI.1 11 

 12 

 13 

Figure SI.1. Lead and Copper Rule site selection protocol 14 

Sites sampled to assess compliance with the LCR are intended to be high-risk for lead release. 15 

Sites are organized into one of three tiers. Tier 1 sites are considered at highest risk and included 16 
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single family homes with a lead service line or lead solder installed after 1982, as newer lead solder 17 

was assumed to be more likely to release lead than older solder 1. The proposed LCR revision calls 18 

for prioritizing sampling from lead service lines2. If a sufficient number of Tier 1 sites cannot be 19 

identified, Tier 2 sites are sampled. Tier 2 sites include all the same requirements as Tier 1 sites, 20 

but are multi-family residences. Single family residences were identified as preferred over multi-21 

family homes as less variation in the interior plumbing configuration is expected; samples from 22 

single family homes are assumed to be more comparable. If a utility cannot identify a sufficient 23 

number of Tier 1 or Tier 2 sites, then Tier 3 sites are used. These sites include locations with lead 24 

solder installed prior to 1983 and, given the age of the plumbing (greater than five years old at the 25 

time of the LCR writing), are thought to release less lead than newer installations of lead solder. 26 

Classification of sites based on the tiered system are based on a materials assessment completed 27 

by the utility through review of building records, renovation permits, and other housing 28 

documentation. 29 

The original version of the LCR required the samples be selected with priority given to locations 30 

at the end of the distribution system 1. Lead levels are expected to be higher at the ends of a 31 

distribution system due to the long detention time; any corrosion control chemicals added at the 32 

entry point to the distribution system may have been consumed prior to reaching that point. This 33 

requirement was not included in the final version of the regulation 1.  34 

After identification of a sampling pool of sites that meets the criteria of the tiered system, 35 

samples are collected (second dark gray box in Figure SI.1). Samples are required to be a first-36 

draw one-liter sample taken at an indoor tap after a minimum of six hours of stagnation. These 37 

samples are typically collected by the resident and returned to the water utility by mail for testing. 38 

While this setup is likely the least intrusive for the resident, as the water utility does not require 39 
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access to their home, it is often not possible to verify if all samples were collected consistent with 40 

the protocol, increasing the likelihood of sampling error. Initial versions of the LCR allowed for 41 

collection of service line samples, where the line would be flushed after stagnation until the sample 42 

collected was thought to have been stagnant in the service line, rather than in interior plumbing as 43 

is the case for the first-draw sample. Current research 3–5 where profile samples were collected, 44 

shows that the highest concentrations of lead come from lead service lines rather than the interior 45 

plumbing or fixtures sampled with a first-draw sample alone. As such a first draw sample can 46 

underestimate the lead exposure associated with a specific site.  47 

A sample size of 100 homes is initially required, with the option to reduce the sample size to 50 48 

homes after compliance has been demonstrated for three consecutive years. Once the annual 49 

sampling is completed, the 90th percentile concentration is determined (see third dark gray box in 50 

Figure SI.1).  Figure SI.1 summarizes the steps required to determine the 90th percentile for a 51 

specific sample set. If the calculated 90th percentile is greater than the action level of 15 ppb, then 52 

the utility has triggered an exceedance of the LCR and additional steps must be completed. These 53 

include increasing the sampling frequency to every 6 months, deployment or adjustment of 54 

corrosion control treatment and removal of 7-percent of remaining lead service lines 1.  55 

Sample sets analyzed for this work were collected based on the requirements described here. 56 

Most sample sets were taken under reduced sampling requirements, while others were collected 57 

following an exceedance of the LCR and reflect the increased sampling frequency and number of 58 

samples described above.  59 
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2 Descriptive statistics 60 

To inform subsequent model selection, descriptive statistics were performed and reviewed. 61 

Figure SI.2 shows a scatterplot of all sample sets grouped by water utility and shown in order of 62 

sample year. These raw data do not include the imputed sample estimates; all samples recorded as 63 

below the reporting limit are plotted at zero (matching how they are reported in the DWRS online 64 

reporting system6). Samples are binned and colored based on the concentration of the sample to 65 

show how the number of samples is split across the results range. The highest sample 66 

concentrations recorded are over 300 ppb for system A. Three samples greater than 150 ppb were 67 

recorded between systems A and C. Even for these utilities with the highest recorded sample 68 

concentrations, the majority of the samples collected are at or near the reporting limit (1 ppb).  69 

Table 1 shows the number of samples in each sample set and the number of samples below the 70 

reporting limit and over the action limit.  71 



SI.6 
 

 72 

Figure SI.2. Scatterplot of LCR lead data for utilities A through D from 2004 through 2017. 73 

Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 74 

represents samples collected between January and June and “b” represents samples collected 75 

between July and December of the indicated year.  76 

Figure SI.3 shows the imputed data sets as a boxplot. Red dots show the 90th percentile of the 77 

distribution and the red line is the LCR action level of 15 ppb. The blue dotted line is the reporting 78 
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limit. The median of the distribution is shown by the black line with the edges of the box 79 

representing the 25th to 75th percentile range. Black dots represent outliers greater than 1.5 times 80 

the interquartile range denoted by the whiskers on the plot. In contrast with Figure 1, Figure SI.3 81 

uses an arithmetic scale (as opposed to log-transformed in Figure 1) and allows for improved 82 

interpretation of the extremes of the distribution system and comparison between the extreme 83 

values and the median or 75th percentile for each distribution. Less variation is observed between 84 

the medians or 75th percentile value among sample sets than between extreme values. For example, 85 

Utility C has a median of 1.3 ppb and 90th percentile value of 3.2 ppb in 2007 compared to a 86 

median of 2.7 ppb and a 90th percentile value of 30.5 ppb in 2010 (values shown in Table 1). 87 

Utility A shows a greater range and a greater number of outlier samples than all other years across 88 

other systems, with the exception of Utility C in 2010. Utility B has very few outliers and nearly 89 

all samples collected are below the action level of the 15 ppb. Utility D shows a 90th percentile 90 

value near the action level, but no samples greater than 50 ppb, and a limited number of samples 91 

greater than the action level, when compared to Utilities A and C. Table 1 shows the exact number 92 

of samples over the action level for each sample set. All of these trends indicate a strong positive 93 

skew and a long right tail across most of these distributions; the length of the tail and the range 94 

over which outliers extend, varies among sample sets.   95 

 96 
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 97 

 98 

Figure SI.3. Boxplot of imputed data for utilities A through D from 2004 through 2017. Years 99 

designated as “a” or “b” indicate two sample periods were conducted that year. “a” represents 100 

samples collected between January and June and “b” represents samples collected between July 101 

and December of the indicated year. 102 

While Kaplan-Meier methods were used here to account for samples below the reporting limit 103 

when estimating the summary statistics, substitution is a common alternative approach. To 104 

evaluate the effect of substitution methods over Kaplan-Meier, Table SI.1 shows the variation in 105 

the sample mean for each sample set for different methods of handling the samples below the 106 

reporting limit. Methods compared include: Kaplan-Meier, statistics applied to the imputed 107 

sample set (generated using Kaplan Meier and regression on order statistics, and substitution 108 

(three substituted values were used 0, 0.5 and 1) prior to calculation of statistics.  The maximum 109 

percent change in the calculated mean between Kaplan Meier estimates and all other methods is 110 

shown in the right most column for comparison. The closer the mean is to the reporting limit the 111 

greater the variation in the estimates; these are highest across all years for Utility B. Utility C in 112 
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2004 has a very high variation because 48 of the 50 samples collected were all below the 113 

reporting limit. In these cases, any imputation method may result in greater uncertainty in the 114 

mean, but for these years, there is also likely public health risk associated with elevated lead 115 

levels. The difference in the mean statistic is highest when Kaplan Meier estimates are compared 116 

to substitution with a value of 0. Using 0 (the bottom of the range) is not a conservative estimate 117 

and there is no information to suggest that 0 is any more likely than another value within the 118 

range of 0 to 1. For systems where the 90th percentile is at or near the regulatory limit, and 119 

consideration of the uncertainty bounds important, the effect of using Kaplan Meier imputation is 120 

small and unlikely to have affected estimates of the 90th percentile (e.g., Utility A in 2016-2017 121 

and Utility C in 2010).  122 
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 123 

Table SI.1. Comparison of sample statistics using imputed values versus substitution to 124 
estimate values for samples recorded as below the reporting limit 125 

    
Using 
Kaplan 
Meier3 

Using 
imputed 
values4 

substituted 
BRL data as 
05 

substituted 
BRL data 
as 0.56 

substituted 
BRL data 
as 17 

Max %- 
change 
from 
Kaplan 
Meier8 

Year1 
Utility 
ID2 

Mean Mean Mean Mean Mean 
 

2004 

A 

3.74 3.54 3.346 3.526 3.706 10.5% 

2007 3.34 3.34 3.12 3.37 3.62 8.4% 

2010 3.99 3.83 3.7 3.8 3.9 7.3% 

2013 5.84 5.84 5.628 5.888 6.148 5.3% 

2016a 9.36 9.02 8.415 8.64 8.865 10.1% 

2016b 9.66 9.52 8.988 9.148 9.309 7.0% 

2017a 10.96 10.58 10.202 10.381 10.561 6.9% 

2017b 9.57 9.29 8.897 9.058 9.219 7.0% 

2004 

B 

1.07 1.07 0.88 1.21 1.54 43.9% 

2007 1.61 1.61 1.439 1.754 2.07 28.6% 

2010 1.01 1.01 0.88 1.25 1.62 60.4% 

2013 1.41 1.41 1.24 1.55 1.86 31.9% 

2016 1.1 1.1 0.846 1.154 1.462 32.9% 

2004 

C 

0.2 0.2 0.12 0.6 1.08 440.0% 

2007 1.99 1.79 1.58 1.767 1.953 20.6% 

2010 10.35 10.348 9.302 9.623 9.943 10.1% 

2011 4.94 4.776 4.615 4.775 4.935 6.6% 

2012 6.06 5.765 5.664 5.864 6.064 6.5% 

2013 3.44 3.144 2.998 3.218 3.438 12.8% 

       

2016 3.46 3.078 2.981 3.222 3.463 13.8% 

2004 

D 

2.75 2.75 2.48 2.74 3 9.8% 

2007 5.09 4.995 4.745 4.918 5.091 6.8% 

2010 3.57 3.379 3.179 3.375 3.571 11.0% 

2013 4.88 4.88 3.709 4.091 4.473 24.0% 

2016 4.52 4.423 4.204 4.36 4.517 7.0% 
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Notes: 126 
1. Year in which the samples were collected for each utility. Years designated as “a” or “b” 127 

indicate two sample periods were conducted that year. “a” represents samples collected 128 
between January and June and “b” represents samples collected between July and 129 
December of the indicated year. 130 

2. Utility ID – unique identifier for the water system analyzed. 131 
3. Mean of each sample set computed using Kaplan Meier methods.  132 
4. Mean of each sample set computed after imputing estimates below the reporting limit. 133 
5. Mean of each samples set computed after substituting a value of zero for each sample 134 

below the reporting limit. 135 
6. Mean of each samples set computed after substituting a value of 0.5 ppb, or one-half the 136 

report limit, for each sample below the reporting limit. 137 
7. Mean of each samples set computed after substituting a value of 1 ppb, or the report limit, 138 

for each sample below the reporting limit. 139 
8. The percent change in the mean between each method and Kaplan Meier is calculated 140 

and the maximum value shown.  141 
 142 

3 Model fitting and selection 143 

The lognormal transformation is common for environmental data sets and used here. The 144 

transformed datasets is then fit to the normal and student’s t-distribution and the model fits 145 

evaluated. The mathematical form for the lognormal transformation is shown below. 146 

 lni iy x  147 

The mathematical form of the probability density function (pdf) is shown below for the normal 148 

and student’s t-distribution, respectively.  149 
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 151 

Figure SI.4 through Figure SI.28 show the visual fit of each lognormally transformed sample set 152 

compared to the normal and student’s t-distribution. The two panels on the left are the quantile-153 
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quantile plots comparing the fitted distribution to the sample set and on the right is a comparison 154 

of the empirical CDFs comparing simulated predicted samples from each fitted distribution to the 155 

original imputed sample set. For the quantile-quantile plots, alignment of the dots with the black 156 

diagonal line indicates a consistent and good fit. Where the dots deviate from the line, there is an 157 

indication that the range of the sample set is not well represented by the selected model. For 158 

example, in Figure SI.4 for the lognormal distribution (top left), values in the right tail are below 159 

the diagonal, indicating that the fitted distribution may be overpredicting estimates in this range. 160 

The rest of the distribution is a decent approximation, but does deviate in places along the 161 

distribution. While this could just be a factor of natural deviation and small sample sets, it could 162 

also indicate that the data are not well represented by a single distribution, and mixture model fits9 163 

should be evaluated if an improved fit is desired. In Figure SI.4 the same trends seen in the 164 

quantile-quantile plot are reinforced through evaluation of the CDFs, with the student’s T-165 

distribution model showing greater deviation from the sample than the lognormal model fit. This 166 

same type of visual evaluation was repeated for all sample sets shown in the subsequent figures. 167 

Based on this assessment the lognormal distribution was considered to be an acceptable model fit 168 

for all sample sets.  169 
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 170 

Figure SI.4. Utility A 2004 – Quantile-quantile plot of the normal and student’s t-distribution 171 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 172 

empirical distribution (right). 173 

 174 

Figure SI.5. Utility A 2007 – Quantile-quantile plot of the normal and student’s t-distribution 175 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 176 
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empirical distribution (right). 177 

178 

Figure SI.6. Utility A 2010 – Quantile-quantile plot of the normal and student’s t-distribution 179 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 180 

empirical distribution (right). 181 

 182 
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Figure SI.7. Utility A 2013 – Quantile-quantile plot of the normal and student’s t-distribution 183 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 184 

empirical distribution (right). 185 

 186 

Figure SI.8. Utility A 2016a (January to June) – Quantile-quantile plot of the normal and 187 

student’s t-distribution compared to the interpolated dataset (left) and CDFs of the fitted 188 

distributions compared to the empirical distribution (right). 189 
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 190 

Figure SI.9. Utility A 2016b (July to December) – Quantile-quantile plot of the normal and 191 

student’s t-distribution compared to the interpolated dataset (left) and CDFs of the fitted 192 

distributions compared to the empirical distribution (right). 193 

 194 

Figure SI.10. Utility A 2017a (January to June)– Quantile-quantile plot of the normal and 195 

student’s t-distribution compared to the interpolated dataset (left) and CDFs of the fitted 196 

distributions compared to the empirical distribution (right). 197 
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 198 

Figure SI.11. Utility A 2017b (July to December) – Quantile-quantile plot of the normal and 199 

student’s t-distribution compared to the interpolated dataset (left) and CDFs of the fitted 200 

distributions compared to the empirical distribution (right). 201 

 202 

Figure SI.12. Utility B – 2004 Quantile-quantile plot of the normal and student’s t-distribution 203 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 204 

empirical distribution (right). 205 
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 206 

Figure SI.13. Utility B 2007 – Quantile-quantile plot of the normal and student’s t-distribution 207 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 208 

empirical distribution (right). 209 

 210 

Figure SI.14. Utility B 2010 – Quantile-quantile plot of the normal and student’s t-distribution 211 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 212 

empirical distribution (right). 213 



SI.19 
 

 214 

Figure SI.15. Utility B 2013 – Quantile-quantile plot of the normal and student’s t-distribution 215 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 216 

empirical distribution (right). 217 

 218 

Figure SI.16. Utility B 2016 – Quantile-quantile plot of the normal and student’s t-distribution 219 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 220 

empirical distribution (right). 221 
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 222 

Figure SI.17. Utilityt C 2004 – Quantile-quantile plot of the normal and student’s t-distribution 223 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 224 

empirical distribution (right). 225 

 226 

Figure SI.18. Utility C 2007 – Quantile-quantile plot of the normal and student’s t-distribution 227 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 228 

empirical distribution (right). 229 
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 230 

Figure SI.19. Utility C 2010 – Quantile-quantile plot of the normal and student’s t-distribution 231 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 232 

empirical distribution (right). 233 

 234 

Figure SI.20. Utility C 2011 – Quantile-quantile plot of the normal and student’s t-distribution 235 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 236 

empirical distribution (right). 237 
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 238 

Figure SI.21. Utility C 2012 – Quantile-quantile plot of the normal and student’s t-distribution 239 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 240 

empirical distribution (right). 241 

 242 

Figure SI.22. Utility C 2013 – Quantile-quantile plot of the normal and student’s t-distribution 243 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 244 

empirical distribution (right). 245 
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 246 

Figure SI.23. Utility C 2016 – Quantile-quantile plot of the normal and student’s t-distribution 247 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 248 

empirical distribution (right). 249 

 250 

Figure SI.24. Utility D 2004 – Quantile-quantile plot of the normal and student’s t-distribution 251 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 252 

empirical distribution (right). 253 
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 254 

Figure SI.25. Utility D 2007 – Quantile-quantile plot of the normal and student’s t-distribution 255 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 256 

empirical distribution (right). 257 

 258 

Figure SI.26. Utility D 2010 – Quantile-quantile plot of the normal and student’s t-distribution 259 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 260 

empirical distribution (right). 261 
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 262 

Figure SI.27. Utility D 2013 – Quantile-quantile plot of the normal and student’s t-distribution 263 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 264 

empirical distribution (right). 265 

 266 

Figure SI.28. Utility D 2016 – Quantile-quantile plot of the normal and student’s t-distribution 267 

compared to the interpolated dataset (left) and CDFs of the fitted distributions compared to the 268 

empirical distribution (right). 269 
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In addition, to the distribution fits evaluated through comparison of quantile-quantile plots and 270 

CDFs, four error metrics were compared and the root mean square error (RMSE) and the Bayesian 271 

Information Criterion (BIC) were selected. The mathematical formula for the BIC and the 272 

commonly u is shown in the following equation: 273 
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Figure SI. 29 shows the results of the quantitative error analysis for each utility in each year for 276 

each model. While the RMSE showed the student’s T-distribution model as having lower error 277 

values, the BIC metric, which is typically regarded as more robust, found the models to be tied, or 278 

the lognormal model to have a slightly lower error metric. Based on the BIC error metric and the 279 

visual inspection, the lognormal model, commonly used for environmental datasets, is identified 280 

as acceptable, and is used for all subsequent analyses.   281 

Figure SI.30 shows the convergence of the simulation as the number of iterations increases. 282 

For each year and each utility the cumulative mean in the 90th percentile statistical is calculated 283 

as the number of bootstrap samples, m, increases. The mean stabilizes quickly, and by 200 284 

iterations little variation is observed. 1000 bootstrap samples is used in these analyses and based 285 

on this analysis is sufficient.  286 
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 287 

Figure SI.29. BIC and Root mean square error for utilities A through D from 2004 through 288 

2017. Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 289 

represents samples collected between January and June and “b” represents samples collected 290 

between July and December of the indicated year. 291 

 292 

 293 
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Figure SI.30: Variation of the mean of the 90th percentile distribution for utilities A through D 294 

from 2004 through 2017. Years designated as “a” or “b” indicate two sample periods were 295 

conducted that year. “a” represents samples collected between January and June and “b” 296 

represents samples collected between July and December of the indicated year. Convergence is 297 

determined at the number of iterations at which the cumulative mean of the distribution does not 298 

change as additional simulations are added.   299 

4 Uncertainty assessment 300 

The uncertainty in the 90th percentile shown in Figure 3 is based on parametric bootstrapping 301 

from the fitted model. This measure of uncertainty in the 90th percentile is compared to the 302 

uncertainty computed through sample bootstrapping. Figure SI.31 shows the CDFs for the 90th 303 

percentile calculated from a nonparametric bootstrap of the existing imputed datasets. Comparing 304 

these distributions provides a measure of the value associated with fitting a model and the potential 305 

drawbacks associated with not knowing any sample values beyond those in the LCR sample set. 306 

The dots in each figure show the reported LCR 90th percentile value for the original sample and 307 

where that value falls within the estimated distribution of the 90th percentile.  The red line in each 308 

figure indicates the LCR AL.  309 
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 310 

Figure SI.31. CDFs of uncertainty in imputed sample bootstrap for the 90th percentile for 311 

utilities A through D from 2004 through 2017. Years designated as “a” or “b” indicate two 312 

sample periods were conducted that year. “a” represents samples collected between January and 313 

June and “b” represents samples collected between July and December of the indicated year. 314 

Dots represent the LCR reported 90th percentile. Vertical red line is 15 ppb (the LCR AL). 315 

Discontinuities in the distribution of the 90th percentiles predicted from the sample bootstrap 316 

approach are a result of restricting the predicted sampling results to values in the original sample 317 

(e.g., if no sample exists at 10 ppb in the original sample set then this sample cannot appear in the 318 

predicted distribution, even if it is a feasible result). Bootstrapping over such a small sample may 319 

cause a mischaracterization of portions of the distribution, where data are sparse, whereas the 320 

continuous fitted distribution is able to fill missing data gaps and provide a more accurate estimate 321 

of the 90th percentile value. Sampling from the fitted model also provides a more complete 322 

representation of the total population of lead results across all high-risk sites due to its continuous 323 

distribution of concentration results.   324 
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While the 90th percentile provides information about the extreme of the distribution, and is 325 

relevant for regulatory compliance, the median may provide a better approximation of the most-326 

likely concentration associated with lead exposure for the high-risk sites sampled (by LCR 327 

requirements all have to include either a lead service line or lead solder). Figure SI.32 and Figure 328 

SI.33 show the uncertainty in the median, by parametric bootstrap and sample bootstrap methods, 329 

respectively. A large uncertainty range in the 90th percentile is not always indicative of a relatively 330 

wider range in uncertainty in the median. Comparison of the uncertainty in the median to 331 

uncertainty in the 90th percentile value indicates if there is an increase in the spread of the entire 332 

distribution versus just an elongation of the right tail of the distribution. For example, the years 333 

2016 through 2017 for Utility A show similar increases in the uncertainty of both the 90th 334 

percentile value and the median, 2010 for Utility C in contrast only shows an increase in the 90th 335 

percentile uncertainty, but not the median indicating different changes in the lead concentration 336 

distribution leading to an exceedance of the LCR AL, and potentially a different underlying cause.   337 

  338 
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Figure SI.32. CDFs of the uncertainty in the median for utilities A through D from 2004 through 339 

2017. Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 340 

represents samples collected between January and June and “b” represents samples collected 341 

between July and December of the indicated year. Estimated based on a parametric bootstrap of 342 

the fitted lognormal model. 343 

 344 

 345 

Figure SI.33. CDFs of the uncertainty in the median for utilities A through D from 2004 through 346 

2017. Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 347 

represents samples collected between January and June and “b” represents samples collected 348 

between July and December of the indicated year. Estimated based on a sample bootstrap of the 349 

imputed dataset. 350 

Figure SI.34 compares predictions of the median between the lognormal parametric distribution 351 

model and the non-parametric sample bootstrap model. Similar to the predictions of the 90 th 352 

percentile statistics (Figure 5), predictions of median are close to well aligned and show limited 353 
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deviation. The root mean square error (RMSE) is calculated to compare the models’ median 354 

predictions and ranges from 0 to 0.74 across all sites and years. Table SI.2 shows the RMSE 355 

values for models in each year at each site. With both of these models there seems to limited 356 

uncertainty associated with the distribution model form selected.   357 

 358 

Figure SI.34. Comparison of median estimates between the parametric and non-parametric 359 

distribution models for utilities A through D from 2004 through 2017. Years designated as “a” or 360 

“b” indicate two sample periods were conducted that year. “a” represents samples collected 361 

between January and June and “b” represents samples collected between July and December of 362 

the indicated year. 363 

Table SI.2. Root mean square errors calculated to compare model predictions of the 90th 364 

percentile and median. 365 

    
RMSE: 90th percentile 
predictions 

RMSE: Median 
predictions 

Sample Year Utility ID   

2004 A 1.587 0.146 
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2007 1.676 0.271 

2010 1.827 0.148 

2013 4.303 0.175 

2016a 2.188 0.628 

2016b 3.754 0.698 

2017a 4.746 0.501 

2017b 1.860 0.513 

2004 

B 

0.743 0.012 

2007 0.690 0.031 

2010 0.601 0.011 

2013 0.948 0.020 

2016 0.381 0.017 

2004 

C 

0.100 0.001 

2007 0.452 0.094 

2010 5.303 0.230 

2011 0.477 0.127 

2012 2.722 0.259 

2013 1.320 0.121 

2016 4.045 0.189 

2004 

D 

1.022 0.188 

2007 0.853 0.738 

2010 1.477 0.313 

2013 1.320 0.069 

2016 1.959 0.225 

 366 

5 Difference tests and assessment of change over time 367 

Many utilities may want to evaluate a change over time through comparison of sample sets 368 

collected over years. Plotting the trend in the 90th percentile is a tempting, but inaccurate way to 369 

evaluate a temporal trend. Statistical tests can be used to compare the distribution of datasets over 370 

time or compare changes in the median, which are more reliable ways to assess temporal change.  371 
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Each imputed dataset, made up of one sample year for one utility, is compared to all other years 372 

for that utility; two metrics were used to evaluate if temporal change occurred for each utility. 373 

First, the plotted empirical CDFs where compared visually (see Figure SI.35). Second, the non-374 

parametric generalized Wilcoxon test7 was used for a full distribution comparison. This test is 375 

selected as it compares the entirety of each distribution or dataset rather than a specific value such 376 

as the mean or median. The results of the Wilcoxon test allow for sample years to be sorted into 377 

groups and the results of the test compared to visual observations from comparison of the CDFs. 378 

A change in the median as measured by the results of the t-test are also compared to the empirical 379 

CDFs and any observed shift in the median. P-values are compared for the imputed samples 380 

directly in Table SI.3 and for the fitted lognormal models in Table SI.4. Cells shown in red have a 381 

p-value less than 0.05. This test shows no change among years for Utilities B and D, which is 382 

supportive of visual observations. 383 

 384 

Figure SI.35. Empirical cumulative distribution function for utilities A through D from 2004 385 

through 2017. Years designated as “a” or “b” indicate two sample periods were conducted that 386 
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year. “a” represents samples collected between January and June and “b” represents samples 387 

collected between July and December of the indicated year.  388 

 389 

Table SI.3. P-values from the nonparametric generalized Wilcoxon test comparing empirical 390 

distributions Utilities A through D from 2004 through 2017.  391 

Utility ID   2007 2010 2011 2012 2013 2016a1 2016b1 2017a1 2017b1 

A 2004 0.168 0.874     0.184 0.002 0.000 0.003 0.000 

A 2007   0.126     0.907 0.000 0.000 0.000 0.000 

A 2010         0.122 0.007 0.000 0.006 0.000 

A 2013           0.000 0.000 0.000 0.000 

A 2016a1             0.066 0.701 0.484 

A 2016b1               0.008 0.216 

A 2017a1                 0.190 

B 2004 0.896 0.025     0.788 0.158       

B 2007   0.024     0.915 0.236       

B 2010         0.020 0.001       

B 2013           0.306       

C 2004 0.000 0.000 0.000 0.000 0.000 0.000       

C 2007   0.002 0.023 0.749 0.478 0.019       

C 2010     0.067 0.006 0.001 0.000       

C 2011       0.049 0.016 0.000       

C 2012         0.860 0.140       

C 2013           0.136       

C 2014           0.001       

D 2004 0.007 0.250     0.146 0.009       

D 2007   0.090     0.239 0.995       

D 2010         0.701 0.108       

D 2013           0.268       

Note: 392 
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1. Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 393 

represents samples collected between January and June and “b” represents samples collected 394 

between July and December of the indicated year. 395 

  396 
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Table SI.4. P-values from the generalized Wilcoxon test comparing changes in the fitted 397 

distribution over time using the lognormal fit determined in the model fitting stage. 398 

Utility 
ID   2007 2010 2011 2012 2013 2016a1 2016b1 2017a1 2017b1 

A 2004 0.027 0.801     0.083 0.053 0.000 0.013 0.000 

A 2007   0.096     0.723 0.000 0.000 0.000 0.000 

A 2010         0.078 0.037 0.000 0.007 0.000 

A 2013           0.000 0.000 0.000 0.000 

A 2016a1             0.000 0.493 0.012 

A 2016b1               0.001 0.264 

A 2017a1                 0.060 

B 2004 0.370 0.169     0.528 0.212       

B 2007   0.022     0.163 0.727       

B 2010         0.454 0.010       

B 2013           0.060       

C 2004 0.000 0.000 0.000 0.000 0.000 0.000       

C 2007   0.045 0.313 0.131 0.003 0.000       

C 2010     0.145 0.004 0.000 0.000       

C 2011       0.015 0.000 0.000       

C 2012         0.506 0.012       

C 2013           0.038       

D 2004 0.001 0.198     0.417 0.018       

D 2007   0.017     0.008 0.153       

D 2010         0.752 0.216       

D 2013           0.151       

 Note: 399 

1. Years designated as “a” or “b” indicate two sample periods were conducted that year. “a” 400 

represents samples collected between January and June and “b” represents samples collected 401 

between July and December of the indicated year.  402 
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