Supporting Information

Boosted Charge Transfer in Twinborn α-(Mn₂O₃-MnO₂) Heterostructures: Toward High Rate and Ultralong Life Zinc-

ion Batteries

Jun Long, ^{†, ‡} Fuhua Yang, [‡] Jing Cuan, [‡] Jingxing Wu, [‡] Zhanhong Yang, ^{*,†} Hao Jiang, [§] Rui Song, ^I Wenlong Song, ^I Jianfeng Mao, ^{*,‡} Zaiping Guo [‡]

- [†]Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- [‡]Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials (AIIM), School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Scenter of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China

^ITianneng Battery Group Co Ltd, Zhejiang 313100, China

*E-mail: zhyang@csu.edu.cn

*E-mail: jmao@uow.edu.au

The pseudocapacitive effect calculation

The pseudocapacitive effects could be analyzed according to the relationship between the peak currents and the scan rates, which are acquired from the CV curves [1, 2]:

$$i = av^b \tag{1}$$

where *a* and *b* are the adjustable constants. The *b*-value of 0.5 suggests a diffusioncontrolled process, while *b* is close to 1.0 indicates a capacitive process, which is determined from slope of the log *i* versus log *v* plots. Furthermore, the contributions to the capacity can be quantified [3] by the equation (2):

$$i(v) = k_1 v + k_2 v^{1/2}$$
(2)

where k_1v and $k_2v^{1/2}$ represent the pseudocapacitive and diffusion-dominant contributions, respectively.

Zn²⁺ diffusion coefficient (Dzn) calculation

Electrochemical impedance spectroscopy (EIS) measurement is adopted to investigate the reaction kinetics for the zinc ion batteries (ZIBs) within the frequency range from 100 kHz to 0.01 Hz. The relevant Nyquist plots are exhibited in Fig. S7(a). Obviously, all the patterns show the similar shape with the semicircle (at high frequency region) and the inclined straight line (at low frequency region), indicating that electrochemical process is regulated by the charge transfer and the ion diffusion [4]. The R_{ct} values of α -(Mn₂O₃@MnO₂)-400, α -(Mn₂O₃@MnO₂)-450, α -(Mn₂O₃@MnO₂)-500 electrodes are 297.2 Ω , 237.7 Ω and 175.6 Ω , respectively. Additionally, the diffusion coefficient of the Zn^{2+} (D_{Zn}) in the electrode can be calculated with the low frequency region of the EIS plots (as shown in Fig. S7(b)) according to the following equation [5]:

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(3)

Where the meaning of *n* is the number of the electrons per molecule, *R* the gas constant, *T* the absolute temperature, *A* the surface area of the electrode, *F* the Faraday constant, *C* the concentration of the Zn^{2+} , σ is the Warburg factor which has relationship with Z_{re} :

$$Z_{re} = R_D + R_L + \sigma \omega^{1/2} \tag{4}$$

The relationships between Z_{re} and $\omega^{1/2}$ (the square root of the frequency) are shown in Fig. S7(b) in the low frequency region. The D_{Zn} is obtained based on the equations (3) and (4).

GITT measurements and the calculation of the Dzn calculation

Based on the GITT tests, the D_{Zn} in the electrodes can be determined by solving Fick's second law [6-8] with Equation (5) based on the GITT curves.

$$D = \frac{4}{\pi\tau} \left(\frac{m_a V_M}{M_a S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2 \tag{5}$$

where m_a is the electrode active mass, M_a is the molar mass of the electrode material (g/mol) and V_M is the molar volume (cm³/mol), S is the geometric area of the electrode (contacting area of the electrode with electrolyte), ΔE_S is the difference in the open circuit voltage measured at the end of the relaxation period for the two successive steps, and ΔE_{τ} is the slope of the linearized region of the potential during the current pulse of the duration time. In our work, the equation is simplified on the condition that the $\Delta E_{\tau}/\tau^{1/2}$ shows a linear relationship. Before the GITT measurement, the assembled cells are first charged/discharged at 50 mA g⁻¹ for one cycle to stabilize the cells. The current pulse lasts for 30 min at 100 mA g⁻¹ and then the cells are relaxed for 1 h to make the voltage reach the equilibrium. And these procedures are repeatedly applied to the cells during the total discharge/charge process.

Theoretical Calculations

All the spin theoretical simulations in our work were carried out on the Vienna ab initio Simulation Package (VASP) with the version 5. 4. 1 [9]. The Generalized gradient approximation (GGA) with the Perdew-Burke-Emzerhof (PBE) [10] functional form is employed to evaluate the electron-electron exchange and correlation interactions while the projector augmented-wave (PAW) methods [11] are implanted to represent the core-electron (valence electron) interactions. The GGA + U [12] calculations are performed with the on-site Coulomb repulsion U term on the Mn 3d and the U_{eff} (U_{eff} = U – J) values are 4.5 eV [13], respectively. Plane-Wave basis function is set with a kinetic cut-off energy of 400 eV. The ground-state atomic geometries are optimized by relaxing the force below 0.02 eV/Å and the convergence criteria for energy is set with the value of 1.0×10^{-5} eV/cell. Only Gamma point of $1 \times 1 \times 1$ in the Brillouin zone are considered for our calculations. Gaussian method is employed for the both electronic structures and total energy of our models and stress/force relaxations.

Figure S2. SEM images of the α-(Mn₂O₃-MnO₂)-550 (a), α-(Mn₂O₃-MnO₂)-600 (b). TEM images of the α-(Mn₂O₃-MnO₂)-550 (c) and α-(Mn₂O₃-MnO₂)-600 (d).

Figure S3. TG and DTA profiles of the precursor of α -(Mn₂O₃-MnO₂)-500.

Figure S4. (a) EDS image and (b) the element concentration of the α -(Mn₂O₃-MnO₂)-500.

Figure S5. Nitrogen adsorption/desorption isotherms of the α -(Mn₂O₃-MnO₂)-400 (a), α -(Mn₂O₃-MnO₂)-450 (c) and α -(Mn₂O₃-MnO₂)-500 (e). The corresponding BJH pore size distributions of the α -(Mn₂O₃-MnO₂)-400 (b), α -(Mn₂O₃-MnO₂)-450 (d) and α -(Mn₂O₃-MnO₂)-500 (f).

Figure S6. HRTEM images of the α -(Mn₂O₃-MnO₂)-450.

Figure S7. Cycle performance of α -(Mn₂O₃-MnO₂)-550 and α -(Mn₂O₃-MnO₂)-600 electrodes at current density of 300 mA g⁻¹.

Figure S8. Cycle performance of α -(Mn₂O₃-MnO₂)-500 electrode at current density of 300 mA g⁻¹ in 2 M ZnSO₄ electrolyte.

Figure S9. (a) Long-term cycling performance of Zn/Zn symmetrical cells in 2 M ZnSO₄ + 0.15 M MnSO₄ and (b) 2 M ZnSO₄ electrolytes.

Figure S10. Cycle performance of α -Mn₂O₃ electrode at 200 mA g⁻¹.

Figure S11. Cycle performance of α -(Mn₂O₃-MnO₂)-500 electrode at current density of 200 mA g⁻¹.

Figure S12. Cycle performance of α -Mn₂O₃+ α -MnO₂ mixture at current density of 500 mA g⁻¹.

Figure S13. (a) EIS for α -(Mn₂O₃-MnO₂)-400, α -(Mn₂O₃-MnO₂)-450, α -(Mn₂O₃-MnO₂)-500 electrodes after the first discharge at 500 mA g⁻¹. (b) The linear relationship between Z' and ω -^{1/2} of the α -(Mn₂O₃-MnO₂)-400, α -(Mn₂O₃-MnO₂)-450, α -(Mn₂O₃-MnO₂)-500 electrodes in the low frequency region.

Figure S14. GITT profile and calculated D_{Zn} of α -(Mn₂O₃-MnO₂)-500 electrode.

Figure S15. XRD patterns of α-(Mn₂O₃@MnO₂)-500 electrode at pristine state and after 300 cycles at current density of 300 mA g⁻¹.

Figure S16. XRD pattern of α -(Mn₂O₃-MnO₂)-500 cathode in the 10th discharged state.

Figure S17. XPS spectra of survey spectrum of the α -(Mn₂O₃-MnO₂)-500 electrode at discharge state during the first cycle of the zinc ion battery.

Table S1. Zn^{2+} storage performance of $\alpha\text{-}(Mn_2O_3\text{-}MnO_2)\text{-}500$ compared with

Materials	High rate capacity	Cycling	Electrolyte	Ref.
		performance		
α -(Mn ₂ O ₃ -MnO ₂)-	180.5 mAh g ⁻¹ at 100 mA	$170 \text{ mA } \text{g}^{-1}$ after	2 M ZnSO ₄ + 0.15 M	This
500	g^{-1}	2000 cycles at 500	MnSO ₄	work
	123.7 mAh g^{-1} at 1500	$mAh g^{-1}$		
	mAg^{-1}			
amorphous α-MnO ₂	210 mAh g^{-1} at 105 mA	$100 \text{ mAh } \text{g}^{-1}$ after	1 M ZnSO ₄	[14]
	g^{-1}	100 cycles at 105		
	121 mAh g ⁻¹ at 1500 mA	mA g ⁻¹		
	g^{-1}			
α -MnO ₂ nanorod	/	$140 \mathrm{mAh}\mathrm{g}^{-1}$ after 30	1 M ZnSO ₄	[15]
		cycles at 42 mA g^{-1}		
Todorokite-type	90 mAh g^{-1} at 90 mA g^{-1}	$98 \mathrm{mAh}\mathrm{g}^{-1}\mathrm{after}100$	1 M ZnSO ₄	[16]
MnO ₂	$42 \text{ mAh } \text{g}^{-1} \text{ at } 900 \text{ mA } \text{g}^{-1}$	cycles at 60 mA g^{-1}		
$Zn_3[Fe(CN)_6]_2$	$67 \text{ mAh } \text{g}^{-1} \text{ at } 60 \text{ mA } \text{g}^{-1}$	$81 \text{ mAh g}^{-1} \text{ after } 100$	1 M ZnSO ₄	[17]
	53 mAh g^{-1} at 1500 mA	cycles at 60 mA g^{-1}		
	g^{-1}			
Cu ₃ [Fe(CN) ₆] ₂	$48 \text{ mAh g}^{-1} \text{ at } 150 \text{ mA g}^{-1}$	$52 \text{ mAh g}^{-1} \text{ after } 100$	20 mM ZnSO ₄	[18]
	43 mAh g^{-1} at 600 mA g^{-1}	cycles at 60 mA g^{-1}		
Mesoporous	/	150 mAh g^{-1} after	1 M ZnSO ₄	[19]
γ-MnO ₂		100 cycles at 0.5 mA		
		cm ⁻²		
Spinel-ZnMn _{1.86} O ₄	/	$150 \mathrm{mAh}\mathrm{g}^{-1}$ after 50	3 M Zn(CF ₃ SO ₃) ₂	[20]
		cycles at 50 mA g^{-1}		
$Na_3V_2(PO_4)_3$	97 mAh g^{-1} at 50 mA g^{-1}	$108 \text{ mAh } \text{g}^{-1}$ after	0.5 M Zn(CH ₃ COO) ₂	[21]
	$62 \text{ mAh } \text{g}^{-1} \text{ at } 1000 \text{ mA}$	200 cycles at 100		

previously reported materials.

	g^{-1}	$mA g^{-1}$		
zinc orthovanadate	201 mAh g^{-1} at 200 mA	125 mA h g ⁻¹ after	$1 \text{ M Zn}(\text{TFSI})_2 + 20$	[22]
	g^{-1}	800 cycles at 2000	M LiTFSI	
	165 mAh g^{-1} at 1000 mA	$mA g^{-1}$		
	g^{-1}			
V ₁₀ O ₂₄ ·12H ₂ O	164.5 mAh g^{-1} at 200 mA	$98 \mathrm{mAh} \mathrm{g}^{-1} \mathrm{after} 500$	3 M Zn(CF ₃ SO ₃) ₂	[23]
	g^{-1}	cycles at 10 A g^{-1}		
	$118.5 \mathrm{mAh}\mathrm{g}^{-1}\mathrm{at}1000\mathrm{mA}$			
	g^{-1}			
V ₂ O ₅	100 mAh g^{-1} at 1000 mA	121 mAh g^{-1} after	3 M ZnSO ₄	[24]
	g^{-1}	400 cycles at 1000		
	92 mAh g^{-1} at 2000 mA	$mA g^{-1}$		
	g ⁻¹			
KMn ₈ O ₁₆	130 mAh g^{-1} at 100 mA	$77 \mathrm{mAh}~\mathrm{g}^{-1}$ after 100	$1 \text{ M ZnSO}_4 + 0.3 \text{ M}$	[25]
	g ⁻¹	cycles at 100 mA g^{-1}	K ₂ SO ₄	
Na _{1.1} V ₃ O _{7.9}	170 mA h g^{-1} at 100 mA	84.8 mAh g^{-1} after	1 M Zn(CF ₃ SO ₃) ₂	[26]
nanoribbons/graphene	g^{-1}	500 cycles at 1000		
	$100 \text{ mAh } \text{g}^{-1} \text{ at } 1 \text{ A } \text{g}^{-1}$	$mA g^{-1}$		
3D MnO _x @C	190 mA h g^{-1} at 300 mA	60 mA h g^{-1} after	0.75 M Na2SO4 +	[27]
	g^{-1}	1000 cycles at 2000	0.25 M ZnSO4	
	75 mAh g^{-1} at 1.5 A g^{-1}	$mA g^{-1}$		
ZnMn ₂ O ₄ /Mn ₂ O ₃	82.6 mA h g^{-1} at 500 mA	111.9 mAh g^{-1} after	1 M ZnSO ₄	[28]
	g^{-1}	300 cycles at 0.5 A		
	42.1 mA h g^{-1} at 3.2 A g^{-1}	g ⁻¹		
Mo ₆ S ₈	62 mA h g^{-1} at 60 mA g^{-1}	$55 \mathrm{mAh}\mathrm{g}^{-1}\mathrm{after}350$	1.1 M ZnSO ₄	[29]
	53 mA h g^{-1} at 0.6 A g^{-1}	cycles at 0.6 A g^{-1}		
Al-doped	82.6 mA h g^{-1} at 80 mA	$105 \mathrm{mAh}\mathrm{g}^{-1}$ after 50	1 M ZnSO ₄	[30]

VO _{1.52} (OH) _{0.77}	g^{-1}	cycles at 15 mA g ⁻¹		
	52.1 mA h g^{-1} at 0.56 A g^{-1}			
Zn _x Mo ₆ S ₈	134 mA h g^{-1} at 6.4 mA	88 mAh g^{-1} after 20	0.1 M ZnSO ₄	[31]
	g^{-1}	cycles at 6.4 mA g^{-1}		
	53 mA h g^{-1} at 128 mA g^{-1}			
Layered VS ₂	159.1 mA h g^{-1} at 100 mA	110.9 mAh g^{-1} after	1 M ZnSO ₄	[32]
Nanosheet	g^{-1}	200 cycles at 500		
	121 mA h g^{-1} at 1000 mA	$mA g^{-1}$		
	g^{-1}			
Manganese	137 mA h g^{-1} at 100 mA	82.2 mAh g^{-1} after	2 M ZnSO ₄	[33]
Sesquioxide	g^{-1}	1000 cycles at 2000		
	38 mA h g^{-1} at 2000 mA	$mA g^{-1}$		
	g^{-1}			
Ni _x Mn _{3-x} O ₄ @C	139.7 mA h g^{-1} at 50 mA	131 mAh g^{-1} after	2 M ZnSO ₄ + 0.15 M	[34]
	g^{-1}	850 cycles at 400	MnSO ₄	
	98.5 mA h g^{-1} at 1200 mA	$mA g^{-1}$		
	g^{-1}			

REFERENCES

- [1] Wu S.; Wang W.; Li M.; Cao L.; Lyu F.; Yang M.; Wang Z.; Shi Y.; Nan B.; Yu S. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. *Nat. Commun.* 2016, 7, 13318.
- [2] Lindström H.; Södergren S.; Solbrand A.; Rensmo H.; Hjelm J.; Hagfeldt A.; Lindquist S. Li⁺ ion insertion in TiO₂ (Anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717.
- [3] Brezesinski T.; Wang J.; Polleux J.; Dunn B.; Tolbert S. Templated nanocrystalbased porous TiO₂ films for next-generation electrochemical capacitors. *J. Am. Chem. Soc.* 2009, 131, 1802-1809.
- [4] Niu C.; Meng J.; Wang X.; Han C.; Yan M.; Zhao K.; Xu X.; Ren W.; Zhao Y.; Xu L.; Zhang Q.; Zhao D.; Mai L. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. *Nat. Commun.* 2015, *6*, 1-9.
- [5] Liu H.; Li C.; Zhang H.; Fu L.; Wu Y.; Wu H. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources, 2006, 159, 717-720.
- [6] Xie J.; Kohno K.; Matsumura T.; Imanishi N.; Hirano A.; Takeda Y.; Yamamoto O. Li-ion diffusion kinetics in LiMn₂O₄ thin films prepared by pulsed laser deposition. *Electrochim. Acta.* 2008, 54, 376-381.
- [7] Shaju K.; Subba Rao G.; Chowdari B. Li ion kinetic studies on spinel cathodes, Li (M_{1/6}Mn_{11/6})O₄ (M= Mn, Co, CoAl) by GITT and EIS. *J. Mater. Chem.* 2003, 13, 106-113.
- [8] Hong J.; Selman J. Relationship between calorimetric and structural characteristics of Lithium - ion cells II. determination of Li transport properties. J. Electrochem. Soc. 2000, 147, 3190-3194.
- [9] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmentedwave method. *Phys. Rev. B* 1999, *59*, 1758-1775.
- [10] Perdew J.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865-3868.

- [11] Blohl P. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979.
- [12] Liechtenstein A.; Anisimov V.; Zaanen J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. *Phys. Rev. B* 1995, 52, R5467-R5470.
- [13] Li Y.; Wu M.; Ouyang C. The structural and electronic properties of spinel MnCo₂O₄ bulk and low-index surfaces: from first principles studies. *Appl. Surf. Sci.* 2015, 349, 510-515.
- [14] Xu C.; Li B.; Du H.; Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 2012, 51, 933-935.
- [15] Lee B.; Lee H.; Kim H.; Chung K.; Cho B.; Oh S. Elucidating the intercalation mechanism of zinc ions into α-MnO₂ for rechargeable zinc batteries. *Chem. Commun.* 2015, 51, 9265-9268.
- [16] Lee J.; Ju J.; Cho W.; Cho B.; Oh S. Todorokite-type MnO₂ as a zinc-ion intercalating material. *Electrochim. Acta* 2013, 112, 138-143.
- [17] Zhang L.; Chen L.; Zhou X.; Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. *Adv. Energy Mater.* 2015, *5*, 1400930.
- [18] Trócoli R., Mantia F. An aqueous zinc-ion battery based on copper hexacyanoferrate. *ChemSusChem* 2015, 8, 481-485.
- [19] Alfaruqi M.; Mathew V.; Gim J.; Kim S.; Song J.; Baboo J.; Choi S.; Kim J. Electrochemically induced structural transformation in a γ-MnO₂ cathode of a high capacity zinc-ion battery system. *Chem. Mater.* **2015**, *27*, 3609-3620.
- [20] Zhang N.; Cheng F.; Liu Y.; Zhao Q.; Lei K.; Chen C.; Liu X.; Chen J. Cationdeficient spinel ZnMn₂O₄ cathode in Zn(CF₃SO₃)₂ electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894-12901.
- [21] Li G.; Yang Z.; Jiang Y.; Jin C.; Huang W.; Ding X.; Huang Y. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na₃V₂(PO₄)₃. *Nano Energy* 2016, 25, 211-217.

- [22] Chao D.; Zhu C.; Song M.; Liang P.; Zhang X.; Tiep N.; Zhao H.; Wang J.; Wang R.; Zhang H.; Fan H. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. *Adv. Mater.* 2018, *30*, 1803181.
- [23] Wei T.; Li Q.; Yang G.; Wang C. High-rate and durable aqueous zinc ion battery using dendritic V₁₀O₂₄·12H₂O cathode material with large interlamellar spacing. *Electrochim. Acta* 2018, 287, 60-67.
- [24] Zhou J.; Shan L.; Wu Z.; Guo X.; Fang G.; Liang S. Investigation of V₂O₅ as a low-cost rechargeable aqueous zinc ion battery cathode. *Chem. Commun.* 2018, 54, 4457-4460.
- [25] Cui J.; Wu X.; Yang S.; Li C.; Tang F.; Chen J.; Chen Y.; Xiang Y.; Wu X.; He Z. Cryptomelane-type KMn₈O₁₆ as potential cathode material-for aqueous zinc ion battery. *Front. Chem.* **2018**, *6*, 352.
- [26] Cai Y.; Liu F.; Luo Z.; Fang G.; Zhou J.; Pan A.; Liang S. Pilotaxitic Na_{1.1}V₃O_{7.9} nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. *Energy Storage Mater.* **2018**, *13*, 168-174.
- [27] Ko J.; Sassin M.; Parker J.; Rolison D.; Long J. Combining battery-like and pseudocapacitive charge storage in 3D MnO_x@ carbon electrode architectures for zinc-ion cells. *Sustainable Energy Fuels* 2018, 2, 626-636.
- [28] Yang S.; Zhang M.; Wu X.; Wu X.; Zeng F.; LiY.; Duan S.; Fan D.; Yang Y.; Wu X. The excellent electrochemical performances of ZnMn₂O₄/Mn₂O₃: the composite cathode material for potential aqueous zinc ion batteries. *J. Electroanal. Chem.* 2019, 832, 69-74.
- [29] Cheng Y.; Luo L.; Zhong L.; Chen J.; Li B.; Wang W.; Mao S.; Wang C.; Sprenkle V.; Li G.; Liu J. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Inter. 2016, 8, 13673-13677.
- [30] Jo J.; Sun Y.; Myung S. Hollandite-type Al-doped VO_{1.52}(OH)_{0.77} as a zinc ion insertion host material. J. Mater. Chem. A 2017, 5, 8367-8375.

- [31] Chae M.; Heo J.; Lim S.; Hong S. Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo₆S₈ and Zn₂Mo₆S₈ chevrel phases in aqueous electrolytes. *Inorg. Chem.* 2016, 55, 3294-3301.
- [32] He P.; Yan M.; Zhang G.; Sun R.; Chen L.; An Q.; Mai L. Layered VS₂ nanosheetbased aqueous Zn ion battery cathode. *Adv. Energy Mater.* 2017, 7, 1601920.
- [33] Jiang B.; Xu C.; Wu C.; Dong L.; Li J.; Kang F. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. *Electrochim. Acta* 2017, 229, 422-428.
- [34] Long J.; Gu J.; Yang Z.; Mao J.; Hao J.; Chen Z.; Guo Z. Highly porous, low bandgap Ni_xMn_{3-x}O₄ (0.55≤x≤1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries. J. Mater. Chem. A 2019, 7, 17854-17866.