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Figure S1. (A) N1s high-resolution XPS spectrum of the H-NCTB-2 along with 

the corresponding fitting curves; (B) The survey XPS spectrum of the 

NGTB-900. 

 

 

Figure S2. (A, B) SEM images of the freeze-dried H-NGTB samples. 

 

 
 

Figure S3. (A-E) LSV curves and electron transfer numbers (n) for the prepared 

GT-900, GTB-900, NGTB-800, -1000 samples and Pt/C with different rotating 

rate in O2-saturated 0.1 M KOH solution; (F) Comparison between numbers of 

electron transferred per O2 in ORR on different samples.  
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Figure S4. Cyclic voltammetry (CV) of GT-900 (A), GTB-900 (B), NGTB-800 

(C), NGTB-900 (D), and NGTB-1000 (E) with different scan rates from 10 to 

100 mV·s-1 in a non-faradic potential range of 1.04~1.14 V vs. RHE in 0. 1 M 

KOH solution. 

 

 

 

Figure S5. (A) CV curves of NGTB-900 and Pt/C in O2- or N2-saturated 0.1 M 

HClO4 solution; (B) LSV polarization curves and (C) the corresponding Tafel 

slope curves of ORR on different samples in O2-saturated 0.1 M HClO4 

solution; (D) LSV curves and electron transfer number (n) of the prepared 

NGTB-900 with different rotating rate in O2-saturated 0.1 M HClO4 solution; 

(E) Current-time (i-t) chronoamperometric response of NGTB-900 and Pt/C-JM 
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in O2-saturated 0.1 M HClO4 at a rotation rate of 1600 rpm on the RDE 

electrode; (F) Current-time (i-t) chronoamperometric response of NGTB-900 

and Pt/C-JM with the addition of methanol (3 wt %) in O2-saturated 0.1 M 

HClO4 sulution at a rotation rate of 1600 rpm on the RDE electrode. 

 

The electrocatalytic performance of the prepared catalysts for ORR was also 

evaluated in 0.1 M HClO4 electrolyte. As shown in Figure 6A, a well-defined 

cathodic redox peak can be observed at 0.71 V (vs. RHE) on the NGTB-900 in 

O2-saturated 0.1 M HClO4 solution, but no evident peak is recorded in 

N2-saturated solution, which exhibits the effective ORR activity of NGTB-900 

in acidic condition. LSV curves in Figure 6B show that NGTB-900 possesses 

superior ORR activity with a half-wave potential of 0.70 V, which is more 

positive than those on GT-900 (0.46 V), GTB-900 (0.53 V), NGTB-800 (0.66 V), 

NGTB-1000 (0.64 V) and close to that on the commercial Pt/C (0.80 V). 

Actually, the electrocatalytic activity of NGTB-900 toward ORR in acidic 

solution also shows advantages over the most of N-doped carbon materials 

reported in literature.1-4 In the corresponding Tafel curves (Figure. 6C), Tafel 

slope (65 mV dec−1) of ORR on NGTB-900 is smaller than those on GT-900 

(118 mV dec−1), GTB-900 (106 mV dec−1), NGTB-800 (76 mV dec−1), 

NGTB-1000 (83 mV dec−1) and Pt/C (67 mV dec−1), indicating a quicker 

reaction rate on the NGTB-900. The limit current density of ORR on NGTB-900 

increases with the rate of rotation (Figure 6D). The linearly fitted K-L plots 

were obtained based on the K-L equation (inset of Figure 6D), illustrating 

similar electron transfer mechanism for ORR at the various potentials and a 

first-order reaction kinetic relative to the concentration of dissolved O2. In the 

potential range of 0.1-0.5 V, the average numbers (n) of electron transferred is 

~3.90, implying that NGTB-900 undergoes a nearly 4e- oxygen reduction 

reaction pathway. As demonstrated in Figure 6E, NGTB-900 shows a long-term 

durability with 87% retention of initial current density after 20,000 s, which is 

superior to that on Pt/C (65% retention of initial current density after 10,000 s). 
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The NGTB-900 also shows a good methanol tolerance in acidic solution (Figure 

6F), as evidenced by almost no change in the current density after injection of 

3% methanol at the time node of 500s, while a remarkable decline (~45%) can 

be observed in the current density of ORR on Pt/C electrode, which is resulted 

from the toxic effect of methanol. 

 

 

 

Figure S6. The overall polarization curves of NGTB-900 and commercial Pt/C  

catalysts in O2-saturated 0.1 M KOH solution for ORR/OER. 

 

 

 

Figure S7. The LSV curves of NGTB-900 for ORR using Hg/HgO or Ag/AgCl 

as reference electrode.  

 

The contrast experiments were carried out to investigate the electrocatalytic 

activity of NGTB-900 catalyst for ORR using a Hg/HgO as a reference electrode. 

As can be seen from Figure S7, the difference of ORR activity on NGTB-900 

catalyst using Hg/HgO as reference electrode from that using Ag/AgCl as 

reference electrode is negligible in 0.1 M KOH solution. This result confirms 

that Ag/AgCl electrode is stable and suitable in alkaline medium.  
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Table S1. Analysis of the nitrogen species in N-doped carbon-based metal-free 

catalysts reported in the literature.  

 

Methods 
       N functional groups (%)              Refs. 

N1 N2 N3 N4  

CVD (3.1 at.%) 62.0% 38.0% — — 
J. Catal. 311 (2014) 

80-87 

ball milling (3.15 at.%) 21.3% 73.1% 5.6% — 
 J. Power Sources 342 

(2017) 157-164. 

plasma discharge (4.1 at.%) 10.0% — 73.2% 16.8% 
Carbon 100 (2016) 

337-344 

arc-discharge (6.5 at.%) 40.0% 46.2% — 13.8% 
Appl. Surf. Sci. 277 

(2013) 88-93 

solvothermal (6.34 at.%) 32.8% 41.9% 25.3% — 
Int. J. Hydrogen Energy 

39 (2014) 6845-6852 

wet chemical method (7.65 at.%) 35.4% 39.6% 17.6% 7.4% 
J. Power Sources 227 

(2013) 185-190 

thermal annealing (2.9 at.%) 44.8% 13.8% 20.7% 20.7% 
Sci. Adv. 1 (2015) 

e1400129 

ion sputtering (0.7 at.%) 95.0% — 5.0% — 
Science 351 (2016) 

361-365 

this method (3.12 at.%) 84.3% — 15.7% — This work 

Notes：N1, Pyridinic-N; N2, Pyrrolic-N; N3, Graphitic-N; N4, Oxidized nitrogen. Figures in 

parenthesis refer to the total nitrogen content.  

 

 

 

Table S2. The surface element composition of NGTB-n from the XPS analysis. 

 

 

 

 

Samples 
Element composition (at. %) 

C O N 

NGTB-800 93.76 1.78 4.46 

NGTB-900 95.34 1.54 3.12 

NGTB-950 97.29 1.03 1.68 

NGTB-1000 98.45 0.68 0.87 
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Table S3. Comparison of ORR catalytic activity in 0.1 M KOH electrolyte with 

recently reported non-precious electrocatalysts in the literature. 

 

 

 

 

 

 

 

Catalysts Electrolyte Eonset E1/2 (V) Ref. 

NGTB-900 0.1 M KOH 1.06 0.89 This work 

NCN-1000-5 0.1 M KOH 0.95 0.82 
Energy Environ. Sci.  

2019, 12, 322-333 

NOGB-800 0.1 M KOH 0.92 0.84 
Adv. Energy Mater. 

2019, 1803867 

NHC 0.1 M KOH — 0.88 
Nano Res. 2017, 10(4): 

1163-1177 

CF-K-A 0.1 M KOH — 0.835 
Small 2018, 14(21), 

1800563 

N-HPCNSs-800 0.1 M KOH 1.00 0.887 
Nano Energy 49 

(2018) 393-402 

LHNHPC 0.1 M KOH 0.98 0.86 

Appl. Catal. B- 

Environ., 210 (2017) 

57-66 

NPC-1000 0.1 M KOH 1.02 0.90 
Adv. Funct. Mat., 27 

(2017) 1606190 

NDCF(Zn)-H2 0.1 M KOH 1.01 0.88 
Small 2019, 15, 

1805325 

NDC-900 0.1 M KOH 0.86 0.76 
J Mater Chem A. 

2017;5(13):6025-6031. 

1100-CNS 0.1 M KOH 0.94 0.85 
Energy Environ. Sci. 

2017;10(3):742-749 

NPMC-1000 0.1 M KOH 0.94 0.85 
Nat. Nanotech. 

2015;10(5):444-452 

NCF-900 0.1 M KOH 1.05 0.89 
J. Mater. Chem. A, 

2018, 6, 7762-7769 

3D NCNT array 0.1 M KOH 0.93 0.81 
Nano Energy 2017, 37, 

98-107 
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Table S4. Comparison of the electrochemical performance of the NGTB-900 

electrode with performances of previously reported electrodes in 6 M KOH 

electrolyte. 

 

 

 

Electrode 

materials 

Surface 

area 

(m2 g-1) 

Specific 

capacitance 

(F g-1) 

Rate 

capability 
Cycling Ref. 

N-OMCS 439 288 (1 A g-1) 
66% at  

50 A g-1 

100% 

(20000s) 

Carbon, 2018, 127, 

85-92 

N-CNF 563 202 (1 A g-1) 
82% at  

30 A g-1 

97% 

(3000s) 

ACS Nano 6 (2012) 

7092-7102 

graphene 2582 186 (1 A g-1) 
58% at  

10 A g-1 

93% 

(4000s) 

Adv. Mater. 28 

(2016) 5222-5228 

N-MCS 2095 203 (1 A g-1) 
95% at  

20 A g-1 

100% 

(5000) 

Nat. Commun. 6 

(2015) 7221 

N,S-OMC 1021 167 (1 A g-1) 
60% at  

50 A g-1 

97% 

(1000s) 

J. Mater Chem. A 1 

(2013) 7584-7591 

OMC 781 157 (0.5 A g-1) 
80% at  

6 A g-1 

97% 

(20000s) 

Nanoscale 6 (2014) 

14657-14661 

B-OMC 957 250 (1 A g-1) 
60% at  

5 A g-1 

92% 

(10000s) 

Electrochim Acta 

207 

(2016)266-274 

NPCs 806 323 (1 A g-1) 
54% at 100 

A g-1 
—— 

ACS Sustainable 

Chem. Eng., 2016, 4, 

177-187 

NPC‐F 1375 364 (0.6 A g-1) 
55% at  

10 A g-1 
—— 

Adv. Mater., 2016, 

28, 1981-1987 

HNPCs 3700 289 (0.5 A g-1) 
72% at  

20 A g-1 
—— 

J. Mater. Chem. A, 

2017, 5, 

12958-12968 

GF‐NG 583 380 (0.6 A g-1) 
63% at  

80 A g-1 
—— 

Adv. Mater., 2017, 

29, 1701677 

NGTB 1505 456 (1 A g-1) 
76% at  

50 A g-1 

94.5% 

(3000s) 
This work 
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Table S5. Comparison of the performance of Zn-air batteries with various 

N-doped electrocatalysts. 

 

Catalyst 

Specific 

Capacity 

(mAh gZn
-1) 

Energy 

Density 

(Wh gZn
-1) 

Current density 

(mA cm-2) 
Ref. 

SilkNC/KB 614.7 727.6 20 
Chem. Mater., 2019, 31 

1023-1029 

BRCAC8502 732 ---- 10 
ACS Sustain. Chem. Eng., 

2019, 7, 17039-17046 

NCN@CF2-950 720.5 900 10 
ChemElectroChem, 2019, 6, 

2924-2930 

DCM-1000 815 915.46 50 Carbon, 2019, 145, 38-46 

g-CN-CNF 363 388 10 
Appl. Catal. B: Environ., 

2018, 237, 140-148 

NDGs-800 751 872.3 10 
ACS Energy Lett., 2018, 3, 

1183-1191 

GSC-900 685 817 10 Energy, 2018, 143, 43-55 

NPBC 760 850 5 
Electrochim. Acta, 2017, 257, 

250-258 

DN-CP@G 591 --- 20 
Adv. Energy Mater., 2018, 8, 

1703539 

PAP-NCNCs 728 908 10 
J. Mater. Chem. A, 2017, 5, 

519-523 

NDG 780 --- 50 
ACS Appl. Mater. Interfaces, 

2017, 9, 7125-7130 

BHPC-950 797 963 20 
Adv. Funct. Mater., 2017, 27, 

1701971 

A-EPC-900 669 --- 5 
Chem. Commun, 2015, 51, 

8841-88442 
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NCNF-1000 626 776 10 
Adv Mater, 2016, 28, 

3000-3006 

N-CNF 615 760 10 
Nano Energy, 2015, 11, 

366-376 

HPNSC 804 1007 10 
J. Mater. Chem. A, 2019, 7, 

9831-9836 

NGTB-900 813 1008 10 This work 
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