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Figure S1. (A) N1s high-resolution XPS spectrum of the H-NCTg-2 along with
the corresponding fitting curves; (B) The survey XPS spectrum of the

NGTs-900.

Figure S2. (A, B) SEM images of the freeze-dried H-NGTg samples.
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Figure S3. (A-E) LSV curves and electron transfer numbers (n) for the prepared
GT-900, GTg-900, NGTg-800, -1000 samples and Pt/C with different rotating
rate in O;-saturated 0.1 M KOH solution; (F) Comparison between numbers of

electron transferred per Oz in ORR on different samples.
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Figure S4. Cyclic voltammetry (CV) of GT-900 (A), GTg-900 (B), NGTg-800
(C), NGTB-900 (D), and NGTg-1000 (E) with different scan rates from 10 to
100 mV-s™! in a non-faradic potential range of 1.04~1.14 V vs. RHE in 0. 1 M
KOH solution.
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Figure S5. (A) CV curves of NGTg-900 and Pt/C in O.- or N»-saturated 0.1 M
HCIO; solution; (B) LSV polarization curves and (C) the corresponding Tafel
slope curves of ORR on different samples in O,-saturated 0.1 M HCIO4
solution; (D) LSV curves and electron transfer number (n) of the prepared
NGTg-900 with different rotating rate in O»-saturated 0.1 M HCIO4 solution;

(E) Current-time (i-t) chronoamperometric response of NGTg-900 and Pt/C-JM
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in Oz-saturated 0.1 M HCIO4 at a rotation rate of 1600 rpm on the RDE
electrode; (F) Current-time (i-t) chronoamperometric response of NGTg-900
and Pt/C-JM with the addition of methanol (3 wt %) in O-saturated 0.1 M

HCIO4 sulution at a rotation rate of 1600 rpm on the RDE electrode.

The electrocatalytic performance of the prepared catalysts for ORR was also
evaluated in 0.1 M HClOy4 electrolyte. As shown in Figure 6A, a well-defined
cathodic redox peak can be observed at 0.71 V (vs. RHE) on the NGTg-900 in
Oz-saturated 0.1 M HCIO4 solution, but no evident peak is recorded in
N»-saturated solution, which exhibits the effective ORR activity of NGTg-900
in acidic condition. LSV curves in Figure 6B show that NGTg-900 possesses
superior ORR activity with a half-wave potential of 0.70 V, which is more
positive than those on GT-900 (0.46 V), GTg-900 (0.53 V), NGTg-800 (0.66 V),
NGTg-1000 (0.64 V) and close to that on the commercial Pt/C (0.80 V).
Actually, the electrocatalytic activity of NGTg-900 toward ORR in acidic
solution also shows advantages over the most of N-doped carbon materials
reported in literature.!* In the corresponding Tafel curves (Figure. 6C), Tafel
slope (65 mV dec™!) of ORR on NGT3-900 is smaller than those on GT-900
(118 mV dec!), GTp-900 (106 mV dec'), NGTg-800 (76 mV dec),
NGT5-1000 (83 mV dec!) and Pt/C (67 mV dec™'), indicating a quicker
reaction rate on the NGTg-900. The limit current density of ORR on NGTg-900
increases with the rate of rotation (Figure 6D). The linearly fitted K-L plots
were obtained based on the K-L equation (inset of Figure 6D), illustrating
similar electron transfer mechanism for ORR at the various potentials and a
first-order reaction kinetic relative to the concentration of dissolved Oz. In the
potential range of 0.1-0.5 V, the average numbers (n) of electron transferred is
~3.90, implying that NGTg-900 undergoes a nearly 4e” oxygen reduction
reaction pathway. As demonstrated in Figure 6E, NGTg-900 shows a long-term
durability with 87% retention of initial current density after 20,000 s, which is

superior to that on Pt/C (65% retention of initial current density after 10,000 s).
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The NGTg-900 also shows a good methanol tolerance in acidic solution (Figure
6F), as evidenced by almost no change in the current density after injection of
3% methanol at the time node of 500s, while a remarkable decline (~45%) can
be observed in the current density of ORR on Pt/C electrode, which is resulted

from the toxic effect of methanol.
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Figure S6. The overall polarization curves of NGTg-900 and commercial Pt/C

catalysts in O;-saturated 0.1 M KOH solution for ORR/OER.
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Figure S7. The LSV curves of NGTg-900 for ORR using Hg/HgO or Ag/AgCl

as reference electrode.

The contrast experiments were carried out to investigate the electrocatalytic
activity of NGTg-900 catalyst for ORR using a Hg/HgO as a reference electrode.
As can be seen from Figure S7, the difference of ORR activity on NGTg-900
catalyst using Hg/HgO as reference electrode from that using Ag/AgCl as
reference electrode is negligible in 0.1 M KOH solution. This result confirms

that Ag/AgCl electrode is stable and suitable in alkaline medium.
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Table S1. Analysis of the nitrogen species in N-doped carbon-based metal-free

catalysts reported in the literature.

N functional groups (%) Refs.
Methods
N1 N2 N3 N4
J. Catal. 311 (2014)
CVD (3.1 at.%) 62.0%  38.0% — —
80-87
J. Power Sources 342
ball milling (3.15 at.%) 21.3%  73.1%  5.6% —
(2017) 157-164.
) Carbon 100 (2016)
plasma discharge (4.1 at.%) 10.0% — 73.2% 16.8%
337-344
) Appl. Surf. Sci. 277
arc-discharge (6.5 at.%) 40.0% 46.2% — 13.8%
(2013) 88-93
Int. J. Hydrogen Energy
solvothermal (6.34 at.%) 32.8% 41.9% 25.3% —

39 (2014) 6845-6852
J. Power Sources 227
(2013) 185-190
Sci. Adv. 1 (2015)

wet chemical method (7.65 at.%) 35.4% 39.6% 17.6% 7.4%

thermal annealing (2.9 at.%) 44.8% 13.8% 20.7%  20.7%
¢1400129
) ) Science 351 (2016)
ion sputtering (0.7 at.%) 95.0% — 5.0% —
361-365
this method (3.12 at.%) 84.3% — 15.7% — This work

Notes: NI, Pyridinic-N; N2, Pyrrolic-N; N3, Graphitic-N; N4, Oxidized nitrogen. Figures in

parenthesis refer to the total nitrogen content.

Table S2. The surface element composition of NGTg-n from the XPS analysis.

Element composition (at. %)

Samples
C o] N
NGTs-800 93.76 1.78 4.46
NGTs-900 95.34 1.54 3.12
NGTs-950 97.29 1.03 1.68
NGTs-1000 98.45 0.68 0.87
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Table S3. Comparison of ORR catalytic activity in 0.1 M KOH electrolyte with

recently reported non-precious electrocatalysts in the literature.

Catalysts Electrolyte Eonset Eiz (V) Ref.
NGTs-900 0.1 M KOH 1.06 0.89 This work
Energy Environ. Sci.
NCN-1000-5 0.1 M KOH 0.95 0.82
2019, 12, 322-333
Adv. Energy Mater.
NOGB-800 0.1 M KOH 0.92 0.84
2019, 1803867
Nano Res. 2017, 10(4):
NHC 0.1 M KOH — 0.88
1163-1177
Small 2018, 14(21),
CF-K-A 0.1 M KOH — 0.835
1800563
Nano Energy 49
N-HPCNSs-800 0.1 M KOH 1.00 0.887
(2018) 393-402
Appl. Catal. B-
LHNHPC 0.1 M KOH 0.98 0.86 Environ., 210 (2017)
57-66
Adv. Funct. Mat., 27
NPC-1000 0.1 M KOH 1.02 0.90
(2017) 1606190
Small 2019, 15,
NDCF(Zn)-H2 0.1 M KOH 1.01 0.88
1805325
J Mater Chem A.
NDC-900 0.1 M KOH 0.86 0.76
2017;5(13):6025-6031.
Energy Environ. Sci.
1100-CNS 0.1 M KOH 0.94 0.85
2017;10(3):742-749
Nat. Nanotech.
NPMC-1000 0.1 M KOH 0.94 0.85
2015;10(5):444-452
J. Mater. Chem. A,
NCF-900 0.1 M KOH 1.05 0.89
2018, 6, 7762-7769
Nano Energy 2017, 37,
3D NCNT array 0.1 M KOH 0.93 0.81

98-107
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Table S4. Comparison of the electrochemical performance of the NGTg-900

electrode with performances of previously reported electrodes in 6 M KOH

electrolyte.
Surface Specific
Electrode Rate
) area capacitance . Cycling Ref.
materials - | capability
(m* g™) (Fgh
66% at 100% Carbon, 2018, 127,
N-OMCS 439 288 (1Ag")
50Ag! (20000s) 85-92
82% at 97% ACS Nano 6 (2012)
N-CNF 563 202 (1Agh
30Ag! (3000s) 7092-7102
58% at 93% Adv. Mater. 28
graphene 2582 186 (1A g
10Ag! (4000s) (2016) 5222-5228
95% at 100% Nat. Commun. 6
N-MCS 2095 203 (1Agh
20A ¢! (5000) (2015) 7221
60% at 97% J. Mater Chem. A 1
N,S-OMC 1021 167(1Ag"
50Ag! (1000s) (2013) 7584-7591
80% at 97% Nanoscale 6 (2014)
oMC 781 157 (0.5A¢"
6Ag! (20000s) 14657-14661
Electrochim Acta
60% at 92%
B-OMC 957 250 (1A gh 207
S5Ag! (10000s)
(2016)266-274
ACS Sustainable
54% at 100
NPCs 806 323(1A¢gh Agl —_— Chem. Eng., 2016, 4,
g 177-187
55% at Adv. Mater., 2016,
NPCUF 1375 364 (0.6 Agh) —_—
10Ag! 28, 1981-1987
J. Mater. Chem. A,
72% at
HNPCs 3700 289 (0.5A¢g" —_— 2017, 5,
20A ¢!
12958-12968
63% at Adv. Mater., 2017,
GFING 583 380 (0.6A g —_—
80Ag! 29, 1701677
76% at 94.5%
NGTs 1505 456 (1A g This work
50Ag! (3000s)
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Table S5. Comparison of the performance of Zn-air batteries with various

N-doped electrocatalysts.

Specific Energy ]
) ] Current density
Catalyst Capacity Density Ref.

(mA cm?)
(mAh gz™") (Wh gz™)
Chem. Mater., 2019, 31
SilkNC/KB 614.7 727.6 20
1023-1029
ACS Sustain. Chem. Eng.,
BRCACS8502 732 - 10
2019, 7, 17039-17046
ChemElectroChem, 2019, 6,
NCN@CF2-950 720.5 900 10
2924-2930
DCM-1000 815 915.46 50 Carbon, 2019, 145, 38-46
Appl. Catal. B: Environ.,
g-CN-CNF 363 388 10
2018, 237, 140-148
ACS Energy Lett., 2018, 3,
NDGs-800 751 872.3 10
1183-1191
GSC-900 685 817 10 Energy, 2018, 143, 43-55
Electrochim. Acta, 2017, 257,
NPBC 760 850 5
250-258
Adv. Energy Mater., 2018, 8,
DN-CP@G 591 -—- 20
1703539
J. Mater. Chem. A, 2017, 5,
PAP-NCNCs 728 908 10
519-523
ACS Appl. Mater. Interfaces,
NDG 780 - 50
2017, 9, 7125-7130
Adv. Funct. Mater., 2017, 27,
BHPC-950 797 963 20
1701971
Chem. Commun, 2015, 51,
A-EPC-900 669 - 5

8841-88442
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NCNF-1000

N-CNF

HPNSC

NGTs-900

626

615

804

813

776

760

1007

1008

10

10

10

10

Adv Mater, 2016, 28,
3000-3006

Nano Energy, 2015, 11,
366-376

J. Mater. Chem. A, 2019, 7,
9831-9836

This work
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