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1 Material characterization

2 X-ray diffraction (XPD) data were collected to pass a Rigaku D /max-Ⅲ diffractometer (λ = 1.5406 

3 Å) at a step scan speed of 0.02° over the range of 10°-80°. The catalyst crystal structure data was 

4 analyzed according to the Joint Committee Powder Diffraction Standard (JCPDS). The nitrogen 

5 adsorption/desorption isotherms were measured at 77 K using the Micromeritics Tristar Ⅱ. The 

6 specific surface areas (SBET) of composites were calculated by using Brunauere-Emmette-Teller 

7 (BET) method, meanwhile the pore size distributions were obtained by using 

8 Barrett-Joyner-Halenda (BJH) method. Scanning electron microscopy (SEM) images were taken on 

9 an S-4800 scanning electron microscope (Japan) at 5.0 kV. The images were used to investigate the 

10 internal structure of Fe2P/NPGC-x. Transmission electron microscopy (TEM) images were obtained 

11 on the JEM-2100 electron microscope (JEOL) at 200 kV. X-ray photoelectron spectroscopy (XPS) 

12 tests were conducted on Kratos-AXISUL TRA DLD (Al Kα X-ray source) and the XPS data for 

13 each atom were fitted using the ‘XPS peak’ software. 

14

15 Material electrochemical analysis

16 The ORR performances characterized by cyclic voltammetry (CV), linear sweep voltammetry 

17 (LSV), rotating disk electrode (RDE) and electrochemical impedance spectroscopy (EIS) were 

18 carried out on a CHI 760E electrochemical workstation (Shanghai Chenhua) in a three-electrode 

19 cell connected to a computer. The CV scan was performed in the potential range from −0.8 to +0.3 

20 V at a scan rate of 50 mV s−1 in three-electrode system. The working electrode for CV was a glassy 

21 carbon electrode, which was 0.4 cm in diameter. The catalyst ink for CV test was prepared by 

22 adding 5mg well-dispersed samples into the mixed solution with 100 μm ethanol and 50 μm Nafion 
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1 (5 wt.% solution), then treated ultrasonically for 30 min. 5 μm ink suspension was dropped onto the 

2 glassy carbon electrode and dried in air. LSV tests were carried out by using the cathodes of MFCs 

3 as the working electrode, equipping with 1 cm2 platinum sheet square counter electrode and an SCE 

4 reference electrode. It was measured at a scan rate of 1 mV s−1 on the cathodes of the tested MFCs 

5 with 28 mL of 50 mM PBS. The electrochemical impedance spectroscopy (EIS) was conducted at 

6 the open circuit voltage (Voc) of 10 mV over a wide frequency range from 105 to 10-2 Hz. 

7 ZsimpWin 3.10 software (Echem, Lufkin, TX) to calculate charge transfer resistance (RCT) by using 

8 the EIS data. The polarization and power density curves were acquired by varying the external 

9 resistance from 5000 to 50 Ω. The potassium dichromate oxidation method was used to test the 

10 chemical oxygen demand (COD) of effluents. The coulombic efficiency (CE) was calculated 

11 according to the previously reported method.1

12

13 The rotating disk electrode (RDE) test by changing different rotation rates (from 225 to 2025 rpm, 

14 and scan rate of 5 mV s−1), what in O2-saturated 50 mM PBS electrolyte. RDE test were obtained in 

15 the potential range from +0.6 to 1.0 V (vs Ag/AgCl), that the results according to the Koutecky- 

16 Levich (K-L) plots. Based on the K-L equation to calculate the average number of transferred 

17 electorns (n) from the following Eqs. 1:

18         (1)
1
𝐽 =

1
𝐽𝐾

+
1

0.2𝑛𝐹𝐶𝑂𝐷2/3
0 𝑣 ―1/6ω1/2

19 where j, and jK are the measured current density (mA cm−2), and kinetic current density, 

20 respectively; F is the Faraday constant (96485 C mol−1); CO is the concentration of O2 in PBS (1.2 × 

21 10−6 mol cm−3); DO is the diffusion coefficient of O2 in PBS (1.9 × 10−5 cm2 s−1); v is the kinematic 

22 viscosity of PBS (1.0 × 10−2 cm2 s−1); and ω is the rotation rate of the electrode.2
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1

2 Electrode preparation for MFCs

3 Carbon fiber brush as the anode was washed by acetone and distilled water several times, which 

4 was then heated in air at 450 °C according to the previously reported method.3 The gas diffusion 

5 layer (GDL) of the air cathode was prepared using the rolling method. Carbon black and 60 wt.% 

6 PTFE (mass ratio of 7: 3) were rolled onto stainless steel nets (60 mesh), which was then calcined at 

7 340 °C for 30 min in a muffle furnace to obtain the GDL.4 The catalyst mixed with PTFE (mass 

8 ratio of 2: 1) was uniformly rolled onto the other side of GDL, which was then dried at 80 °C in an 

9 oven. The Fe2P/NPGC-x (750, 800, 850, 900 and 950) were used as the cathodic catalysts by 

10 comparing with the commercial Pt/C (10 wt.%, Hesen Electric Co., Ltd, Shanghai, China) catalyst. 

11 Escherichia coli (E. coli) bacteria are used as the electrogenic bacteria and inoculants to activate the 

12 reactors in our study, which have been already recognized as the efficient bacteria for MFCs.1,3,5

13

14 MFCs configuration and operation

15 The single-chamber reactor (air cathode) was consisted of a cylindrical plexiglas chamber, which 

16 had lengths of 4 cm, diameters of 3 cm and inner volume of approximately 28 mL.6 The titanium 

17 wire was used to connect the two electrodes with external resistance of 1000Ω. Two rubber gaskets 

18 were used to prevent the air into the reactor. The electrolyte composed of phosphate buffered 

19 solution (PBS, pH=7.4), vitamins minerals (5 mL L–1) and trace (12.5 mL L–1) was the same as that 

20 of the previous study.4 All of the reactors were operated at 30 °C. To achieve statistical soundness, 

21 each reactor at least had another two parallel samples. 

22
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1 Electrocatalytic activity of Fe2P/NPGC in neutral solution

2 To evaluate the ORR catalytic activity, CV tests are performed for Fe2P/NPGC-x (750, 800, 850, 

3 900 and 950) and Pt/C catalysts in MFCs. As shown in Figure S7a, no redox peaks can be detected 

4 on CV curve, which may be caused by the limitation of the testing method.6 The highest current 

5 density is still obtained by Fe2P/NPGC-850 (–6.23 mA cm–2), which is higher than those of Pt/C (–

6 5.19 mA cm–2) and other Fe2P/NPGC composites. LSV tests are also conducted to evaluate the 

7 ORR activities of Fe2P/NPGC and Pt/C. As shown in Figure S7b, Fe2P/NPGC-850 has the 

8 maximum current density (−2.5 mA cm−2), which is higher than that of Pt/C (−2.22 mA cm−2), 

9 demonstrating that this catalyst may exhibit a favorably efficient ORR activity in MFCs, consistent 

10 with the results of CV tests. The high ORR catalytic activity is mainly attributed to the rapid capture 

11 and the low resistance transfer of oxygen.5 Through XPS and FT-IR tests, oxygen-containing 

12 functional groups on the catalyst surface are confirmed to be present and enhancing the ability to 

13 capture oxygen in the electrolyte solution.7-9 The SBET tests show that the pore size of the 

14 Fe2P/NPGC-850 catalyst is significantly larger than the diameter of the oxygen molecule, which 

15 enable the transportation of oxygen into the Fe2P/NPGC-850 with hardly any resistance.10 And, the 

16 N-doped structure improve the electronic activity of the outermost layer of adjacent C atoms, that 

17 provide the smooth transmission path for O2.11 Moreover, oxygen is quickly adsorbed to the Fe2P 

18 surface by weakly basic P atoms, and the rapid cleavage of O−O bonds by Fe2+, thus leading to an 

19 increase in the ORR efficiency.12

20

21
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1 Table S1. Nitrogen atomic weight percentage (wt.%) of various chemical states in Fe2P/NPGC-x 

2 (x=700 (a), 750 (b), 800 (c), 850 (d) and 900 (e)).

Samples Pyridinic N Pyrrolic N Graphitic N Total N

Fe2P/NPGC-700 21.29 69.77 8.94 2.13

Fe2P/NPGC-750 43.61 47.42 8.97 3.98

Fe2P/NPGC-800 45.33 46.6 8.07 4.96

Fe2P/NPGC-850 51.3 35.21 13.49 6.53

Fe2P/NPGC-900 56.76 34.23 9.01 5.71

3

4

5
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1 Table S2. Textural property of the Fe2P/NPGC-x (x=700, 750, 800, 850 and 900) composites.

Samples
BET surface area 

(m2 g–1)

Pore volume 

(cm3 g–1)

Average pore width 

(nm)

Fe2P/NPGC-700 16.86 0.03 6.20

Fe2P/NPGC-750 20.18 0.06 7.41

Fe2P/NPGC-800 24.63 0.06 7.60

Fe2P/NPGC-850 33.77 0.07 10.02

Fe2P/NPGC-900 26.85 0.06 8.73

2

3

4

5
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1 Table S3. Summary of performances of various cathode catalysts in MFCs.

Catalysts PMAX (W m−2) Voltage output (V) Operation time (h) References

Fe2P/NPGC-850 1.05 0.535 1440 This work

Co2P/NC-850 0.773 0.145 450 6

Fe/Fe3O4/FeS/NGC-900 0.93 0.59 2160 13

GO-Zn/Co-800 0.972 0.554 2000 14

CA-10KOH 0.967 0.39 500 15

C(N)/MnOx-SP 0.467 0.35 450 16

MOF-800 0.326 0.365 720 17

GF-CoMn2O4/rGO 0.361 0.822 1680 18

Co-Al2O3-rGO 0.548 0.631 720 19

FePc/PID/CNTs 0.799 0.51 700 20

2

3
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1 Table S4. The electrochemical impedance fitting results of Fe2P/NPGC-x (x=700, 750, 800, 

2 850 and 900).

Cathodes R0 (Ω) Rct (Ω)

Fe2P/NPGC-700 3.334±0.4 24.1±0.3

Fe2P/NPGC-750 3.178±0.2 21.3±0.5

Fe2P/NPGC-800 2.954±0.3 18.5±0.3

Fe2P/NPGC-850 1.679±0.2 9.5±0.4

Fe2P/NPGC-900 2.674±0.3 16.6±0.4

Pt/C 2.172±0.2 11.6±0.5

3

4

5
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2 Figure S1. The XPS survey spectra of the Fe2P/NPGC-x (x= 700, 750, 800 and 900).
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3 Figure S2. High resolution XPS spectra of C 1s of Fe2P/NPGC-x (x= 700, 750, 800 and 900).
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3 Figure S3. High resolution XPS spectra of N 1s of Fe2P/NPGC-x (x= 700, 750, 800 and 900).
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3 Figure S4. High resolution XPS spectra of Fe 2p of Fe2P/NPGC-x (x= 700, 750, 800 and 900).
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3 Figure S5. High resolution XPS spectra of P 2p of Fe2P/NPGC-x (x= 700, 750, 800 and 900).
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4 Figure S6. N2 adsorption/desorption isotherms and pore size distributions (inset) for the 

5 Fe2P/NPGC-x (x=700, 750, 800, 850 and 900).
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4 Figure S8. Voltage output of MFCs with the Fe2P/NPGC-x (x=700 (a), 750 (b), 800 (c), 850 

5 (d), and 900 (e)) and Pt/C (f) cathodes.
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