Rare A-Type, Spiro-Type, and Highly Oligomeric Proanthocyanidins from *Pinus massoniana*

Bin Zhou,^{1,†} Yvette Alania,^{3,4} Mariana C. Reis,^{3,4} James B. McAlpine,^{1,2} Ana K. Bedran-Russo,^{2,3,4} Guido F. Pauli,^{1,2} and Shao-Nong Chen^{1,2,*}

¹Department of Pharmaceutical Sciences and ²Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), College of Pharmacy, ³Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA; ⁴Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, USA.

[†]**Present Address**: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China

Table of Contents

Table S1. ¹ H (800 MHz) and ¹³ C NMR (100 MHz) data of $1-3$ in CD ₃ OD
Figure S1. (A) Selected COSY (bold bonds), HMBC, and (B) NOESY correlations (arrows) in 1
Figure S2. The ECD spectra of 2 and 3
EXPERIMENTAL SECTION
General Experimental Procedures
Plant Material
Extraction and Isolation of PACs
Phloroglucinolysis
Compounds properties ³
Figure S3. ¹ H NMR spectrum of 1 in CD ₃ OD (800 MHz, 255 K)
Figure S4. ¹³ C NMR spectrum of 1 in CD ₃ OD (100 MHz, 255 K)
Figure S5. HSQC spectrum of 1 in CD ₃ OD (255 K)
Figure S6. HMBC spectrum of 1 in CD ₃ OD (255 K)
Figure S7. NOESY spectrum of 1 in CD ₃ OD (255 K)11
Figure S7-1. Partially expanded NOESY spectra of 1 with important NOESY correlations
Figure S7-2. Expanded NOESY spectra of 1 with important NOESY correlations
Figure S8. (+)-HRESIMS spectrum of 1
Figure S9. ¹ H NMR spectrum of 2 in CD ₃ OD (800 MHz, 255 K)
Figure S10. Comparison of the ¹ H NMR spectra of 2 in CD ₃ OD at 278 K and 255 K (800 MHz)
Figure S11. ¹³ C NMR spectrum of 2 in CD ₃ OD (100 MHz, 255 K)
Figure S12. $^{1}\text{H}-^{1}\text{HCOSY}$ spectrum of 2 in CD ₃ OD (255 K)
Figure S13. HSQC spectrum of 2 in CD ₃ OD (255 K)
Figure S14. HMBC spectrum of 2 in CD ₃ OD (255 K)
Figure S15. NOESY spectrum of 2 in CD ₃ OD (255 K)
Figure S15-1. Partially expanded NOESY spectra of 2 with important NOESY correlations
Figure S15-2. Expanded NOESY spectra of 2 with important NOESY correlations
Figure S16. (+)-HRESIMS spectrum of 2

Figure S17. ¹ H NMR spectrum of 3 in CD ₃ OD (800 MHz, 278 K)	18
Figure S18. ¹³ C NMR spectrum of 3 in CD ₃ OD (100 MHz, 278 K)	18
Figure S19. $^{1}\text{H}-^{1}\text{HCOSY}$ spectrum of 3 in CD ₃ OD (278 K)	19
Figure S20 . HSQC spectrum of 3 in CD ₃ OD (278 K).	19
Figure S21. HMBC spectrum of 3 in CD ₃ OD (278 K)	20
Figure S22. NOESY spectrum of 3 in CD ₃ OD (278 K)	20
Figure S22-1. Partially expanded NOESY spectra of 3 with important NOESY correlations	21
Figure S22-2. Expanded NOESY spectra of 3 with important NOESY correlations	21
Figure S23. (+)-HRESIMS spectrum of 3	21
Figure S24. Phloroglucinolysis products of 3 identified by chiral phase HPLC and MS analysis	22
Figure S25. Calculation of the purity of 1 by qHNMR using the 100% method	23
Figure S26. Calculation of the purity of 2 by qHNMR using the 100% method	24
Figure S27. Calculation of the purity of 3 by qHNMR using the 100% method	25

TT '4	D.	N	1^{a}		2^a		3^b		TT '4	р.	N	3^b	
Unit	Ring	NO.	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$	Unit	Ring	NO.	$\delta_{\rm H}$, mult (J in Hz)	$\delta_{\rm C}$
Ι	С	2		100.5		99.9		100.0	V	0	2		100.2
		3	3.867, d (4.0)	65.1	3.690, d (3.5)	67.5	4.129, d (3.4)	68.2			3	4.117, d (3.6)	67.6
		4	4.258, d (4.0)	29.7	4.437, d (3.5)	28.9	4.468, d (3.4)	29.4			4	4.227, d (3.6)	29.6
	А	5		155.2		156.9		157.1		М	5		154.1
		6	5.922, d (1.9)	97.3	6.032, d (2.3)	98.0	6.057, d (2.4)	98.2			6		111.0
		7		157.9		157.9		158.0			7		156.7
		8	5.867, d (1.9)	96.1	6.023, d (2.3)	96.2	6.111, d (2.4)	96.6			8	6.076, s	97.5
		9		154.8		154.1		154.1			9		152.1
		10		105.3		104.4		104.2			10		104.0
	В	1'		131.7		131.9		132.5		Ν	1'		132.0
		2'	7.274, d (2.1)	116.1	7.011, d (2.1)	115.2	7.179, d (2.1)	115.5			2'	7.139, d (2.2)	115.5
		3'		145.2		145.0		145.5			3'		145.6
		4'		146.6		146.2		146.6			4'		146.7
		5'	6.764, d (8.2)	115.1	6.713, d (8.2)	115.5	6.837, d (8.2)	115.5			5'	6.815, d (8.3)	115.5
		6'	6.904, dd (8.2, 2.1)	120.3	6.607, dd (8.2, 2.1)	119.4	7.060, dd (8.2, 2.1)	119.7			6'	7.041, dd (8.3, 2.2)	119.8
II	F	2		101.1	5.301, brs	78.7	5.268, s	78.7	VI	R	2	4.781, d (7.7)	85.1
		3	4.216, d (4.3)	68.7	3.944, brs	72.3	4.043, brs	72.3			3	4.192, m	68.2
		4	4.866, d (4.3)	30.4	4.472, brs	38.1	4.739, brs	38.6			4	2.607, dd (-16.2, 8.4)	29.0
	D	5		150.8		157.1		156.4		Р	4	2.996, dd (-16.2, 5.1)	29.0
		6		108.5	5.960, s	95.8	6.126, s	96.1			5		156.2
		7		153.1		151.9		152.2			6	6.136, s	96.6
		8	6.254, s	97.4		106.3		106.8			7		152.1
		9		154.6		152.7		152.3			8		106.4
		10		105.9		105.0		105.6			9		151.2
	Е	1'		131.5		131.5		131.4		Q	10		103.1
		2'	6.982, d (2.2)	115.4	7.210, d (2.1)	116.6	7.157, d (2.1)	116.2			1'		130.0
		3'		145.5		145.8		145.8			2'	6.997, d (2.1)	115.9
		4'		146.6		146.3		146.2			3'		146.2
		5'	6.745, d (8.1)	115.5	6.799, d (8.2)	115.6	6.796, d (8.2)	115.9			4'		146.9
		6'	6.916, dd (8.1, 2.2)	119.7	7.075, dd (8.2, 2.1)	121.4	6.962, dd (8.2, 2.1)	120.7			5'	6.878, d (8.1)	116.8
III	Ι	2	4.964, s	79.7	5.810, s	88.2		100.1			6'	6.924, dd (8.1, 2.1)	121.1
		3	4.279, m	66.9		61.4	4.167, d (3.6)	68.0					

Table S1. ¹H (800 MHz) and ¹³C NMR (100 MHz) data of 1-3 in CD₃OD

		4	2.025, dd (-17.0, 3.5)	23.6		177.0	4.383, d (3.6)	29.8
			2.596, brd (-17.0)	23.6				
	G	5		156.4		154.2		154.6
		6	5.952, s	95.7	5.902, s	96.6		110.5
		7		151.7		158.2		156.8
		8		105.6		106.0	6.076, s	97.4
		9		152.4		162.2		152.1
		10		101.1		106.1		104.4
	Н	1'		132.4		128.5		132.3
		2'	6.437, d (2.2)	113.1	6.411, d (2.2)	113.3	7.163, d (2.2)	115.5
		3'		146.1		145.7		145.6
		4'		145.5		145.8		146.7
		5'	6.432, d (8.1)	115.5	6.629, d (8.3)	115.9	6.827, d (8.3)	115.5
		6'	6.038, dd (8.1, 2.2)	117.6	6.532, dd (8.3, 2.2)	118.3	7.055, dd (8.3, 2.2)	119.7
IV	L	2			4.830, d (6.3)	82.5	5.415, s	79.9
		3			3.973, m	68.7	3.866, brs	72.6
		4			2.676, dd (-16.4, 7.2)	27.6	4.787, brs	38.4
	J				2.857, dd (-16.4, 5.0)	27.6		
		5				158.1		156.7
		6			6.163, s	91.3	6.109, s	96.6
		7				154.5		151.9
		8				104.0		106.2
		9				152.8		152.6
	Κ	10				104.8		106.0
		1'				131.64		130.8
		2'			6.795, d (2.1)	114.0	7.204, d (2.1)	117.1
		3'				145.9		145.5
		4'				146.0		146.5
		5'			6.744, d (8.1)	115.8	6.778, d (8.1)	115.9
		6'			6.677, dd (8.1, 2.1)	119.7	6.935, dd (8.1, 2.1)	121.8

Data were acquired at ^a255 K and ^b278 K.

Figure S1. (A) Selected COSY (bold bonds), HMBC, and (B) NOESY correlations (arrows) in 1

Figure S2. The ECD spectra of 2 and 3

EXPERIMENTAL SECTION

General Experimental Procedures

HRESIMS measurements were carried out using a Bruker (Billerica, MA, USA) Impact II quadrupole time-of-flight (qTOF-) spectrometer. The ECD spectra were acquired on a JASCO-715 spectrometer. Samples for ECD experiments were prepared in MeOH at ≤ 0.1 mg/mL, and a 0.2 cm path length quartz cuvette was used. All ¹H 1D/2D NMR spectra were acquired at 255 K or 278 K on an 800 MHz Bruker (Billerica, MA, USA) Avance spectrometer equipped with a 5 mm triple resonance inverse TCI RT probe. The ¹³C NMR experiments of all compounds were performed on a JEOL (JEOL Resonance, Peabody, MA, USA) ECZ 400 MHz spectrometer. Silica gel (230-400 mesh) was used for column chromatography. C₁₈ reversed-phase (RP-18) silica gel (20-45 µm, MACHEREY-NAGEL, Bethlehem, PA, USA) and Sephadex LH-20 gel (Amersham Biosciences) were used for column chromatography. Pre-coated silica gel GF254 plates (MACHEREY-NAGEL, Bethlehem, PA, USA) were used for TLC monitoring. Semi-preparative HPLC was performed on a Shimadzu HPLC (Kyoto, Japan) connected to a PDA detector (Shimadzu, model SPD-20A) and equipped with a YMC-Pack ODS-AQ ($250 \times 10 \text{ mm}$, $S-5\mu \text{m}$, 120 Å; YMC America, Allentown, USA) or Chiralpak IA (250 \times 10.0 mm, S-5 μ m; Chiral Technologies, West Chester, PA, USA) column. All solvents were of analytical grade from Fisher Scientific (Hanover Park, IL, USA) or Sigma-Aldrich (St. Louis, MO, USA).

Plant Material

Extract powder of the inner bark of *Pinus massoniana* was purchased from Xi'an Chukang Biotechnology in China in 2012 (No. PB120212).

Extraction and Isolation of PACs

12 g of enriched tri- and tetrameric proanthocyanidins, separated into 6.5 g of fraction A and 5.6 g of fraction B, were prepared from 200 g pine bark extract by centrifugal partition chromatography (CPC) as described previously.¹ Both fractions A and B were chromatographed on a Sephadex LH-20 column (ethanol), affording six (A1–A6) and seven subfractions (B1–B7), respectively. Fraction B5 (800 mg) was separated over a RP-18 silica gel column (MeOH/H₂O, 20–80%), and the two major subfractions B5b and B5c were then purified via semi-preparative HPLC (18% ACN in 0.1% formic acid H₂O, 2.5 mL/min) to afford **1** (0.7 mg) and **2** (0.8 mg).

Compound **3** (20 mg) was purified from fraction B7 by semi-preparative HPLC (20% ACN in 0.1% formic acid H₂O, 2.5 mL/min) after enrichment via a RP-18 silica gel column.

Phloroglucinolysis

Phloroglucinolysis was performed as described previously² to corroborate the absolute configuration of **3**. The identity of the reaction products was confirmed by chiral phase HPLC and MS analysis (Figure S24).

Compounds properties³

Pinutwindoublin (1): *ent*-epicatechin- $(2\alpha \rightarrow O \rightarrow 5, 4\alpha \rightarrow 6)$ -*ent*-epicatechin- $(2\alpha \rightarrow O \rightarrow 7, 4\alpha \rightarrow 8)$ -epicatechin: light brown, amorphous solid; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 211 (+21.6), 232 (-20.8), 287 (-0.8) nm; ¹H NMR (Methanol-*d*₄, 800 MHz, 255 K): δ 2.025 (dd, 1H, *J* = 17.0, 3.5 Hz), 2.596 (brd, 1H, *J* = 17.0 Hz), 3.867 (d, 1H, *J* = 4.0 Hz), 4.216 (d, 1H, *J* = 4.3 Hz), 4.258 (d, 1H, *J* = 4.0 Hz), 4.279 (m, 1H), 4.866 (d, 1H, *J* = 4.3 Hz), 4.964 (s, 1H), 5.867 (d, 1H, *J* = 1.9 Hz), 5.922 (d, 1H, *J* = 1.9 Hz), 5.952 (s, 1H), 6.038 (d, 1H, *J* = 8.3 Hz), 6.254 (s, 1H), 6.432 (d, 1H, *J* = 8.1 Hz), 6.437 (d, 1H, *J* = 2.2 Hz), 6.745 (d, 1H, *J* = 8.1 Hz), 6.764 (d, 1H, *J* = 8.2 Hz), 6.904 (dd, 1H, *J* = 8.3, 2.1 Hz), 6.916 (dd, 1H, *J* = 8.1, 2.2 Hz), 6.982 (d, 1H, *J* = 2.1 Hz), 7.274 (d, 1H, *J* = 2.1 Hz). ¹³C{¹H} NMR (Methanol-*d*₄, 100 MHz, 255 K): δ 23.6, 29.7, 30.4, 65.1, 66.9, 68.7, 79.7, 95.7, 96.1, 97.3, 97.4, 100.5, 101.1, 101.1, 105.3, 105.6, 105.9, 108.5, 113.1, 115.1, 115.4, 115.5, 115.5, 116.1, 117.6, 119.7, 120.3, 131.5, 131.7, 132.4, 145.2, 145.5, 145.5, 146.1, 146.6, 146.6, 150.8, 151.7, 152.4, 153.1, 154.6, 154.8, 155.2, 156.4, 157.9; HRMS (ESI) *m*/*z* [M + H]⁺ Calcd for C₄₅H₃₅O₁₈ 863.1818; Found 863.1823.

Pinuspirotetrin (2): Light brown, amorphous solid; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 207 (-3.2), 232 (+9.4), 270 (-0.8); ¹H NMR (Methanol-*d*4, 800 MHz, 255 K): δ 2.676 (dd, 1H, *J* = 16.4, 7.2 Hz), 2.857 (dd, 1H, *J* = 16.4, 5.0 Hz), 3.690 (d, 1H, *J* = 3.5 Hz), 3.944 (brs 1H), 3.973 (m, 1H), 4.437 (d, 1H, *J* = 3.5 Hz), 4.472 (brs, 1H), 4.830 (d, 1H, *J* = 6.3 Hz), 5.301 (brs, 1H), 5.810 (s, 1H), 5.902 (s, 1H), 5.960 (s, 1H), 6.023 (d, 1H, *J* = 2.3 Hz), 6.032 (d, 1H, *J* = 2.5 Hz), 6.163 (s, 1H), 6.629 (d, 1H, *J* = 8.3 Hz), 6.411 (d, 1H, *J* = 2.2 Hz), 6.532 (dd, 1H, *J* = 8.1, 2.3 Hz), 6.607 (dd, 1H, *J* = 8.4, 2.1 Hz), 6.677 (dd, 1H, *J* = 8.2, 2.1 Hz), 6.713 (d, 1H, *J* = 8.2 Hz), 6.744 (d, 1H, *J* = 8.1 Hz), 6.794 (d, 1H, *J* = 2.1 Hz), 6.799 (d, 1H, *J* = 8.2 Hz), 7.011 (d, 1H, *J* = 2.1 Hz), 7.075 (dd, 1H, *J* = 8.2, 2.8 Hz), 7.011 (d, 1H, *J* = 2.1 Hz), 7.210 (d, 1H, *J* = 2.1 Hz). ¹³C{¹H} NMR (Methanol-*d*4, 100 MHz, 255 K): δ 27.6, 28.9,

38.1, 61.4, 67.5, 68.7, 72.3, 78.7, 82.5, 88.2, 91.3, 95.8, 96.2, 96.6, 98.0, 99.9, 104.0, 104.4, 104.8, 105.0, 106.0, 106.1, 106.3, 113.3, 114.0, 115.2, 115.5, 115.6, 115.8, 115.9, 116.6, 118.3, 119.4, 119.7, 121.4, 128.5, 131.5, 131.6, 131.9, 145.0, 145.7, 145.8, 145.8, 145.9, 146.0, 146.2, 146.3, 151.9, 152.7, 152.8, 154.1, 154.2, 154.5, 156.9, 157.1, 157.9, 158.1, 158.2, 162.2, 177.0; HRMS (ESI) *m*/*z* [M + H]⁺ Calcd for C₆₀H₄₅O₂₄, 1149.2295; Found 1149.2291.

epicatechin- $(2\beta \rightarrow O \rightarrow 7, 4\beta \rightarrow 8)$ -epicatechin- $(4\beta \rightarrow 6)$ -epicatechin-Pinumassohexin (3): $(2\beta \rightarrow O \rightarrow 7, 4\beta \rightarrow 8)$ -epicatechin- $(2\beta \rightarrow O \rightarrow 7, 4\beta \rightarrow 8)$ -epicatechin- $(4\beta \rightarrow 6)$ -catechin: light brown, amorphous solid; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 210 (-17.3), 228 (+19.3), 274 (-1.0); ¹H NMR (Methanol- d_4 , 800 MHz, 278 K): δ 2.607 (dd, 1H, J = 16.2, 8.4 Hz), 2.996 (dd, 1H, J = 16.2, 5.1 Hz), 3.886 (brs, 1H), 4.043 (brs, 1H), 4.117 (d, 1H, J = 3.6 Hz), 4.129 (d, 1H, J = 3.4 Hz), 4.167 (d, 1H, J = 3.5 Hz), 4.192 (m, 1H), 4.227 (d, 1H, J = 3.6 Hz), 4.383 (d, 1H, J = 3.6 Hz), 4.468 (d, 1H, J = 3.4 Hz), 4.739 (s, 1H), 4.781 (d, 1H J = 7.7), 4.787 (s, 1H), 5.268 (s, 1H), 5.415 (s, 1H), 6.057 (d, 1H, J = 2.4 Hz), 6.076 (s, 2H), 6.109 (s, 1H), 6.111 (d, 1H, J = 2.4 Hz), 6.126 (s, 1H), 6.136 (s, 1H), 6.778 (d, 1H, J = 8.1), 6.796 (d, 1H, J = 8.2), 6.815 (d, 1H, J = 8.3), 6.827 (d, 1H, J= 8.3), 6.837 (d, 1H, J = 8.2), 6.878 (d, 1H, J = 8.1), 6.924 (dd, 1H, J = 8.2, 2.1), 6.935 (dd, 1H, J= 8.2, 2.1), 6.962 (dd, 1H, J = 8.2, 2.1), 6.997 (d, 1H, J = 2.1), 7.040 (dd, 1H, J = 8.1, 2.3), 7.055 (dd, 1H, J = 8.1, 2.3), 7.060 (dd, 1H, J = 8.2, 2.1), 7.157 (d, 1H, J = 2.1), 7.163 (d, 1H, J = 2.2),7.139 (d, 1H, J = 2.2), 7.179 (d, 1H, J = 2.1), 7.204 (d, 1H, J = 2.1). ¹³C{¹H} NMR (Methanol- d_4 , 100 MHz, 278 K): δ29.0, 29.4, 29.6, 29.8, 38.4, 38.6, 67.6, 68.0, 68.2, 68.2, 72.3, 72.6, 78.7, 79.9, 85.1, 96.1, 96.6, 96.6, 96.6, 97.4, 97.5, 98.2, 100.0, 100.1, 100.2, 103.1, 104.0, 104.2, 104.4, 105.6, 106.0, 106.2, 106.4, 106.8, 110.5, 111.0, 115.5, 115.5, 115.5, 115.5, 115.5, 115.5, 115.9, 115.9, 115.9, 116.2, 116.8, 117.1, 119.7, 119.7, 119.8, 120.7, 121.1, 121.8, 130.0, 130.8, 131.4, 132.0, 132.3, 132.5, 145.5, 145.5, 145.6, 145.6, 145.8, 146.2, 146.2, 146.5, 146.6, 146.7, 146.7, 146.9, 151.2, 151.9, 152.1, 152.1, 152.1, 152.2, 152.3, 152.6, 154.1, 154.1, 154.6, 156.2, 156.4, 156.7, 156.7, 156.8, 157.1, 158.0; HRMS (ESI) m/z [M + H]⁺ Calcd for C₉₀H₆₉O₃₆, 1725.3563; Found 1725.3589.

References

- Phansalkar, R. S.; Nam, J. W.; Chen, S. N.; McAlpine, J. B.; Leme, A. A.; Aydin, B.; Bedran-Russo, A. K.; Pauli, G. F. Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. *J. Chromatogr. A* 2018, 1535, 55–62.
- 2. Zhou, B. Y Alania, M Reis, R. Phansalkar, JW Nam, J McAlpine, SN Chen, A Bedran-Russo, G Pauli. Tri- and Tetrameric Proanthocyanidins with Dentin Bioactivities from *Pinus massoniana*. J. Org. Chem. **2020**, in press, DOI:10.1021/acs.joc.0c00783
- 3. Zhou, B. Y Alania, M Reis, J McAlpine, A Bedran-Russo, G Pauli, SN Chen. Rare A-Type, New Spiro-Type, and Highly Oligomeric Proanthocyanidins from *Pinus massoniana*. *Chemrxiv*, **2020**, 12168168.

Figure S3. ¹H NMR spectrum of 1 in CD₃OD (800 MHz, 255 K)

Figure S5. HSQC spectrum of 1 in CD₃OD (255 K)

Figure S6. HMBC spectrum of 1 in CD₃OD (255 K)

Figure S7-1. Partially expanded NOESY spectra of 1 with important NOESY correlations

Figure S7-2. Expanded NOESY spectra of 1 with important NOESY correlations

Figure S9. ¹H NMR spectrum of 2 in CD₃OD (800 MHz, 255 K)

Figure S10. Comparison of the ¹H NMR spectra of 2 in CD₃OD at 278 K and 255 K (800 MHz)

Figure S11. ¹³C NMR spectrum of 2 in CD₃OD (100 MHz, 255 K)

Figure S12. ¹H–¹HCOSY spectrum of 2 in CD₃OD (255 K)

Figure S13. HSQC spectrum of 2 in CD₃OD (255 K)

Figure S14. HMBC spectrum of 2 in CD₃OD (255 K)

Figure S15. NOESY spectrum of 2 in CD₃OD (255 K)

Figure S15-1. Partially expanded NOESY spectra of 2 with important NOESY correlations

Figure S15-2. Expanded NOESY spectra of 2 with important NOESY correlations

Figure S16. (+)-HRESIMS spectrum of 2

Figure S18. ¹³C NMR spectrum of 3 in CD₃OD (100 MHz, 278 K).

^{160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25} f1 (ppm)

Figure S19. ¹H–¹HCOSY spectrum of **3** in CD₃OD (278 K).

Figure S20. HSQC spectrum of 3 in CD₃OD (278 K).

Figure S21. HMBC spectrum of 3 in CD₃OD (278 K)

Figure S22. NOESY spectrum of 3 in CD₃OD (278 K)

Figure S22-1. Partially expanded NOESY spectra of 3 with important NOESY correlations

Figure S22-2. Expanded NOESY spectra of 3 with important NOESY correlations

Figure S23. (+)-HRESIMS spectrum of 3

Figure S24. Phloroglucinolysis products of **3** identified by chiral phase HPLC and MS analysis

Figure S25. Calculation of the purity of 1 by qHNMR using the 100% method

Quantitative ¹H NMR spectrum (800 MHz, CD₃OD, 255K)

Compound 1						
Composition	Weight%					
Compound 1	88.7					
Rotamers and/or analogues	8.9					
Formic acid	0.9					
Other impurities	1.5					

Quantitative ¹H NMR spectrum (800 MHz, CD₃OD, 255K)

Compound 2	
Composition	Weight%
Compound 2	86.7
Rotamer and/or analogues	12.0
Formic acid	0.1
Other impurities	1.1

Figure S27. Calculation of the purity of 3 by qHNMR using the 100% method

Compound 3						
Composition	Weight%					
Rotamer 1	56.6					
Rotamer 2	22.6					
Rotamer 3	11.3					
Other rotamers and/or analogues	4.5					
Methanol	4.2					
Formic acid	0.3					
Other impurities	0.5					

Three distinct rotamers can be observed