Supporting Information

Secondary Sphere Effects on Porous Polymeric Organocatalysts for

CO₂ Transformations: Subtle Modifications Resulting in Superior

Performance

Yanpei Song,[†] Qi Sun,^{*,‡} Pui Ching Lan,[†] and Shengqian Ma^{*,†} [†]Department of Chemistry, University of South Florida 4202 E Fowler Ave., Tampa, FL 33620 (USA)

[‡]Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 (China)

E-mail: sungichs@zju.edu.cn; sqma@usf.edu

Characterization

The gas adsorption isotherms were collected on the surface area analyzer ASAP 2020. The N₂ sorption isotherms were measured at 77 K using a liquid N₂ bath. IR spectra were recorded on a Nicolet Impact 410 Attenuated Total Reflectance-Fourier transform Infrared (ATR-FTIR) spectrometer. X-ray photoelectron spectroscopy (XPS) spectra were performed on a Thermo ESCALAB 250 with Al K α irradiation at θ =90° for X-ray sources, and the binding energies were calibrated using the C1s peak at 284.9 eV. ¹H NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts are expressed in ppm downfield from TMS at δ =0 ppm, and *J* values are given in Hz. ¹³C (100.5 MHz) cross-polarization magic-angle spinning (CP-MAS) NMR experiments were recorded on a Varian infinity plus 400 spectrometer equipped with a magic-angle spin probe in a 4-mm ZrO₂ rotor. The high-resolution mass spectra (HRMS) were collected on an Agilent 6244 Tof-MS spectrometer and were reported for the molecular ion (M⁺).

Computational Methods

Quantum chemical calculations were performed with the Gaussian 09 C.01 software.^[1] We adopted the density functional theory (DFT) approach for our calculations using the classical B3LYP hybrid density functional^[2,3] with the 6-31G(d)^[4,5] basis set for all the light atoms. Frequency calculations were performed at the B3LYP/6-31G(d) level to ensure that all the geometries in the gas phase (optimized at the same B3LYP/6-31G(d) level) were minimal. Frequency calculations were performed at the B3LYP/6-31G(d) level to ensure that all the reactants, intermediates and products in the gas phase were minima. The transition state search function was used to explore accurate transition state with a single imaginary frequency. Then the intrinsic reaction coordinate (IRC) theory was used to verify that the given transition states were well connected to the desired adjacent minima.

Catalysts	k	(S ⁻¹)	E _a (kJ mol ⁻¹)
	35 ⁰C	0.00090	
PQA-Py-Br	40 °C	0.00146	77.6
	50 ⁰C	0.00359	
	35 ⁰C	0.00388	
PQA- <i>p</i> NH ₂ Py-Br	40 °C	0.00549	55.6
	50 ⁰C	0.01168	
	35 ⁰C	0.00157	
PQA- <i>p</i> N(Me) ₂ Py-Br	40 °C	0.00248	68.0
	50 ⁰C	0.00557	
	35 ⁰C	0.00276	
PQA- <i>p</i> NHCOMePy-Br	40 °C	0.00429	61.0
	50 ⁰C	0.00886	
	35 ⁰C	0.00080	
PQA- <i>p</i> CIPy-Br	40 °C	0.00135	82.6
	50 ⁰C	0.00347	
	35 ⁰C	0.00646	
PQA-oNH ₂ Py-Br	40 °C	0.00833	40.8
	50 ⁰C	0.01350	

Table S1. The pseudo-first-order rate constant k values and the apparent activation energies (E_a) of various polymeric pyridinium salts in the cycloaddition of 1,2-epoxy-3-phenoxypropane and CO₂ derived from the slopes in Figure S20.^[a]

^[a] Reaction conditions: 1,2-epoxy-3-phenoxypropane (1.0 g, 6.7 mmol), catalyst (25 mg), CO₂ (1 atm).

Catalysts (loading)	Temperature (°C)	Time (h)	Yield (%)	TON
PIP-Bn-Cl ¹ (0.75 mmol %)	80	48	89.6	120
COP-222 ² (1.8 mol %)	100	36	91	50
PGDBr-5-2OH ³ (1.9 mol %)	70	8	93	49
Si-PMS ⁴ (0.9 mol%)	110	2	95	106
POM3-IM ⁵ (5 mol%)	120	12	91	182
F-PIL-Br ⁶ (1 mol%)	120	9	97	97
MOP-07 (3 mol %)	100	24	87	29
This work (0.1 mol %)	120	12	99	990

Table S2. Catalytic data over various catalytic materials in the cycloaddition of 1,2-epoxy-3-phenoxypropane and CO₂.

 Sun, Q.; Jin, Y.; Aguila, B.; Meng, X.; Ma, S.; Xiao, F.-S. Porous Ionic Polymers as A Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO₂. *ChemSusChem* 2017, 10, 1160-1165.

 Subramanian, S; Oppenheim, J.; Kim, D.; Nguyen, T. S.; Silo, W. M. H.; Kim, B; Goddard III, W. A; Yavuz, C. T. Catalytic Non-Redox Carbon Dioxide Fixation in Cyclic Carbonates. *Chem* 2019, *5*, 1-11.

 Guo, Z. J.; Jiang, Q.W.; Shi, Y. M.; Li, J.; Yang, X. N.; Hou, W.; Zhou, Y.; Wang, J. Tethering Dual Hydroxyls into Mesoporous Poly(ionic liquid)s for Chemical Fixation of CO₂ at Ambient Conditions: A Combined Experimental and Theoretical Study. *Acs Catal.*, **2017**, *7*, 6770-6780.

4. Wang, J.; Leong, J.; Zhang, Y. Efficient Fixation of CO₂ into Cyclic Carbonates Catalysed by Silicon-Based Main Chain Poly-Imidazolium Salts. *Green Chem.*, **2014**, *16*, 4515-4519.

5. Wang, J.; Sng, W.; Yi, G.; Zhang, Y. Imidazolium Salt-Modified Porous Hypercrosslinked Polymers for Synergistic CO₂ Capture and Conversion. *Chem. Commun.*, **2015**, *51*, 12076-12079.

 Yang, Z.-Z.; Zhao, Y.; Ji, G.; Zhang, H.; Yu, B.; Gao, X.; Liu, Z. Fluoro-Functionalized Polymeric Ionic Liquids: Highly Efficient Catalysts for CO₂ Cycloaddition to Cyclic Carbonates under Mild Conditions. *Green Chem.*, **2014**, *16*, 3724-3728.

 Zhang, N.; Zou, B.; Yang, G.-P.; Yu, B.; Hu, C.-W. Melamine-Based Mesoporous Organic Polymers as Metal-Free Heterogeneous Catalyst: Effect of Hydroxyl on CO₂ Capture and Conversion. *J. CO*₂ *Util.*, **2017**, 22, 9-14.

Pyridinium acids	p $K_{\rm a}$ values
↓ + H H	5.25
NH ₂	9.11
N + N H	9.60
	13.82
CI + N H	3.18
H_2N H_2N H_1	6.82

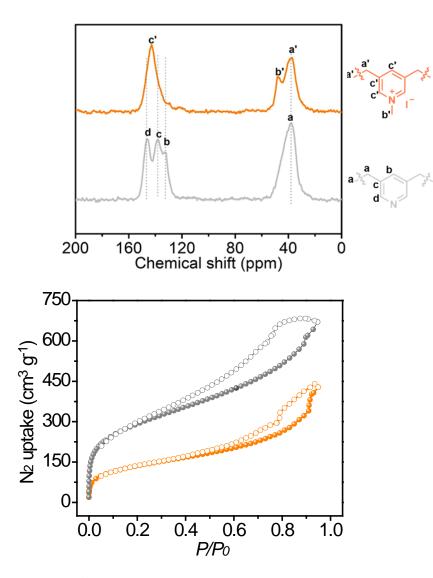
Table S3. pK_a values of various pyridinium acids.

Entry	Epoxides	Products	T (°C)	Time (h)	Yields (%) ^[b]
1	٢	\mathcal{A}	25	72	99
2	\checkmark		50	24	99
3			50	96	84
4			50	120	90
5 ^[b]	cı		70	72	99

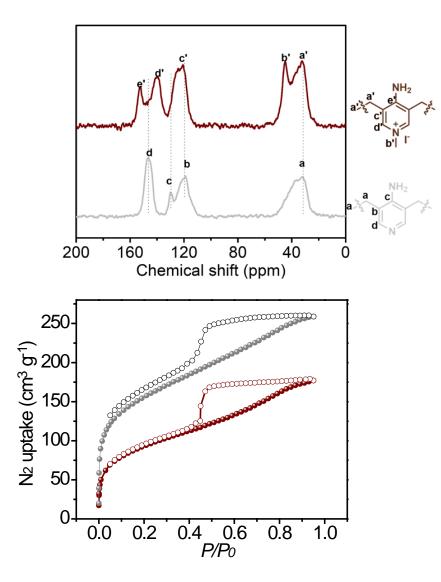
Table S4. PQA-oNH₂Py-Br catalyzed cycloaddition reactions of epoxides with CO₂.^[a]

^[a] Reaction conditions: epoxide (1.0 g), PQA-oNH₂Py-Br (50 mg), CO₂ (1 atm). ^[b] 25 mg of PQA-oNH₂Py-Br was used. ^[c] The yields were determined by ¹H NMR.

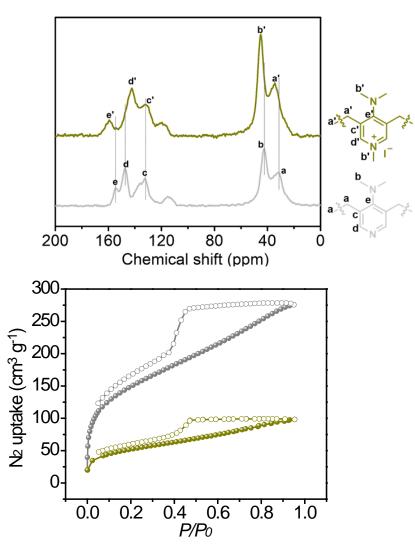
Yield (%)	99	99	99	99	99	98	99	99	98	97
Recycle times	1	2	3	4	5	6	7	8	9	10

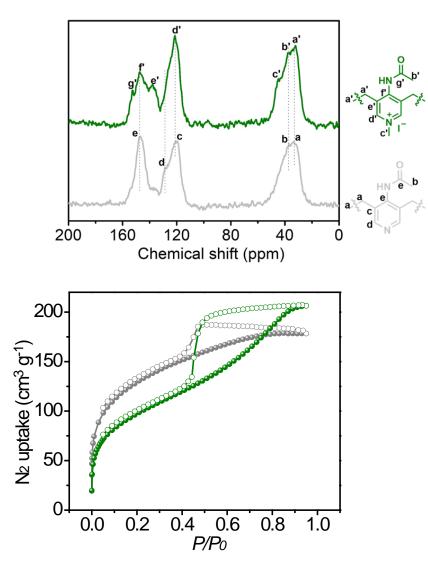

Table S5. Recycling test of PQA-oNH₂Py-Br.^[a]

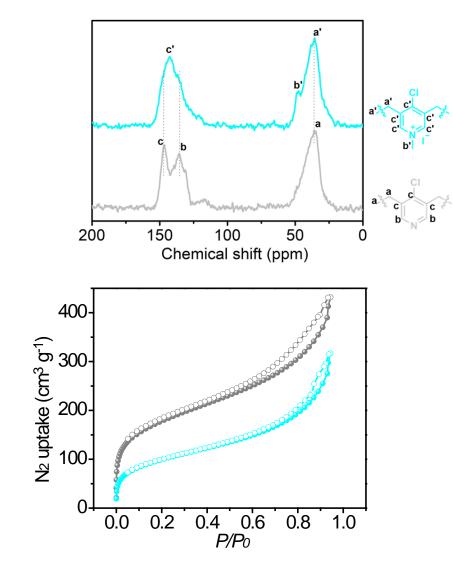
^[a] Reaction conditions: 1,2-epoxy-3-phenoxypropane (1.0 g, 6.7 mmol), PQA-oNH₂Py-Br (25 mg), CO₂ (1 atm), 75 °C, and 72 h. The yields were determined by ¹H NMR.


Table S6. The pseudo-first-order rate constant k values and the apparent activation energies (E_a) of various polymeric pyridinium salts in the cycloaddition of 1-butyl-2-phenyl aziridine and CO₂ derived from the slopes in Figure S26.^[a]

Catalysts	k	(s ⁻¹)	E _a (kJ mol ⁻¹)	
	40 °C	0.01037		
PQA-Py-Br	50 ⁰C	0.01599	37.8	
	60 °C	0.02439		
	40 ⁰C	0.02422		
PQA- <i>p</i> NH ₂ Py-Br	50 ⁰C	0.03592	31.6	
	60 ⁰C	0.05020		
	40 °C	0.01381		
PQA- <i>p</i> N(Me) ₂ Py-Br	50 ⁰C	0.02106	35.4	
	60 ⁰C	0.03130		
	40 °C	0.01845		
PQA- <i>p</i> NHCOMePy-Br	50 °C	0.02797	33.5	
	60 °C	0.04066		
	40 ⁰C	0.00852		
PQA- <i>p</i> CIPy-Br	50 ⁰C	0.01340	40.1	
	60 ⁰C	0.02098		
	40 °C	0.02823		
PQA- <i>o</i> NH₂Py-Br	50 ⁰C	0.04095	27.6	
	60 °C	0.05573		


^[a] Reaction conditions: 1-butyl-2-phenyl aziridine (174.0 mg, 1 mmol), catalyst (25 mg), CO₂ (1 MPa).


Figure S1. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-Py-Br (orange) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 447 m² g⁻¹ and 979 m² g⁻¹, respectively.


Figure S2. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-*p*NH₂Py-Br (brown) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 311 m² g⁻¹ and 536 m² g⁻¹, respectively.

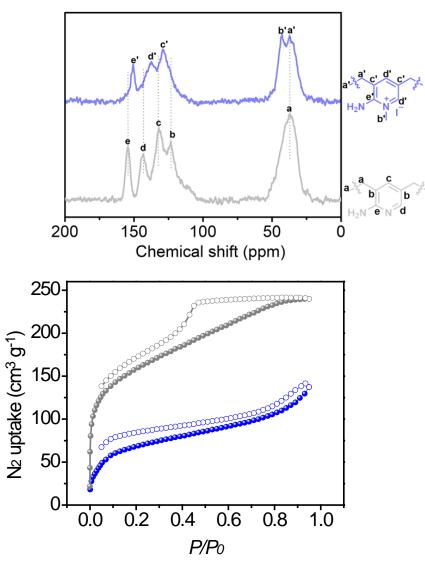

Figure S3. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-*p*N(Me)₂Py-Br (dark yellow) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 223 m² g⁻¹ and 535 m² g⁻¹, respectively.

Figure S4. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-*p*NHCOMePy-Br (green) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 323 m² g⁻¹ and 436 m² g⁻¹, respectively.

Figure S5. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-*p*CIPy-Br (cyan) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 327 m² g⁻¹ and 602 m² g⁻¹, respectively.

Figure S6. Solid-state ¹³C NMR spectra (top) and N₂ sorption isotherms collected at 77 K (bottom) of PQA-*o*NH₂Py-Br (blue) and its corresponding pyridine-based polymer (light gray) with a BET surface area of 315 m² g⁻¹ and 555 m² g⁻¹, respectively.

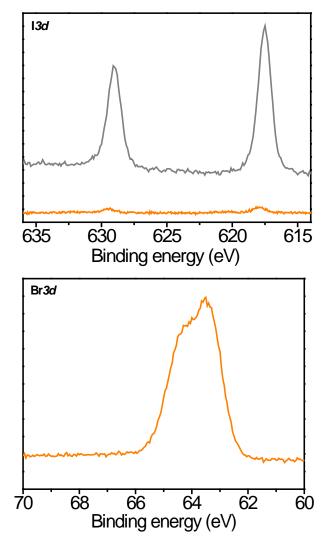


Figure S7. XPS spectra of PQA-Py-I (light gray) and PQA-Py-Br (orange)

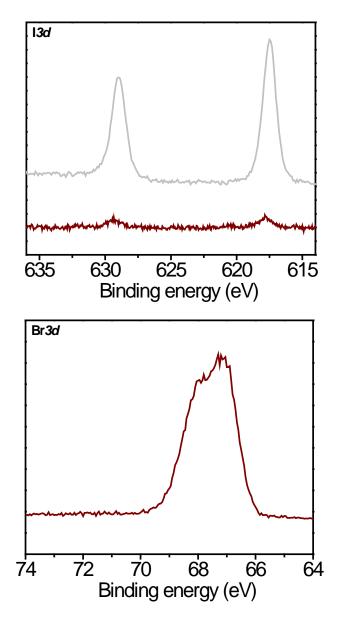
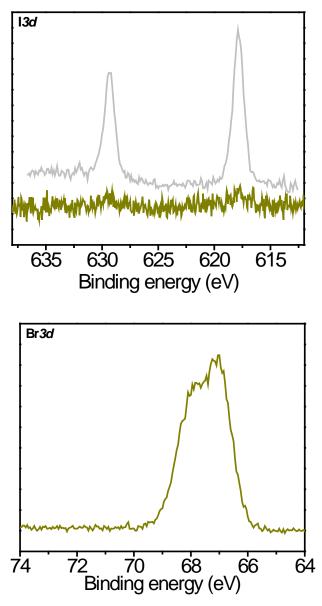
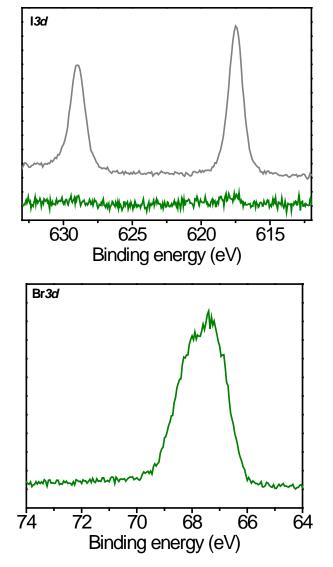




Figure S8. XPS spectra of PQA-*p*NH₂Py-I (light gray) and PQA-*p*NH₂Py-Br (brown)

Figure S9. XPS spectra of PQA-*p*N(Me)₂Py-I (light gray) and PQA-*p*N(Me)₂Py-Br (dark yellow)

Figure S10. XPS spectra of PQA-*p*NHCOMePy-I (light gray) and PQA-*p*NHCOMePy-Br (green)

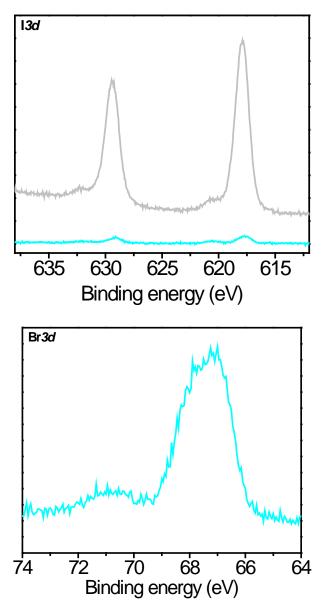


Figure S11. XPS spectra of PQA-*p*CIPy-I (light gray) and PQA-*p*CIPy-Br (cyan)

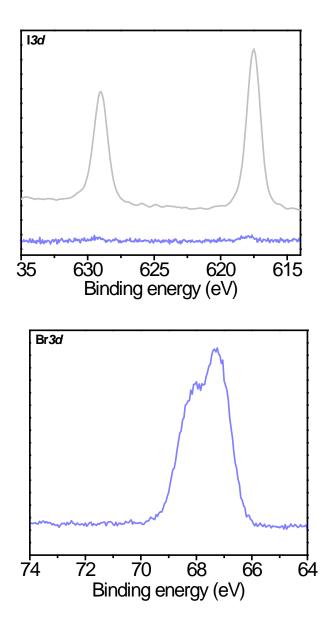


Figure S12. XPS spectra of PQA-oNH₂Py-I (light gray) and PQA-oNH₂Py-Br (blue).

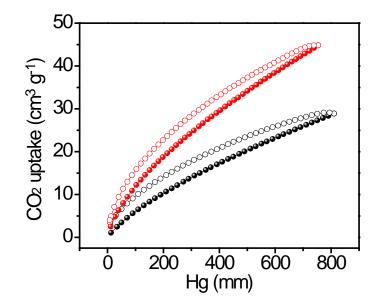
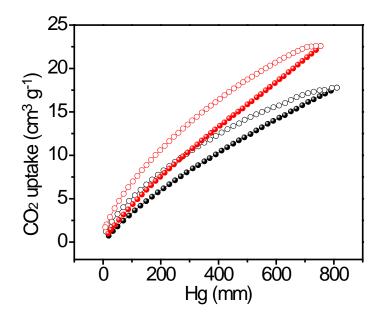
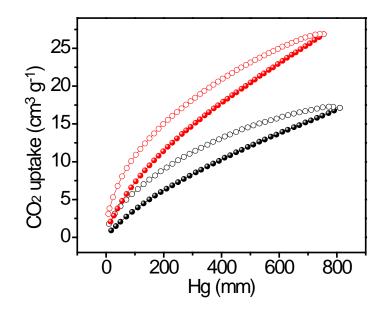
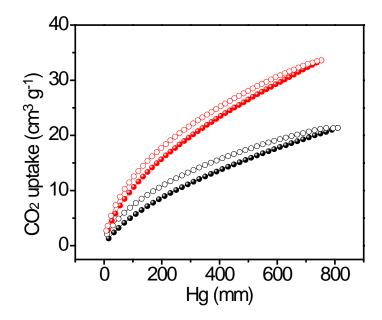
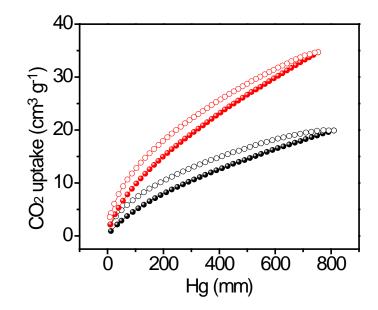
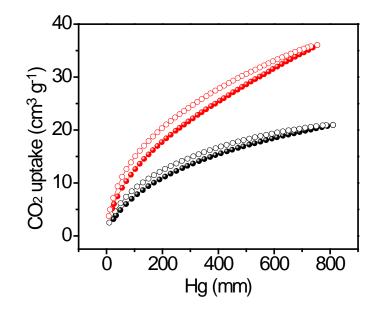
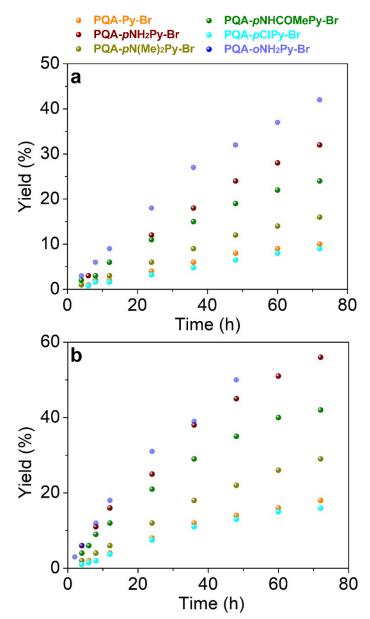




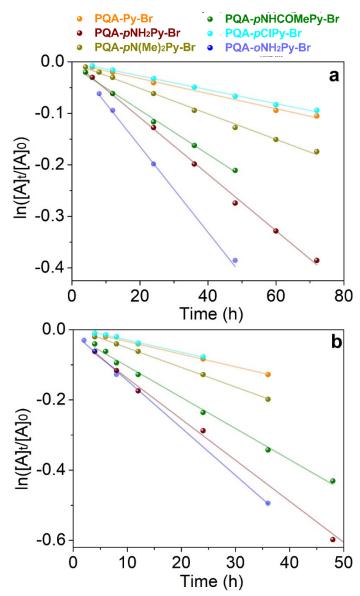
Figure S13. CO₂ sorption isotherms of PQA-Py-Br collected at 0 $^{\circ}$ C (red) and 25 $^{\circ}$ C (black), respectively.

Figure S14. CO₂ sorption isotherms of PQA-*p*NH₂Py-Br collected at 0 °C (red) and 25 °C (black), respectively.

Figure S15. CO₂ sorption isotherms of PQA-*p*N(Me)₂Py-Br collected at 0 °C (red) and 25 °C (black), respectively.


Figure S16. CO₂ sorption isotherms of PQA-*p*NHCOMePy-Br collected at 0 °C (red) and 25 °C (black), respectively.


Figure S17. CO₂ sorption isotherms of PQA-*p*CIPy-Br collected at 0 °C (red) and 25 °C (black), respectively.

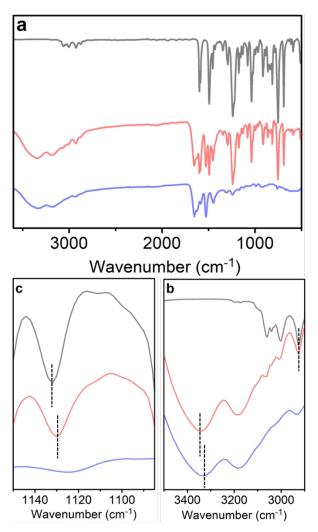
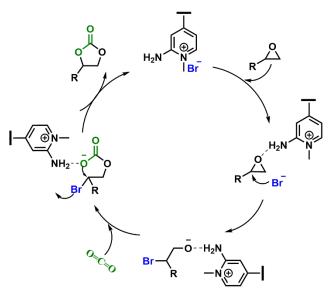
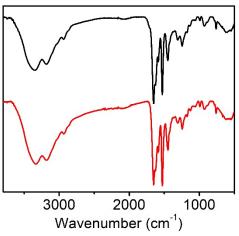
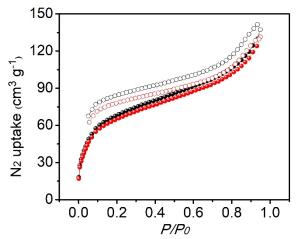
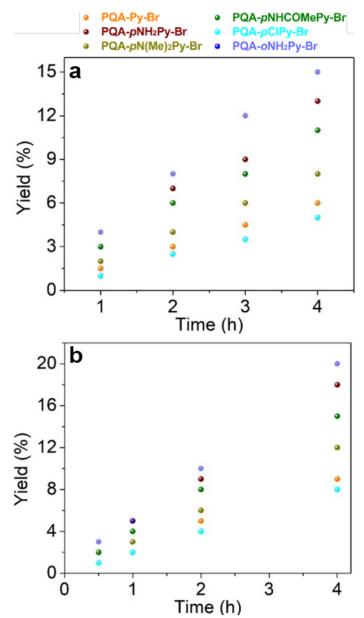

Figure S18. CO₂ sorption isotherms of PQA-*o*NH₂Py-Br collected at 0 °C (red) and 25 °C (black), respectively.

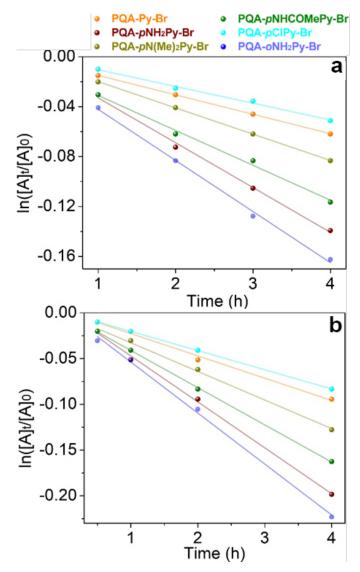
Figure S19. Kinetic rates of carbonate product yields in the cycloaddition of 1,2-epoxy-3-phenoxypropane and CO_2 over various polymeric pyridinium salts at (a) 40 °C and (b) 50 °C.

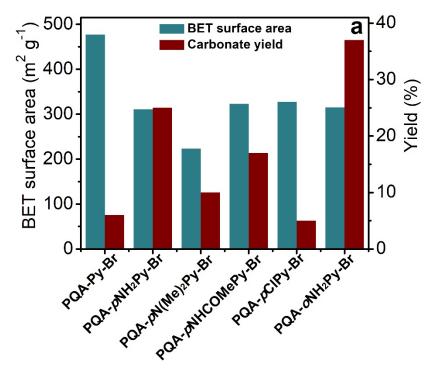
Figure S20. First order reaction rate plots (R^2 >0.99 for all) in the cycloaddition of 1,2-epoxy-3-phenoxypropane and CO₂ over various polymeric pyridinium salts at (a) 40 °C and (b) 50 °C.

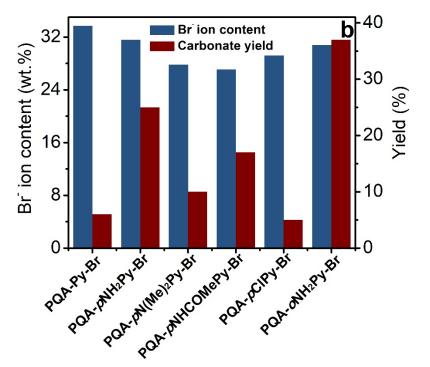
Figure S21. (a) Full scale IR spectra of 1,2-epoxy-3-phenoxypropane (black), PQA-*o*NH₂Py-Br (blue), and composite of well mixed PQA-*o*NH₂Py-Br (0.1 mmol based on the pyridinium moiety) and 1,2-epoxy-3-phenoxypropane (0.1 mmol, red).

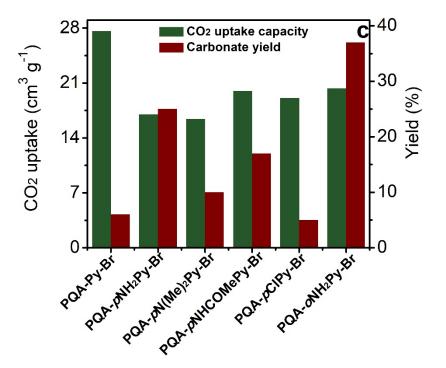




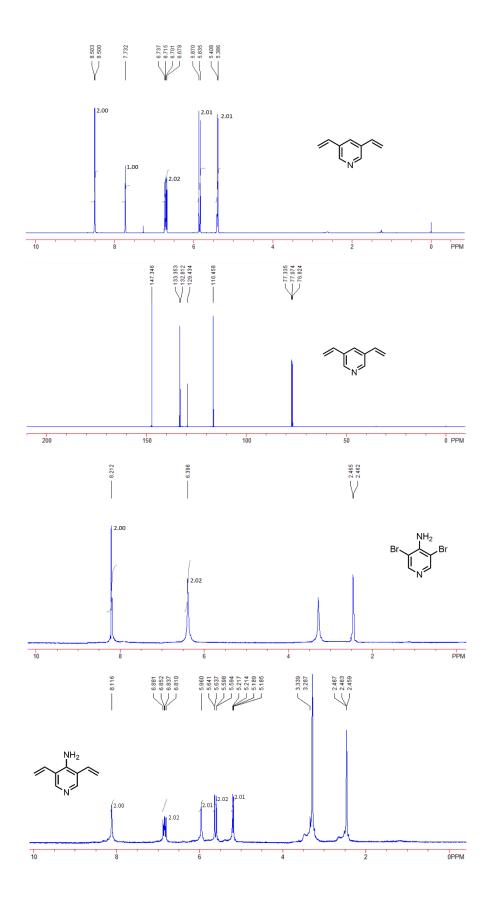

Figure S22. Proposed mechanism for the PQA-NH₂Py-Br catalyzed cycloaddition of epoxides with CO_2

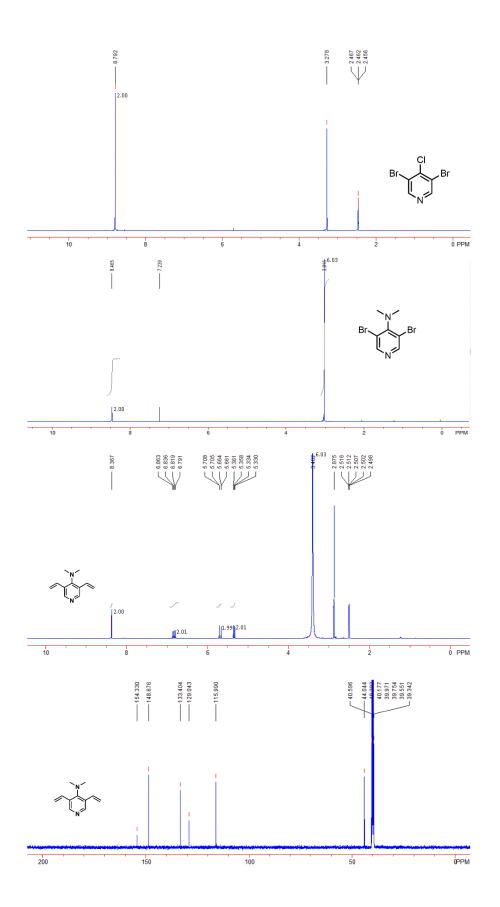

Figure S23. IR spectra of the as-synthesized PQA-*o*NH₂Py-Br (black) and the used PQA-*o*NH₂Py-Br (red).

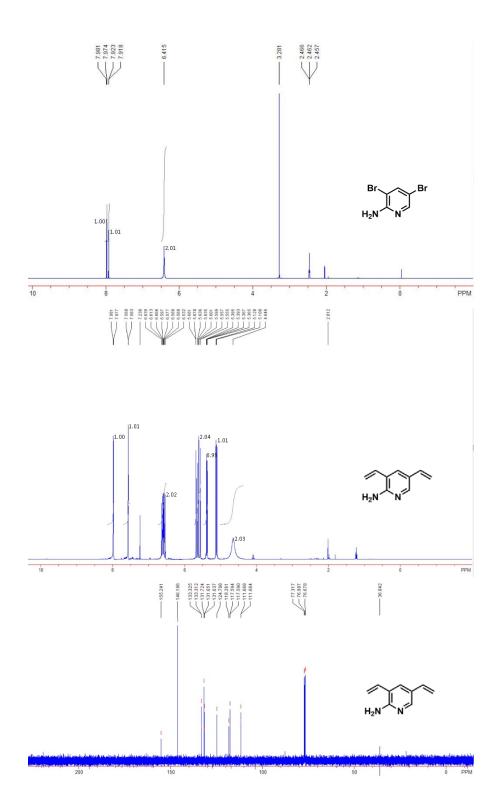

Figure S24. N₂ sorption isotherms collected at 77 K of the as-synthesized PQA-*o*NH₂Py-Br (black) and the used PQA-*o*NH₂Py-Br (red), which validated that the pore structure of PQA-*o*NH₂Py-Br was maintained, giving comparable BET surface areas of 315 m² g⁻¹ and 302 m² g⁻¹, respectively.


Figure S25. Kinetic rates of oxazolidinone product yields in the cycloaddition of 1-butyl-2-phenyl aziridine and CO₂ over various polymeric pyridinium salts at (a) 50 °C, and (b) 60 °C.


Figure S26. First-order reaction rate plots (R²>0.99 for all) in the cycloaddition of 1-butyl-2-phenyl aziridine and CO₂ over various polymeric pyridinium salts at (a) 50 °C, and (b) 60 °C.


Figure S27. The plot of BET surface area of various pyridinium-based porous polymers versus the corresponding carbonate yield in the cycloaddition of CO₂ and 1,2-epoxy-3-phenoxypropane under the conditions listed in Table 1.


Figure S28. The plot of Br⁻ ion content of various pyridinium-based porous polymers versus the corresponding carbonate yield in the cycloaddition of CO₂ and 1,2-epoxy-3-phenoxypropane under the conditions listed in Table 1.


Figure S29. The plot of CO₂ uptake capacity of various pyridinium-based porous polymers versus the corresponding carbonate yield in the cycloaddition of CO₂ and 1,2-epoxy-3-phenoxypropane under the conditions listed in Table 1.

S-36

S-37

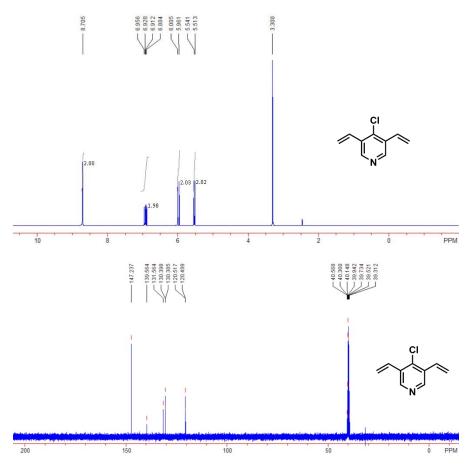
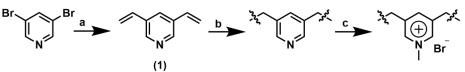
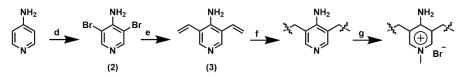



Figure S30. Liquid NMR spectra of various compounds.

Experimental Details

Material synthesis

Synthesis of polymeric pyridinium salt constructed by 1-methylpyridinium bromide moieties (PQA-Py-Br).


Reagents: (a) potassium vinyltrifluoroborate, Pd(PPh₃)₄; (b) AIBN; (c) CH₃I, NaBr **Figure S31.** Synthetic scheme of PQA-Py-Br.

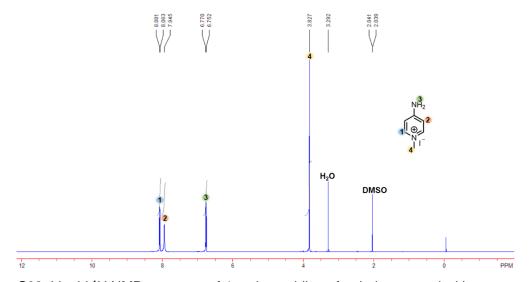
3,5-divinylpyridine (1): 3,5-dibromopyridine (2.5 g, 10.6 mmol), potassium vinyltrifluoroborate (3.38 g, 25.4 mmol), K₂CO₃ (4.15 g, 30.2 mmol), and Pd(PPh₃)₄ (0.31 g, 0.263 mmol) were introduced into a mixture of toluene (25 mL), THF (25 mL), and H₂O (10 mL), and the resulting mixture was refluxed at 90 °C under N₂ atmosphere for 48 h. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (5:1) and 1%v/v triethylamine as eluent to afford the title compound as a colorless liquid. Yield: 1.2 g (86%). ¹H NMR (400 MHz, CDCl₃, 298K, TMS): 8.50 (d, 2H), 7.73 (s, 1H), 6.68-6.74 (m, 2H), 5.85 (d, 2H), 5.40 (d, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298K, TMS) 147.35, 133.35, 132.81, 129.43, 116.46 ppm. HRMS (EI): calcd for C₉H₉N (M⁺) 131.0735, found 131.0734.

Synthesis of pyridine-based porous polymer from 3,5-divinylpyridine: 1 (1.0 g) was dissolved in DMF (10 mL), followed by the addition of free radical initiator azobisisobutyronitrile (AIBN, 25 mg). After being stirred at room temperature to achieve homogeneity, the mixture was transferred into a 20 mL autoclave and maintained at 100 °C for 24 h. A white solid product (1.0 g, 100% yield) was obtained by extracting the DMF with EtOH and drying in a vacuum at 50 °C for 12 h. Elemental analysis: calcd for (C₉H₉N)_n, C (82.41 %), H (6.92 %), N (10.68 %), found C (79.86 %), H (8.43 %), N (9.27 %).

Synthesis of polymeric pyridinium salt constructed by 1-methylpyridinium bromide moieties. The obtained pyridine-based polymer (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a light yellow powder, denoted as PQA-Py-Br. Elemental analysis: calcd for ($C_{10}H_{12}NBr$)_n, C (53.12 %), H (5.35 %), N (6.19 %), Br (35.34 %), found C (51.31 %), H (7.26 %), N (5.75 %), Br (33.7 %).

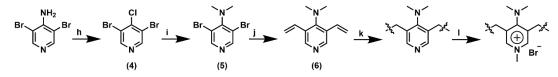
Synthesis of polymeric pyridinium salt constructed by 4-amino-1-methylpyridinium bromide moieties (PQA-*p*NH₂Py-Br).

Reagents: (d) *N*-bromosuccinimide; (e) potassium vinyltrifluoroborate, Pd(PPh₃)₄; (f) AIBN; (g) CH₃I, NaBr **Figure S32.** Synthetic scheme of PQA-*p*NH₂Py-Br.


3,5-dibromopyridin-4-amine (2): To a mixture of 4-aminopyridine (2 g, 21.3 mmol) in carbon tetrachloride (80 mL), *N*-bromosuccinimide (7.57 g, 42.5 mmol) was added in portions. After being stirred at room temperature for 24 h, the product was extracted with chloroform, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (2:1) and 1%v/v triethylamine as eluent to afford the title compound as a yellow powder. Yield: 4.9 g (92%). ¹H NMR (400 MHz, DMSO-d6, 298K, TMS): 8.21 (s, 2H), 6.40 (s, 2H) ppm. HRMS (EI): calcd for C₅H₄N₂Br₂ (M⁺) 249.8741, found 249.8739.

3,5-diviny/pyridin-4-amine (3): 2 (2.5 g, 10 mmol), potassium vinyltrifluoroborate (3.3 g, 24 mmol), K_2CO_3 (4 g, 30 mmol), and Pd(PPh₃)₄ (0.29 g, 0.25 mmol) were dissolved in a mixture of toluene (25 mL), THF (25 mL), and H₂O (10 mL), and the resulting mixture was refluxed at 90 °C under N₂ atmosphere for 48 h. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (5:1) and 1%v/v triethylamine as eluent to afford the title compound as a yellow powder. Yield: 1.3 g (89%). ¹H NMR (400 MHz, DMSO-d6, 298K, TMS): 8.11 (s, 2H), 6.81-6.88 (m, 2H), 5.96 (s, 2H), 5.59-5.64 (m, 2H), 5.19-5.22 (m, 2H) ppm. HRMS (EI): calcd for C₉H₁₀N₂ (M⁺) 146.0844, found 146.0841.

Synthesis of porous polymer constructed by 4-aminepyridine moieties: 3 (1.0 g) was dissolved in DMF (10 mL), followed by the addition of AIBN (25 mg). After being stirred at room temperature to achieve homogeneity, the mixture was transferred into a 20 mL autoclave and maintained at 100 °C for 24 h. A yellow solid product was obtained by extracting the DMF solvent with EtOH and drying in a vacuum at 50 °C for 12 h. Elemental analysis: calcd for $(C_9H_{10}N_2)_n$, C (73.94 %), H (6.89 %), N (19.16 %), found C (71.39 %), H (8.14 %), N (17.87 %).


Synthesis of polymeric pyridinium salt constructed by 4-amino-1-methylpyridinium bromide moieties: The obtained polymeric 4-aminepyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M aqueous NaBr solution three times under ambient conditions (4 h for each run) to afford the title product as a yellow powder denoted as PQA-*p*NH₂Py-Br. Elemental analysis: calcd for (C₁₀H₁₃N₂Br)_n, C (49.81 %), H (5.45 %), N (11.62 %),

Br (33.14 %), found C (48.53 %), H (6.78 %), N (10.21 %), Br (31.60 %).

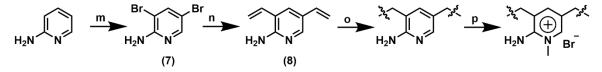
Figure S33. Liquid ¹H NMR spectrum of 4-aminopyridine after being treated with an excess of methyl iodide (CH₃I), indicating that the amine groups could survive under the quaternarization conditions.

Synthesis of polymeric pyridinium salt constructed by 4-(dimethylamino)-1methylpyridinium bromide moieties (PQA-*p*N(Me)₂Py-Br).

Reagents: (h) HCl, NaNO₂; (i) dimethylamine; (j) potassium vinyltrifluoroborate, Pd(PPh₃)₄; (k) AIBN; (i) CH₃I, NaBr **Figure S34.** Synthetic scheme of PQA-*p*N(Me)₂Py-Br.

3,5-dibromo-4-chloropyridine (4): 3,5-dibromopyridin-4-amine (3 g, 12 mmol) was stirred in concentrated HCI (500 mL) with sodium nitrite (3 g, 43.5 mmol) added in portions at 0-5 °C. After 1 h, the temperature was increased to room temperature and stirred for 2 h. Following, 40 wt.% sodium hydroxide was added dropwise, with the temperature kept below 50 °C using an ice bath. After the reaction, the mixture was extracted with ethyl acetate, dried over K_2CO_3 , and evaporated under vacuum to give the title product as white needles. Yield: 2.9 g (90%). ¹H NMR (400 MHz, DMSO-d6, 298K, TMS): 8.79 (s, 2H) ppm. HRMS (EI): calcd for $C_5H_2Br_2CIN$ (M⁺) 268.8243, found 268.8245.

3,5-dibromo(pyridine-4-yI)dimethylamine (5): 4 (2.69 g, 10 mmol) and 33 wt.% aqueous solution of dimethylamine (27 mL, 22 mmol), was heated in a Schlenk tube at 118 °C for 20 h. The reaction mixture was then cooled to room temperature, extracted with ethyl acetate, and washed with 1 M aqueous K_2CO_3 solution and water. The organic layer was dried over MgSO₄ and evaporated under vacuum to give a pale yellow product. Yield: 4.37 g (90%). ¹H NMR (400 MHz, CDCl₃, 298K, TMS):


8.47 (s, 2H), 3.02 (s, 6H) ppm. HRMS (EI): calcd for C₇H₈N₂Br₂ (M⁺) 277.9054, found 277.9052.

3,5-divinyl(pyridine-4-yl)dimethylamine (6): 5 (3.5 g, 13.8 mmol), potassium vinyltrifluoroborate (4.62 g, 33.6 mmol), K₂CO₃ (5.6 g, 42 mmol), and Pd(PPh₃)₄ (0.406 g, 0.35 mmol) were dissolved in a mixture of toluene (30 mL), THF (30 mL), and H₂O (10 mL), and the resulting mixture was refluxed at 90 °C under N₂ atmosphere for 48 h. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (5:1) and 1%v/v triethylamine as eluent to afford the title compound as a yellow powder. Yield: 1.68 g (86%). ¹H NMR (400 MHz, CDCl₃, 298K, TMS): 8.36 (s, 2H), 6.79-6.86 (m, 2H), 5.66-5.71 (m, 2H), 5.33-5.36 (m, 2H), 2.88 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298K, TMS) 154.33, 148.68, 133.40, 129.04, 115.99, 44.04 ppm. HRMS (EI): calcd for C₁₁H₁₄N₂ (M⁺) 174.1157, found 174.1153.

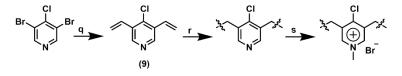
Synthesis of porous polymer constructed by dimethylaminopyridine: 6 (1.0 g) was dissolved in DMF (10 mL), followed by the addition of free radical initiator azobisisobutyronitrile (AIBN, 0.025 g). After being stirred at room temperature to achieve homogeneity, the mixture was transferred into a 20 mL autoclave and maintained at 100 °C for 24 h. A yellow A typical product was obtained by extracting the DMF solvent with EtOH and drying in a vacuum at 50 °C for 12 h. Elemental analysis: calcd for (C₁₁H₁₄N₂)_n, C (75.82 %), H (8.10 %), N (16.08 %), found C (72.79 %), H (9.58 %), N (14.97 %).

Synthesis of polymeric pyridinium salt constructed by 4-(dimethylamino)-1-methylpyridinium bromide moieties: The obtained polymeric dimethylaminopyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M aqueous NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a yellow powder denoted as PQA-*p*N(Me)₂Py-Br. Elemental analysis: calcd for (C₁₂H₁₇N₂Br)_n, C (53.54 %), H (5.35 %), N (10.41 %), Br (29.68 %), found C (51.74 %), H (6.86 %), N (9.23 %), Br (27.8 %).

Synthesis of polymeric pyridinium salt constructed by 2-amino-1-methylpyridinium bromide moieties (PQA-*o*NH₂Py-Br).

Reagents: (m) *N*-bromosuccinimide; (n) potassium vinyltrifluoroborate, Pd(PPh₃)₄; (o) AIBN; (p) CH₃I, NaBr **Figure S35.** Synthetic scheme of PQA-*o*NH₂Py-Br.

3,5-dibromopyridin-2-amine (7): To a mixture of 2-aminopyridine (2 g, 21.3 mmol) in carbon tetrachloride (80 mL), *N*-bromosuccinimide (7.57 g, 42.5 mmol) was added in portions. After being

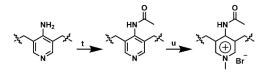

stirred at room temperature for 24 h, the product was extracted with chloroform, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (2:1) and 1%v/v triethylamine as eluent to afford the title compound as a yellow powder. Yield: 4.7 g (88%). ¹H NMR (400 MHz, DMSO-d6, 298K, TMS): 7.98 (d, 1H), 7.92 (d, 1H), 6.42 (s, 2H) ppm. HRMS (EI): calcd for $C_5H_4N_2Br_2$ (M⁺) 249.8741, found 249.8738.

3,5-divinylpyridin-2-amine (8): **7** (2.5 g, 10 mmol), potassium vinyltrifluoroborate (3.3 g, 24 mmol), K_2CO_3 (4 g, 30 mmol), and Pd(PPh₃)₄ (0.29 g, 0.25 mmol) were dissolved in a mixture of toluene (25 mL), THF (25 mL), and H₂O (10 mL), and the resulting mixture was refluxed at 90 °C under N₂ atmosphere for 48 h. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (5:1) and 1%v/v triethylamine as eluent to afford the title compound as a yellow powder. Yield: 1.35 g (92%). ¹H NMR (400 MHz, CDCl₃, 298K, TMS): 7.98 (d, 1H), 7.56 (d, 1H), 6.53-6.64 (m, 2H), 5.56-5.68 (m, 2H), 5.10-5.40 (m, 2H), 4.65 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, 298K, TMS) 155.24, 146.20, 133.33, 131.72, 131.65, 124.80, 118.26, 117.59, 111.66 ppm. HRMS (EI): calcd for C₉H₁₀N₂ (M⁺) 146.0844, found 146.0842.

Synthesis of porous polymer constructed by 2-aminepyridine moieties: 8 (1.0 g) was dissolved in DMF (10 mL), followed by the addition of AIBN (25 mg). After being stirred at room temperature to achieve homogeneity, the mixture was transferred into a 20 mL autoclave and maintained at 100 °C for 24 h. A yellow solid product was obtained by extracting the DMF solvent with EtOH and drying in vacuum at 50 °C for 12 h. Elemental analysis: calcd for $(C_9H_{10}N_2)_n$, C (73.94 %), H (6.89 %), N (19.16 %), found C (71.47 %), H (8.21 %), N (17.95 %).

Synthesis of polymeric pyridinium salt constructed by 2-amino-1-methylpyridinium bromide moieties: The obtained polymeric 2-aminepyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a light yellow powder denoted as PQA-*o*NH₂Py-Br. Elemental analysis: calcd for (C₁₀H₁₃N₂Br)_n, C (49.81 %), H (5.45 %), N (11.62 %), Br (33.14 %), found C (48.25 %), H (7.03 %), N (10.53 %), Br (30.8 %).

Synthesis of polymeric pyridinium salt constructed by 4-chloro-1methylpyridinium bromide moieties (PQA-*p*CIPy-Br).

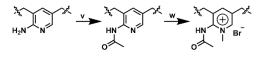

Reagents: (q) potassium vinyltrifluoroborate, Pd(PPh₃)₄; (r) AlBN; (s) CH₃I, NaBr **Figure S36.** Synthetic scheme of PQA-*p*CIPy-Br.

3,5-diviny/pyridin-4-chloro (9): 3,5-dibromo-4-chloropyridine (3.22 g, 12 mmol), potassium vinyltrifluoroborate (3.96 g, 28.8 mmol), K_2CO_3 (4.8 g, 36 mmol), and Pd(PPh_3)₄ (0.348 g, 0.3 mmol) were dissolved in a mixture of toluene (25 mL), THF (25 mL), and H₂O (10 mL), and the resulting mixture was refluxed at 90 °C under N₂ atmosphere for 48 h. The product was extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure, giving the crude compound which was then purified by flash chromatography with hexane/ethyl acetate (5:1) and 1%v/v triethylamine as eluent to afford the title compound as a white powder. Yield: 1.8 g (91%). ¹H NMR (400 MHz, DMSO-d6, 298K, TMS): 8.71 (s, 2H), 6.89-6.96 (m, 2H), 5.59-6.01 (m, 2H), 5.51-5.54 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-d6, 298K, TMS) 147.24, 139.56, 131.56, 130.39, 120.52 ppm. HRMS (EI): calcd for C₉H₈NCI (M⁺) 165.0345, found 165.0342.

Synthesis of porous polymer constructed by 4-chloropyridine moieties: 9 (1.0 g) was dissolved in DMF (10 mL), followed by the addition of AIBN (25 mg). After being stirred at room temperature to achieve homogeneity, the mixture was transferred into a 20 mL autoclave and maintained at 100 °C for 24 h. A white solid product was obtained by extracting the DMF solvent with EtOH and drying in a vacuum at 50 °C for 12 h. Elemental analysis: calcd for (C₉H₈NCl)_n, C (65.27 %), H (4.87 %), N (8.46 %), Cl (21.40 %), found C (63.51 %), H (6.29 %), N (7.14 %), Cl (20.08 %).

Synthesis of polymeric pyridinium salt constructed by 4-chloro-1-methylpyridinium bromide moieties: The obtained polymeric 4-chloropyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a light yellow powder denoted as PQA-*p*CIPy-Br. Elemental analysis: calcd for (C₁₀H₁₁NBrCl)_n, C (46.10 %), H (4.26 %), N (5.38 %), Br (30.67 %), Cl (13.61 %), found C (44.76 %), H (6.35 %), N (4.67 %), Br (29.2 %), Cl (12.57 %).

Synthesis of polymeric pyridinium salt constructed by 4-acetamide-1methylpyridinium bromide moieties (PQA-*p*NHCOMePy-Br).


Reagents: (t) acetyl chloride, K₂CO₃; (u) CH₃I, NaBr **Figure S37.** Synthetic scheme of PQA-*p*NHCOMePy-Br.

Synthesis of porous polymer constructed by 4-acetamidepyridine moieties: The porous polymer constructed by 4-aminepyridine moieties (0.8 g) was swelled in acetone (10 mL), followed by the addition of K₂CO₃ (3.7 g, 26.8 mmol) and acetyl chloride (1.25 g, 13.8 mmol) in acetone (5 mL) at 0 °C. The resulting mixture was then stirred for 12 h, after which water (10 mL) was added. A light yellow

product was collected and washed with water and acetone and drying in vacuum at 50 °C for 12 h. Elemental analysis: calcd for $(C_{11}H_{12}N_2O)_n$, C (70.19 %), H (6.43 %), N (14.88 %), O (8.50 %), found C (68.24%), H (8.16 %), N (13.17%), O (7.41 %).

Synthesis of polymeric pyridinium salt constructed by 4-acetamide-1-methylpyridinium bromide moieties: The obtained polymeric 4-acetamidepyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a light yellow powder. Elemental analysis: calcd for ($C_{12}H_{15}N_2OBr$)_n, C (50.90 %), H (5.34 %), N (9.89 %), O (5.65 %), Br (28.22 %), found C (48.86 %), H (7.48 %), N (8.23 %), O (4.97 %), Br (27.1 %).

Synthesis of polymeric pyridinium salt constructed by 2-acetamide-1methylpyridinium bromide moieties (PQA-*o*NHCOMePy-Br).

Reagents: (v) acetyl chloride, K₂CO₃; (w) CH₃I, NaBr **Figure S38.** Synthetic scheme of PQA-*o*NHCOMePy-Br.

Synthesis of porous polymer constructed by 2-acetamidepyridine moieties: The porous polymer constructed by 2-aminepyridine moieties (0.8 g) was swelled in acetone (10 mL), followed by the addition of K_2CO_3 (3.7 g, 26.8 mmol) and acetyl chloride (1.25 g, 13.8 mmol) in acetone (5 mL) at 0 °C. The resulting mixture was then stirred for 12 h, after which water (10 mL) was added. A light yellow product was collected and washed with water and acetone and drying in vacuum at 50 °C for 12 h. Elemental analysis: calcd for ($C_{11}H_{12}N_2O_{n}$, C (70.19 %), H (6.43 %), N (14.88 %), O (8.50 %), found C (68.32%), H (8.39 %), N (13.14%), O (7.48 %).

Synthesis of polymeric pyridinium salt constructed by 2-acetamide-1-methylpyridinium bromide moieties: The obtained polymeric 2-acetamidepyridine (0.5 g) was swelled in acetonitrile (40 mL), followed by the addition of iodomethane (1 g). The mixture was then stirred and heated to 80 °C for 48 h. The resulting powder was washed with ethanol and then exchanged with 2 M NaBr aqueous solution three times under ambient conditions (4 h for each run) to afford the title product as a light yellow powder. Elemental analysis: calcd for ($C_{12}H_{15}N_2OBr$)_n, C (50.90 %), H (5.34 %), N (9.89 %), O (5.65 %), Br (28.22 %), found C (48.75 %), H (7.32 %), N (8.58 %), O (4.89 %), Br (27.5 %).

Catalytic Tests

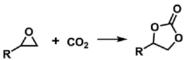


Figure S39. Cycloaddition reactions between epoxides and atmospheric CO₂.

A typical procedure for the cycloaddition reactions between epoxides and atmospheric CO₂: the reactions were carried out in a 10 mL Schlenk flask with a magnetic stirrer. As a typical run, epoxide (1.0 g) and catalyst listed in Table 1 were transferred into the reactor. After sealing and purging with CO_2 using a balloon, the tube was placed in a preheated oil bath and stirred for the desired interval. After the reaction, the catalyst was taken out from the system by centrifugation, and the product was analyzed by ¹H NMR (see Figures S41 and S42). The selectivity of carbonate product is 100%.

A typical procedure for the cycloaddition reactions with high CO₂ pressure: the reactions were carried out in a stainless steel autoclave with a magnetic stirrer. In a typical run, 1,2-epoxy-3-phenoxypropane (3 g, 20 mmol) and PQA-pNH₂Py-Br (4.8 mg, 0.02 mmol Br) were transferred into the autoclave. After sealing and purging with CO₂ to 2.0 MPa, the autoclave was placed in a preheated oil bath and stirred for a certain time. After the reaction, the autoclave was cooled using ice water, and CO₂ was released. The product was analyzed by ¹H NMR.

For recycling, the catalyst was separated from the reaction system by centrifugation and washed with excessive CHCl₃. The resulting polymer was used directly after drying.

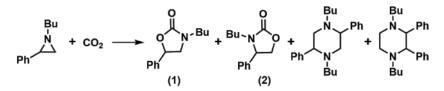
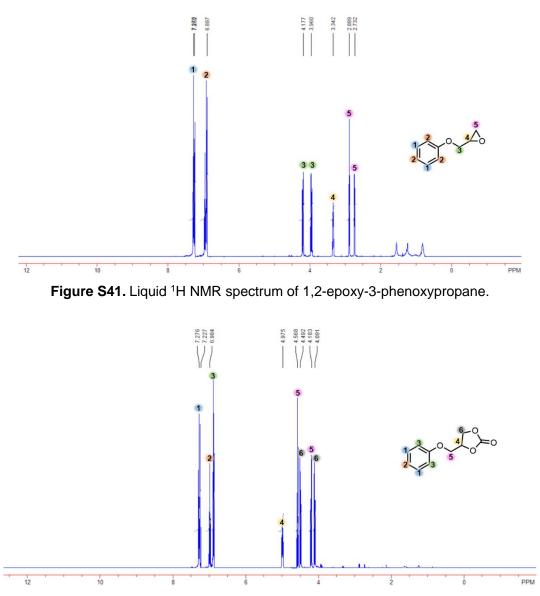
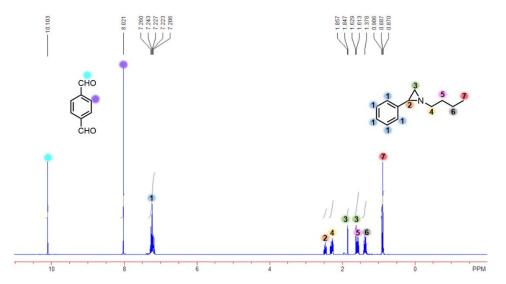




Figure S40. Cycloaddition reactions between aziridines and CO₂.

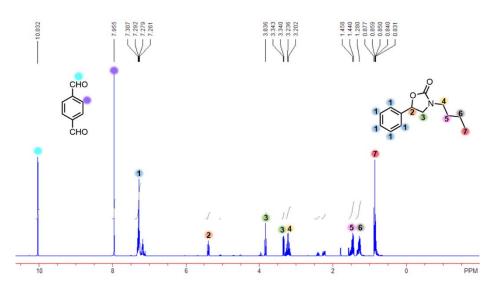

In a typical experimental procedure for coupling of aziridines with CO₂, 1 mmol of 1-butyl-2-phenyl aziridine and 5 mg of catalyst were added into a 7 mL vial. After that, the vial was transferred into a 100 mL stainless steel autoclave, sealed, and purged with CO₂. Following this, the pressure of CO₂ was adjusted to 1 MPa, and the autoclave was placed in a preheated oil bath with stirring for the mentioned time period. On completion of the reaction, the reactor was cooled to room temperature and CO₂ was ejected slowly. The conversion and selectivity of the reactions were determined by ¹H NMR using terephthalaldehyde as an internal standard (see Figures S43 and S44). 5-Aryl-2-oxazolidinone (1) was preferentially formed with chemoselectivity and regioselectivity close to 100% in all cases.

Figure S42. Liquid ¹H NMR spectrum of the carbonate product in the cycloaddition between CO₂ and 1,2-epoxy-3-phenoxypropane. The product yield was determined according to the integration of peaks 4 in Figures S41 and S42.

Figure S43. Liquid ¹H NMR spectrum of 1-butyl-2-phenyl aziridine. The purity was determined by using terephthalaldehyde as an internal standard.

Figure S44. Liquid ¹H NMR spectrum of the oxazolidinone product in the transformation of CO₂ to 1butyl-2-phenyl aziridine. The yield was determined by using terephthalaldehyde as an internal standard, according to the integration of peaks 2 in Figures S43 and S44.

References:

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
- [2] Becke, A. D. Densityfunctional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648-5652.
- [3] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into A Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785-789.
- [4] Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257-2261.
- [5] Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theoret. Chim. Acta* **1973**, *28*, 213-222.