Supporting information ## Label-Free Bimetallic In Situ Grown 3D Nickel Foam Supported NH₂- ## MIL-88B(Fe₂Co)-MOF based Impedimetric Immunosensor for the ## Detection of Cardiac Troponin I Sathyadevi Palanisamy, ¹ Duraisamy Senthil Raja, ² Boopathi Subramani, ³ Tung-Ho Wu, ⁴ and Yun-Ming Wang ^{1,5},* ¹Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan. ²Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. ³Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan. ⁴Division of Cardiovascular Surgery, Department of Surgery and Division of Surgical Critical Care, Department of Critical Care Medicine, Veterans General Hospital, Kaohsiung 813, Taiwan. ⁵Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan. *Corresponding author: Yun-Ming Wang: ymwang@mail.nctu.edu.tw Keywords: metal-organic framework, nickel foam, immunosensor, cardiac troponin I **Figure S1.** SEM image (left) and SEM-EDX obtained from the selected area (right) of NH₂-MIL 88B(Fe₂Co)-MOF/NF with an inset of table of elemental composition. **Figure S2.** The selected SEM image (left) and the area SEM-EDX elemental mapping (right) for C, O, N, Fe, Co and Ni in NH₂-MIL-88B(Fe₂Co)-MOF/NF. **Figure S3.** TEM image and its corresponding TEM-EDX elemental mapping NH₂-MIL-88B(Fe₂Co)-MOF/NF. **Figure S4.** FT-IR spectra of $Fe_2Co(\mu_3-O)(CH_3COO)_6(H_2O)_3Fe_2CoO$ cluster and NH_2 -MIL-88B($Fe_2Co)$ -MOF/NF. **Figure S5.** Equivalent circuit model for the electrochemical impedance cTnI detection. R_s , R_p and R_{ct} , represent the electrolyte, electrode porosity, and charge transfer resistance, respectively, whereas the CPE and C_{dl} represent the constant phase element and double layer capacitance respectively. **Figure S6**. Electrochemical measurements for nickel foam (NF) modified MOF electrode (Ab-NH₂-MIL-88B(Fe₂Co)-MOF/NF). Nyquist plot obtained from EIS measurements. **Figure S7.** Cyclic voltammograms obtained during surface functionalization of electrode with antibody using 10 mM potassium ferricyanide and potassium ferrocyanide as redox couple. **Figure S8.** Cyclic voltammograms obtained during the cyclic voltammetry analysis of varying concentrations of cTnI (0.1 fg/ml - 100 ng/ml) using 10 mM potassium ferricyanide and potassium ferrocyanide as redox couple. Figure S9. Specificity of the MOF electrode in the presence of non-specific BSA (1 mg/ml).