Supporting Information

Dr. E. Wiedenbeck, Prof. Dr. H. Cölfen

Physical Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany, E-Mail: helmut.coelfen@uni-konstanz.de

Prof. Dr. D. Gebauer

Table of Contents

Leibniz University of Hannover, Callinstraße 9, 30167 Hannover, Germany, E-mail: gebauer@acc.uni-hannover.de

Potentiometric Titration Method for the Determination of Solubility Limits and pK_a Values of Weak Organic Acids in Water

Calculation	of		free		hydrogen			on	concentration
Derivation	of	equation			detern	nination	of	crystallized	compound
Stop	titration		experiments		of 	diclofenac 3		and	flurbiprofen
References									
	4	•• ••• ••• ••• •••	• ••• ••• ••• •	•• ••• ••• •••	•• ••• ••• •••	•• ••• ••• •••	••• ••• •••	••• ••• ••• ••• •••	• • • • • • • • • • • • • • • • • • • •

Calculation of free hydrogen ion concentration

The concentration of free hydrogen ions was determined from the pH with the following equation:

$$[H^+] = 10^{-pH} \tag{1}$$

Derivation of equation for the determination of crystallized compound

When the dosing was stopped and the solution was in a supersaturated state with respect to the neutral, protonated compound, the constant pH_1 was recorded and converted with equation (1) to describe the ratio of neutral, protonated compound (AH) and anionic, deprotonated compound (A $^-$) with the mass action law:

$$\frac{[H^+]_1}{K_a} = \frac{[AH]_1}{[A^-]_1} \tag{2}$$

After the addition of seed crystals and sufficient time for crystallization and pH equilibration, the recorded constant pH_2 was utilized to describe this ratio at dissolution equilibrium:

$$\frac{[H^+]_2}{K_a} = \frac{[AH]_2}{[A^-]_2} \tag{3}$$

If we want to combine those two stages with each other, following considerations are necessary: As AH precipitates from solution (n_{cryst}) in the volume V_{tot} when seed crystals are present, the protonated compound concentration [AH]₁ is lowered. Each crystallized compound molecule withdraws one proton from solution [H⁺]_{ex} so the pH increases and lowers [AH]₁ even further:

$$[AH]_2 = [AH]_1 - \frac{n_{cryst}}{v_{tot}} - [H^+]_{ex}$$
 (4)

At the same time the rising pH value increases the concentration of $[A^-]_1$ by the concentration $[H^+]_{ex}$:

$$[A^{-}]_{2} = [A^{-}]_{1} + [H^{+}]_{ex}$$
(5)

If we insert equations (4) and (5) into (3), we receive the following expression:

$$\frac{[H^+]_2}{K_a} = \frac{[AH]_1 - \frac{n_{cryst}}{V_{tot}} - [H^+]_{ex}}{[A^-]_1 + [H^+]_{ex}}$$
(6)

As the amount of protons withdrawn $[H^+]_{ex}$ equals the amount of compound crystallized, we can write the following:

$$\frac{[H^+]_2}{K_a} = \frac{[AH]_1 - 2\frac{n_{cryst}}{V_{tot}}}{[A^-]_1 + \frac{n_{cryst}}{V_{tot}}} \tag{7}$$

Rearrangement of the equation above yields the following equation for the calculation of the amount of crystallized compound in the volume:

$$\frac{n_{cryst}}{v_{tot}} = \frac{[AH]_1 - \frac{[H^+]_2}{K_a} [A^-]_1}{2 + \frac{[H^+]_2}{K_a}}$$
(8)

Stop titration experiments of diclofenac and flurbiprofen

Figure S1. Stop titration experiments of 5 mM diclofenac sodium solution titrated with 8.0 mL of 10 mM diclofenac sodium solution and 1 mM HCl solution with subsequent addition of seed crystals (HD2). Left: pH equilibration of diclofenac after addition of the respective seed crystal powder. Right: Concentration of the neutral, protonated compound and intrinsic solubility limit of diclofenac (HD2) determined by equation (3) and a pK₄ value of 3.99½ with the initial total diclofenac concentration.

Figure S2. Stop titration experiments of 5 mM flurbiprofen sodium solution titrated with 7.0 mL of 10 mM flurbiprofen sodium solution and 1 mM HCl solution with subsequent addition of seed crystals. Left: pH equilibration of flurbiprofen after addition of the respective seed crystal powder. Right: Concentration of the neutral, protonated compound and intrinsic solubility limit of flurbiprofen determined by equation (3) and a p K_a value of 4.35^2 with the initial total flurbiprofen concentration.

References

- (1) Avdeef, A.; Berger, C. M.; Brownell, C., Pharm. Res. 2000, 17 (1), 85-89.
- (2) Ràfols, C.; Rosés, M.; Bosch, E., Anal. Chim. Acta 1997, 338 (1), 127-134.