SUPPORTING INFORMATION

Metabolism of a Bioorthogonal PET Tracer Candidate [¹⁹F/¹⁸F]SiFA-Tetrazine in Mouse Liver Microsomes: Biotransformation Pathways and Defluorination Investigated by UHPLC-HRMS

Sofia Otaru[†]*, Hanna Niemikoski[‡], Mirkka Sarparanta[†], Anu J. Airaksinen^{†,§}*

[†]Radiochemistry, Department of Chemistry, University of Helsinki, Finland

[‡]Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, Finland

[§]Turku PET Centre, Department of Chemistry, University of Turku, 20500 Turku, Finland

*Corresponding author: Sofia Otaru and Anu Airaksinen

Radiochemistry, Department of Chemistry P.O. Box 55, FI-00014 University of Helsinki, Finland. Email: <u>sofia.otaru@helsinki.fi</u>, <u>anu.airaksinen@helsinki.fi</u>

Keywords: defluorination; metabolism; positron emission tomography; silicon fluoride acceptor; tetrazine; geometric isomers

Table of contents

Contents	Page				
Figure S1. Biodistribution of [¹⁸ F]SiFA-Tz and <i>in vivo</i> defluorination	S3				
Table S1. Conditions used for generating in vitro metabolites in MLMs					
Figure S2. MS/HRMS spectrum, mass differences and proposed fragments of SiFA-Tz					
Figure S3. MS/HRMS spectrum, mass differences and proposed fragments of SiFA-H ₂ Tz					
Figure S4. Relative abundances of E- and Z-isomers of SiFA-Tz and SiFA-H ₂ Tz in analytical					
standard, control and <i>in vitro</i> samples.					
Figure S5. Relative abundances of E- and Z-isomers of SiFA-Tz in standard sample	S7				
Table S2. Elemental compositions, theoretical masses, measured masses, mass differences,	S8				
proposed structures and retention times of proposed phase I metabolites of SiFA-Tz					
Table S3. Elemental compositions, theoretical masses, measured masses, mass differences,	S8				
proposed structures and retention times of proposed phase I metabolites of SiFA-H2Tz					
Figure S6. MS/HRMS spectrum and proposed fragments of phase I and phase II metabolites	S9				
of SiFA–H ₂ Tz					
Table S4. Elemental compositions, theoretical masses, measured masses, mass differences,					
proposed structures and retention times of proposed phase II metabolites of SiFA-Tz					
Table S5. Elemental compositions, theoretical masses, measured masses, mass differences,					
proposed structures and retention times of proposed phase II metabolites of SiFA-H2Tz					
Figure S7. Formation of <i>o</i> -glucuronide conjugate metabolites M6 and M8 in MLMs.					
Figure S8. Formation of proposed <i>o</i> -glucuronide conjugate metabolites $M(H_2)5$ and defluorinated $M(H_2)7$.	S12				
Table S6 Theoretical masses retention times biotransformations and major fragments of					
proposed metabolites of SiFA–Tz detected in <i>in vitro</i> samples					
Figure S9. Fragmentation pattern for proposed metabolite $M(H_2)5$ (m/z 703) using HCD 30%					
Figure S10. Fragments formed using MS/HRMS for proposed metabolites M(H ₂)5 using HCD 30%					
Figure S11. MS/MS/HRMS (MS ³) –spectrum and fragmentation pattern of proposed metabolite M6 of SiFA-Tz.					
Figure S12. Extracted ion chromatograms of proposed hydroxylated and o-glucuronidated metabolites $M(H_2)3$ and its defluorinated analogue $M(H_2)4$.					

Biodistribution of [¹⁸F]SiFA-Tz and *in vivo* defluorination.

Figure S1. The biodistribution of [¹⁸F]**SiFA-Tz** (t = 5, 60 and 120 min., n = 2) in healthy CD-1 mice demonstrated rapid clearance from the blood stream, but a rapid and high bone uptake 60 minutes postinjection, attributed presumably to fast metabolism leading to *in vivo* defluorination, was also detected (occ., occipital; S.I, small intestines; L.I, large intestines). The administered dose was 8.8 ± 0.3 MBq (53.1 ± 0.9 nmol, n = 6) of [¹⁸F]**SiFA-Tz**.

Sample	SiFA-Tz	NADPH	UDPGA	MLM	Alamethicin	*Buffer	Time (min)
Phase I	✓	\checkmark		√		√	5, 60, 120, 240
Phase II	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	5, 60, 120, 240
Control 1	~	\checkmark	\checkmark	√	\checkmark	\checkmark	0
Control 2		\checkmark		\checkmark	\checkmark	~	0
Control 3	✓		\checkmark	\checkmark	\checkmark	~	5, 60, 120, 240
Control 4	✓	\checkmark	\checkmark		\checkmark	\checkmark	5, 60, 120, 240

Table S1. Conditions used for generating *in vitro* metabolites in MLMs.

*Buffer = 100 mM Potassium phosphate solution pH 7.4.

MS/HRMS spectrum, mass differences and proposed fragments of SiFA-Tz.

Figure S3. The MS/HRMS-spectrum and proposed fragmentation pattern of (*E*)-SiFA-H₂Tz with assigned proposed fragments using HCD 25%. Diagnostic fragments at m/z 173 and at m/z 248 indicate reduction of the tetrazine ring (Δ ; mass difference in ppm).

Relative abundances of *E*- and *Z*-isomers of SiFA-Tz and SiFA-H₂Tz in analytical standard, control and *in vitro* samples.

Figure S4. Relative abundances of *E*- and *Z*-isomers of **SiFA**–**Tz** and **SiFA**–**H**₂**Tz** in analytical standard, control and *in vitro* samples.

Relative abundances of *E*- and *Z*-isomers of SiFA-Tz in standard sample.

Figure S5. Difference in metabolism speed of isomers.

Table S2. Elemental compositions, theoretical masses, measured masses, mass differences, proposed structures and retention times of proposed phase I metabolites of SiFA–Tz.

Compd.	Formula [M + H] ⁺	Theoretical mass (m/z)	Observed mass (<i>m</i> / <i>z</i>)	Mass difference (ppm)	Proposed structure	$\begin{array}{c c} T_{R} \\ (\min) \end{array}$
SiFA—Tz	$C_{26}H_{34}FN_6O_2Si^+$	509.24911	509.24905 (E) 509.24900 (Z)	0.01860 (E) -0.20865 (Z)		4.64 4.37
M1	C ₂₆ H ₃₄ FN ₆ O ₃ Si ⁺	525.24402	525.24329 (E)	-1.39742		3.68
M2	$C_{26}H_{34}FN_6O_3Si^+$	525.24402	525.24323	-1.51363		3.64
M3	$C_{26}H_{35}N_6O_4Si^+$	523.24836	523.24753	-1.57599		2.58
M4	$C_{26}H_{35}N_6O_5Si^+$	539.24327	539.24237	-1.67413		2.55
M5	$C_{26}H_{35}N_6O_5Si^+$	539.24327	539.24240	-1.61091		2.27

 Table S3. Elemental compositions, theoretical masses, measured masses, mass differences, proposed structures and retention times of proposed phase I metabolites of SiFA-H₂Tz.

Compd.	Formula [M + H] ⁺	Theoretical mass (m/z)	Observed mass (m/z)	Mass difference (npm)	Proposed structure	$T_{\rm R}$ (min)
SiFA-H ₂ Tz	$C_{26}H_{36}FN_6O_2Si^+$	511.26476	511.26478 (E) 511.26478 (Z)	0.04872 (<i>E</i>) 0.04429 (<i>Z</i>)		4.37 / 4.24
M(H ₂)1	$C_{26}H_{36}FN_6O_3Si^+$	527.25967	527.25877	-1.70607		3.86
M(H ₂)2	$C_{26}H_{36}FN_6O_3Si^+$	527.25967	527.25873	-1.77457		3.63
M(H ₂)3	$C_{26}H_{37}N_6O_4Si^+$	525.26401	525.26303	-1.85681		2.83
M(H ₂)4	$C_{26}H_{37}N_6O_4Si^+$	525.26401	525.26305	-1.82880		2.53

Formation of defluorinated metabolite of SiFA–H₂Tz as its proposed geometric E- (M(H₂)3) and Z-isomers (M(H₂)4) incubated in mouse liver microsomes.

Figure S6. The formation of defluorinated metabolite of SiFA–H₂Tz as its proposed geometric E-(M(H₂)3) and Z-isomers (M(H₂)4) (m/z 525.26401) incubated in mouse liver microsomes. The difference in peak areas indicated the *E*-isomer was metabolized further and the *Z*-isomer was more resistant to further biotransformation.

Table S4. Elemental compositions, theoretical masses, measured masses, mass differences, proposed structures and retention times of proposed phase II metabolites of SiFA–Tz.

Compd.	Formula	Theoretical	Observed	Mass	Proposed structure	T _R
	$[M + H]^+$	mass (m/z)	mass (m/z)	difference (ppm)		(min)
SiFA—Tz	C ₂₆ H ₃₄ FN ₆ O ₂ Si ⁺	509.24911	509.24905 (E) 509.24900 (Z)	0.01860 (E) -0.20865 (Z)		4.64 4.37
M6	$C_{32}H_{42}FN_6O_9Si^+$	701.27611	701.27497	-1.62253		3.67
M7	$C_{32}H_{42}FN_6O_9Si^+$	701.27611	701.27492	-1.69332	$\begin{bmatrix} \begin{bmatrix} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & $	3.64
M8	$C_{32}H_{43}N_6O_{10}Si^+$	699.28044	699.28054	0.13626	$\left[\begin{bmatrix} \mathbf{u}_{\mathbf{n}_{i}}^{N} \mathbf{u}_{\mathbf{n}_{i}}$	2.96
M9	$C_{32}H_{43}N_6O_{10}Si^+$	699.28044	699.28039	-0.07358		2.89

Table S5. Elemental compositions, theoretical masses, measured masses, mass differences, proposedstructures and retention times of proposed phase II metabolites of SiFA-H2Tz.

Compd.	Formula	Theoretical	Observed	Mass	Proposed structure	$T_{\rm R}$ (min)
	$[M + H]^+$	mass (m/z)	mass (m/z)	difference		
				(ppm)		
SiFA-H ₂ Tz	$C_{26}H_{36}FN_6O_2Si^+$	511.26476	511.26478 (E)	0.04872 (E)	H*	4.37 /
			511.26478 (Z)	0.04429 (<i>Z</i>)		4.24
M(H ₂)5	$C_{32}H_{44}FN_6O_9Si^+$	703.29176	703.29099	-1.08514		2.73
					$\begin{bmatrix} H_{H_{n}}^{N} \mathcal{A}_{h_{n}}^{O} \mathcal{A}_{h_{n}}^{H} \mathcal{A}_{h_{n}}^{O} \mathcal{A}_{h_{n}}^{H} \mathcal{A}_{h_{n}}^{O} \mathcal{A}_{h_{n}}^{H} \mathcal{A}_{h_{n}}^{O} \mathcal{A}_$	
M(H ₂)6	$C_{32}H_{44}FN_6O_9Si^+$	703.29176	703.29058	-1.68090		2.50
					$\begin{bmatrix} H_{H_{1}}, H_{2}, H$	
M(H ₂)7	$C_{32}H_{45}N_6O_{10}Si^+$	701.29609	701.29471	-1.97998	Р	2.34
					$\begin{bmatrix} H_{H_{1}}^{N}, H_{2}^{O}, H_{1}^{O}, H_{2}^{O}, H_{2}^{\mathsf$	
M(H ₂)8	$C_{32}H_{45}N_6O_{10}Si^+$	701.29609	701.29540	-0.98842	H+	2.20
					$\left \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

Formation of o-glucuronide conjugate metabolites M6 and M8 in MLMs.

Figure S7. Formation of *o*-glucuronide conjugate metabolites **M6** (m/z 701) and defluorinated **M8** (m/z 699) of SiFA–H₂Tz in mouse liver microsomes.

Formation of proposed o-glucuronide conjugate metabolites M(H2)5 and defluorinated M(H2)7.

Figure S8. Formation of *o*-glucuronide conjugate metabolites $M(H_2)5$ (*m*/*z* 703) and defluorinated $M(H_2)7$ (*m*/*z* 701) of SiFA-H₂Tz in mouse liver microsomes.

Table S6. Theoretical masses, retention times, biotransformations and major fragments of proposed metabolites of SiFA–Tz and SiFA- H_2Tz detected in *in vitro* samples.

Compd.	TR	Biotransformation	Observed	Ms^n fragments (<i>m/z</i>)
ID			mass (m/z)	
(E)-SiFA–Tz	4.64	(Parent)	509.24905	491.23733, 454.23086, 351.18915, 322.16241, 264.15716 (75%), 246.09795 (93%), 191.08101,
				171.06609, 116.04928, 88.03925
(Z)-SiFA–Tz	4.37	(Parent)	50924900	454.23352, 351.19031, 264.15821 (63%), 246.09920 (79%), 191.08200, 171.06696, 116.04928
M1	3.68	Hydroxylation	525.24329	451.17084, 396.15384, 354.10693, 246.09856, 191.08153, 171.06651
M2	3.64	Hydroxylation	525.24323	451.17072, 396.15369, 246.09857, 191.08159, 116.04955
M3	2.58	Hydroxylation	523.24753	505.35385, 451.19080, 421.18030, 378.17447, 173.08218
M4	2.55	Dihydroxylation, oxidative defluorination	539.24237	507.76541, 489.86511, 389.63953, 245.94293, 173.09607
M5	2.27	Dihydroxylation, oxidative defluorination	539.24240	521.24384, 448.38474, 418.03268, 332.88428, 353.26602, 263.93127, 191.16951, 173.04382
M6	3.67	Hydroxylation, o-glucuronidation	701.27497	451.16956, 396.15280, 354.10587, 246.09789, 191.08148, 171.06653, 116.04959
M7	3.64	Hydroxylation, o-glucuronidation	701.27492	471.72101, 396.15372, 354.19681, 246.09866, 171.06660, 116.04957
M8	2.96	Hydroxylation, oxidative defluorination,	699.28054	505.63568, 487.14490, 449.18030, 394.15790, 376.14758
		o-glucuronidation		
M9	2.89	Hydroxylation, oxidative defluorination,	699.28039	505.24277, 449.18033, 394.15805, 376.16394
		o-glucuronidation		
(E)-SiFA-	4.36	(Parent)	511.26478	454.23126, 339.18918, 334.19772, 264.15741, 248.11380, 191.08115, 173.08185, 116.054941
H_2Tz				
(Z)-SiFA-	4.24	(Parent)	511.26478	334.19742, 264.15717, 248.11362, 173.08174
H_2Tz				
M(H ₂)1	3.86	Hydroxylation	527.25877	509.24899, 453.18646, 424.17252, 396.15378, 351.15625, 248.11424, 173.08220, 118.06523
M(H ₂)2	3.63	Hydroxylation	527.25873	509.24936, 453.18643, 423.17606, 380.17004, 248.84013
M(H ₂)3	2.83	Hydroxylation, oxidative defluorination	525.26303	451.19073, 422.17967, 394.15814, 323.15738, 173.08214
M(H ₂)4	2.53	Hydroxylation, oxidative defluorination	525.26305	507.36029, 451.19086, 421.18027, 378.17444, 351.16339, 248.11417, 173.08214
M(H ₂)5	2.73	Hydroxylation, o-glucuronidation	703.29099	527.25964, 509.24911, 453.18649, 424.17252, 396.15381, 248.11435, 173.08217, 118.06525
M(H ₂)6	2.50	Hydroxylation, o-glucuronidation	703.29058	527.25909, 509.24902, 453.18649, 423.17590, 396.27402, 380.17004, 173.08212
M(H ₂)7	2.34	Hydroxylation, oxidative defluorination,	701.29471	525.24188, 507.23177, 451.16901, 396.15213, 394.15677, 352.11020, 248.49008, 173.08167
		o-glucuronidation		
M(H ₂)8	2.20	Hydroxylation, oxidative defluorination,	701.29540	525.24243, 507.23135, 451.16916, 396.15231, 349.13953, 248.11385, 173.08191
		o-glucuronidation		

Figure S9. MS^2 -fragmentation patterns for proposed metabolites $M(H_2)1$, $M(H_2)3$ $M(H_2)5$, and $M(H_2)7$ of SiFA-H₂Tz demonstrating similar fragmentation patterns. (A; $M(H_2)1$ 527.2596 using HCD 20%, B; $M(H_2)5$ 703.2197 using HCD 10%, C; $M(H_2)3$ 525.2640 using HCD 25%, D; $M(H_2)7$ 701.2960 using HCD 20%). Fragments at *m/z* 248 and at *m/z* 173 indicated compound SiFA-H₂Tz was subject to no metabolism at tetrazine ring. The *tert*-butyl group adjacent to silicon was apparently hydroxylated and subsequently *o*-glucuronidated. Fragments at *m/z* 507 and at *m/z* 509 from phase I metabolites $M(H_2)3$ and $M(H_2)1$ respectively, indicated the cleavage of water (-18 Da). In addition, the cleavage of the glucuronic acid from $M(H_2)3$ (*m/z* 703) was detected as a fragment with *m/z* 527. The fragments *m/z* 451 from $M(H_2)3$ and $M(H_2)7$ and *m/z* 453 from $M(H_2)1$ and $M(H_2)5$ were diagnostic fragments verifying the position of *o*-glucuronide at the *tert*-butyl group, by their simultaneous cleavage from the structure.

Fragmentation pattern for proposed metabolite M(H₂)5 (*m/z* 703) using HCD 30%

Figure S10. Fragments formed using MS/HRMS for proposed metabolite $M(H_2)5$ (*m/z* 703) using HCD 30% of SiFA–H₂Tz demonstrating characteristic fragments at *m/z* 527, *m/z* 509, *m/z* 453, *m/z* 248 and *m/z* 173.

MS/MS/HRMS (MS³)-spectrum and fragmentation pattern of proposed metabolite M6 of SiFA-Tz.

Figure S11. Fragmentation pattern of proposed metabolite M6 (m/z 701.27497, $t_R = 3.67$ min) at m/z 451 using HCD 25% (Δ ; mass difference in ppm).

Extracted ion chromatograms of proposed hydroxylated and *o*-glucuronidated metabolites M(H₂)3 and its defluorinated analogue M(H₂)4.

Figure S12. Proposed metabolites of SiFA–H₂Tz. EICs of hydroxylated and *o*-glucuronidated metabolite A) $M(H_2)3$ (*m*/*z* 703) and B) its defluorinated analogue $M(H_2)4$ (*m*/*z* 701). The difference in the retention time between the two metabolites $M(H_2)3$ and $M(H_2)4$ is due to the lipophilicity difference of OH and F. Additionally the pairs of peaks indicate presence of analogous (*E*/*Z*)-isomers. Both *E*- and *Z*-isomers ($M(H_2)4$ *E*-isomer 85 ± 2%, $M(H_2)3$ *E*-isomer 82 ± 1%) were detected in phase II *in vitro* samples.