Supporting Information

$\mathbf{R h}($ III $)$-Catalyzed $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ Acetoxylation of 8-Methylquinolines

You-Ke Chen, Yan-Shang Kang, Hua-Jin Xu, Ping Zhang, Jing Zhao, Tiantian Li, Wei-Yin Sun, Yi
Lu*
Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.

E-mail:.luyi@nju.edu.cn

Table of contents

1. General Information S3
2. Experimental Section. S3
2.1 General Procedure for the Preparation of the Substrates S3
2.2 Optimization Studies S4
2.3 General Procedure for Rh (III)-Catalyzed $\mathrm{C}-\mathrm{H}$ Acetoxylation. S7
2.4 Gram-Scale Synthesis S7
2.5 Mechanism Study S8
2.5.1 Catalytic Activity of Five-Membered Rhodacycle S8
2.5.2 Intermolecular Kinetic Isotope Effects in the Acetoxylation Reaction S12
2.5.3 Parallel Kinetic Isotope Effects in the Acetoxylation Reaction S13
2.5.4 The Effect of $\mathrm{Ac}_{2} \mathrm{O}$ on the Reaction S15
3. References S15
4. Characterization of Substrate 11 and Acetoxylation Products S16
5. NMR Spectra for Substrates 11 and Acetoxylation Products S23

1. General Information

All the commercially available chemicals and solvents were used without further purification. Anhydrous solvents were prepared according to standard methods. Reagents used to prepare the substrates were purchased from Sigma-Aldrich, Alfa, TCI and J\&K. $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ was synthesised according to the literature. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-DRX (500 MHz and 125 MHz , respectively) instruments internally referenced to chloroform sigals. High Resolution Mass Spectra were recorded at the Center For Mass Spectrometry, Nanjing University.

2. Experimental Section

2.1 General Procedure for the Preparation of the Substrates

The substrates $\mathbf{1 b} \mathbf{- q}$ were prepared according to the literature. ${ }^{2}$
Synthesis to 11: Glycerin ($1.1 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise over a period 30 minutes to a solution of 3-iodo-2-methylaniline ($2.3 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{NaI}(20 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 80% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(5.5 \mathrm{~g}, 3.18 \mathrm{ml})$ at $140{ }^{\circ} \mathrm{C}$. The mixture was then heated at $145{ }^{\circ} \mathrm{C}$ for 3.5 h while distilling the water formed during this period. Upon cooling to room temperature, the dark solution was carefully poured into ice (10 g) and then neutralized with $25 \% \mathrm{NaOH}(10.9$ $\mathrm{g}, 6.9 \mathrm{mmol}$) to basic $\mathrm{pH} 8-11$. The mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$), and then dried with anhydrous sodium sulfate. After ethyl acetate was removed, the residue was purified by flash column chromatography on silica gel to give the 7-iodo-8-methylquinoline (2.3g, 85\%).

8 -methylquinoline- d_{3} was prepared according to the literature. ${ }^{3}$
The substrates $\mathbf{1 p}, \mathbf{1 s}$ were prepared according to the literature. ${ }^{4}$

2.2 Optimization Studies

Table S1. Selected observations from initial screening of the amount of $\mathrm{PhI}(\mathrm{OAc})_{2}{ }^{a, b}$

 1a	$\xrightarrow[\begin{array}{c} \operatorname{Phl}(\mathrm{OAc})_{2}, \mathrm{Ac}_{2} \mathrm{O} \\ \mathrm{DCE}, 100^{\circ} \mathrm{C}, \mathrm{~N}_{2}, 12 \mathrm{~h} \end{array}]{\left[\mathrm{RhCp}^{*}(\mathrm{MCN})_{3}\left(\mathrm{SF}_{6}\right)_{2}\right.}$	 3a
Entry	$\mathrm{Phl}(\mathrm{OAc})_{2}$	Yield ${ }^{\text {b }}$
1	0.15 mmol	36\%
2	0.30 mmol	43\%
3	0.45 mmol	60\%

${ }^{a}$ Conditions: 1a $(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10 \mathrm{~mol} \%), \mathrm{Ac}_{2} \mathrm{O}(1.6 \mathrm{mmol})$, and DCE (2 ml) under $\mathrm{N}_{2}, 12$ $\mathrm{h}, 100{ }^{\circ} \mathrm{C}$. ${ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5-trimethoxybenzene as an internal standard.

Table S2. Selected observations from initial screening of catalyst system ${ }^{a, b}$

Entry	[M]	Yield ${ }^{\text {b }}$
1	[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	NR
2	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}+\mathrm{AgSbF}_{6}$	58\%
3	$\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$	60\%
$4^{\text {c }}$	$\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$	NR
$5^{\text {d }}$	-------	NR

${ }^{a}$ Conditions: 1a $(0.1 \mathrm{mmol}), \mathrm{M}(10 \mathrm{~mol} \%), \mathrm{Ac}_{2} \mathrm{O}(1.6 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(0.45 \mathrm{mmol})$ and $\mathrm{DCE}(2 \mathrm{ml})$ under $\mathrm{N}_{2}, 12$ $\mathrm{h}, 100{ }^{\circ} \mathrm{C}$. ${ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ without $\mathrm{PhI}(\mathrm{OAc})_{2 .}{ }^{d}$ without Rh catalysts.

Table S3. Selected observations from initial screening of temperature ${ }^{a, b}$

 1a		
Entry	Temp. (${ }^{\circ} \mathrm{C}$)	Yield ${ }^{\text {b }}$
1	60	18\%
2	80	57\%
3	100	60\%
4	120	50\%

 DCE (2 ml) under $\mathrm{N}_{2}, 12 \mathrm{~h} .{ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5trimethoxybenzene as an internal standard.

Table S4. Selected observations from initial screening of time ${ }^{a, b}$

Entry	Time (h)	Yield b
1	1	38%
2	3	74%
3	6	93%
4	9	93%

${ }^{a}$ Conditions: 1a $(0.1 \mathrm{mmol})$, $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10 \mathrm{~mol} \%), \mathrm{Ac}_{2} \mathrm{O}(1.6 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(0.45 \mathrm{mmol})$ and DME (2 ml) under $\mathrm{N}_{2}, 100{ }^{\circ} \mathrm{C} .{ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5trimethoxybenzene as an internal standard.

Table S5. Selected observations from initial screening of acid-anhydride ${ }^{a, b}$

 1a		 3a
Entry	Acid anhydride	Yield ${ }^{\text {b }}$
1	Trimethylacetic anhydride	48\%
2	Isobutyric anhydride	46\%
3	$\mathrm{Ac}_{2} \mathrm{O}$	93\%

${ }^{a}$ Conditions: $1 \mathbf{a}(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(\mathrm{~S})$, Acid anhydride $(1.6 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(0.45 \mathrm{mmol})$ and DME (2 ml) under $\mathrm{N}_{2}, 100^{\circ} \mathrm{C}, 6 \mathrm{~h} .{ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5trimethoxybenzene as an internal standard.

Table S6. Selected observations from initial screening of the amount of $\mathrm{Ac}_{2} \mathrm{O}^{a, b}$

 1a		 3a
Entry	$\mathrm{Ac}_{2} \mathrm{O}$	Yield ${ }^{\text {b }}$
1	-----	24\%
2	0.1 mmol	45\%
3	0.2 mmol	93\%
4	0.3 mmol	87\%
5	0.4 mmol	75\%

${ }^{a}$ Conditions: 1a $(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(10 \mathrm{~mol} \%), \mathrm{PhI}(\mathrm{OAc})_{2}(0.45 \mathrm{mmol})$ and $\mathrm{DME}(2 \mathrm{ml})$ under $\mathrm{N}_{2}, 100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h} .{ }^{b}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product using 1,3,5-trimethoxybenzene as an internal standard.

2.3 General Procedure for $\mathbf{R h}($ III $)$-Catalyzed $\mathbf{C}-H$ Acetoxylation

To a 25 ml Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{mmol})$, $\mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$ and dry DME (2.0 ml) under N_{2} atmosphere. The tube was capped, and then submerged into a pre-heated $100^{\circ} \mathrm{C}$ heating mantle for 6 h . After cooled to room temperature, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo to afford crude product, which was purified by flash column chromatography on silica gel to give the pure product.

2.4 Gram-Scale Synthesis

To a 350 ml Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $1 \mathbf{1 a}(1.001 \mathrm{~g}, 7 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(560 \mathrm{mg}, 0.7 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(14 \mathrm{mmol})$, $\mathrm{PhI}(\mathrm{OAc})_{2}(10 \mathrm{~g}, 31.5 \mathrm{mmol})$ and dry $\mathrm{DME}(45 \mathrm{ml})$ under N_{2} atmosphere. The tube was capped, and submerged into a pre-heated $100^{\circ} \mathrm{C}$ oil for 6 h . After cooled to room temperature, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo to afford crude product, which was purified by flash column chromatography on silica gel with a gradient eluent of petroleum ether/ethyl acetate ($5 / 1$) to give the pure product $\mathbf{3 a}(1.267 \mathrm{~g}, 90 \%)$.

2.5 Mechanism Study

2.5.1 Catalytic Activity of Five-Membered Rhodacycle

To a 25 ml Schlenk-type sealed tube equipped with a magnetic strring bar was added the substrate $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{A}(4.2 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{AgSbF}_{6}(6.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.2$ $\mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$, and dry DME (2 ml) under N_{2} atmosphere. The tube was capped, and then submerged into a pre-heated $100^{\circ} \mathrm{C}$ heating mantle for 6 h . After cooled to room temperature, the reaction mixture was filtered through a pad of Celite, which was purified by flash column chromatography on silica gel to give 92% disired product.

Preparation of Intermediate A: ${ }^{5}$

To a 25 ml Schlenk-type sealed tube equipped with a magnetic strring bar was added the substrate 8 -methyl-quinoline ($85.9 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(18.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 5.0$ $\mathrm{mol} \%$), $\mathrm{NaOAc}(24.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ under N_{2} atmosphere. The tube was capped, and then submerged into a pre-heated $80^{\circ} \mathrm{C}$ heating mantle overnight. After cooled to room temperature, the reaction mixture was filtered through a pad of Celite, which was purified by flash column chromatography on silica gel (petroleum ether: $E A=1: 2$).

Intermediate A
Orange-red solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95\left(\mathrm{dd}, J_{I}=J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.09\left(\mathrm{dd}, J_{I}=J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63$ (dd, $J_{l}=5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37\left(\mathrm{dd}, J_{l}=2.5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.97\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=12.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.63(\mathrm{~s}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,151.7$, $151.4,136.6,130.0,128.7,128.0,123.0,122.0,93.9,93.8,33.7,33.5,9.15$.

Crystallographic Data for Intermediate A

General Procedure for Crystal Preparation: Compound A (around 30 mg) was dissolved in trichloromethane (1 ml) and the vial was capped with an open-top cap. The single crystals were grown in the vial via slow evaporation of solvents at room temperature.

Figure S1 Crystal structure of Compound \mathbf{A} with displacement ellipsoids drawn at the 50% probability level

X-ray Structure Determination of A:

Crystallographic data for A was collected on a Bruker Smart Apex II CCD area-detector diffractometer with graphite-monochromated $\mathrm{Mo}_{\mathrm{Ka}}$ radiation (1 $1 / 40.71073 \AA$) at 296 (2) K using the u-scan technique. The diffraction data were integrated using the SAINT program, ${ }^{6}$ which was also used for the intensity corrections for the Lorentz and polarization effects. Semiempirical absorption correction was applied using the SADABS program. ${ }^{7}$ The structures were solved by direct methods, and all nonhydrogen atoms were refined anisotropically on F^{2} by the fullmatrix least-squares technique using the SHELXL-2018 crystallographic software package. The hydrogen atoms were generated geometrically and refined isotropically using the riding model. Crystal data and experimental details of the structure determination are listed in Table S7 and S8.

CCDC 978941 contains the supplementary crystallographic data for this crystall. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table S7 Crystal data and structure refinements for \mathbf{A}

Formula	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNRh}$
Formula weight	415.75
T (K)	296(2)
Crystal system	Orthorhombic
Space group	Pna2 ${ }_{1}$
$a(\AA)$	15.2959(16)
$b(\AA)$	8.5347(8)
$c(\AA)$	13.7129(13)
$V\left(\AA^{3}\right)$	1790.2(3)
Z	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.543
$\mu\left(\mathrm{mm}^{-1}\right)$	1.102
$F(000)$	848
θ for data collection (${ }^{\circ}$)	2.733-27.513
Reflections collected	14961
Unique reflections	4082
Goodness-of-fit on F^{2}	1.001
$R_{1}{ }^{\text {a }}[1>2 \sigma(I)]$	0.0390
$w R_{2}{ }^{\mathrm{b}}[\mathrm{I}>2 \sigma(I)]$	0.1204
$R_{1}{ }^{\text {a }}$ [all data]	0.0465
$w R_{2}{ }^{\text {b }}$ [all data]	0.1304

Table S8 Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for Intermediate \mathbf{A}

$\mathrm{Rh}(1)-\mathrm{N}(1)$	$2.082(7)$	$\mathrm{Rh}(1)-\mathrm{C}(19)$	$2.109(8)$
$\mathrm{Rh}(1)-\mathrm{C}(10)$	$2.132(8)$	$\mathrm{Rh}(1)-\mathrm{C}(20)$	$2.164(8)$
$\mathrm{Rh}(1)-\mathrm{C}(16)$	$2.169(6)$	$\mathrm{Rh}(1)-\mathrm{C}(18)$	$2.231(7)$
$\mathrm{Rh}(1)-\mathrm{C}(17)$	$2.240(7)$	$\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$2.415(2)$
$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(19)$	$99.2(3)$	$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(10)$	$79.8(3)$
$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{C}(10)$	$108.9(4)$	$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(20)$	$131.9(3)$
$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{C}(20)$	$38.8(3)$	$\mathrm{C}(10)-\mathrm{Rh}(1)-\mathrm{C}(20)$	$92.3(4)$
$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(16)$	$161.6(3)$	$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{C}(16)$	$64.5(3)$
$\mathrm{C}(10)-\mathrm{Rh}(1)-\mathrm{C}(16)$	$112.6(3)$	$\mathrm{C}(20)-\mathrm{Rh}(1)-\mathrm{C}(16)$	$38.5(3)$
$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(18)$	$99.4(3)$	$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{C}(18)$	$38.7(4)$
$\mathrm{C}(10)-\mathrm{Rh}(1)-\mathrm{C}(18)$	$147.4(3)$	$\mathrm{C}(20)-\mathrm{Rh}(1)-\mathrm{C}(18)$	$63.7(3)$
$\mathrm{C}(16)-\mathrm{Rh}(1)-\mathrm{C}(18)$	$62.7(3)$	$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$128.5(3)$
$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$63.3(4)$	$\mathrm{C}(10)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$150.5(3)$
$\mathrm{C}(20)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$63.4(3)$	$\mathrm{C}(16)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$37.9(3)$
$\mathrm{C}(18)-\mathrm{Rh}(1)-\mathrm{C}(17)$	$36.1(3)$	$\mathrm{N}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$92.91(19)$
$\mathrm{C}(19)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$161.0(3)$	$\mathrm{C}(10)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$87.6(3)$
$\mathrm{C}(20)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$134.4(3)$	$\mathrm{C}(16)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$100.8(2)$
$\mathrm{C}(18)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$124.9(2)$	$\mathrm{C}(17)-\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$97.7(3)$

2.5.2 Intermolecular Kinetic Isotope Effects in the Acetoxylation Reaction

To a 25 ml Schlenk-type sealed tube equipped with a magnetic strring bar was added the substrate $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{1 a - \mathbf { d } _ { 3 }}(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$, and dry DME (2 ml) under N_{2} atmosphere. The tube was capped, and then submerged into a pre-heated $100{ }^{\circ} \mathrm{C}$ heating mantle for 40 minutes. After cooled to room temperature, the reaction mixture was filtered through a pad of Celite, which was purified by flash column chromatography on silica gel to give 18% mixed products. The ratio was $K_{H}: K_{D}=4.3$ determined by ${ }^{1} \mathrm{H}$ NMR spectrum.

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2.5.3 Parallel Kinetic Isotope Effects in the Acetoxylation Reaction

To a 25 ml Schlenk-type sealed tube equipped with a magnetic strring bar was added the substrate $\mathbf{1 a}(0.1 \mathrm{mmol})$ or $\mathbf{1 a - d _ { 3 }}(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$, and dry DME (2 ml) under N_{2} atmosphere. The tube was capped, and the reaction mixture was submerged into a pre-heated $100^{\circ} \mathrm{C}$ heating mantle for the indicated time. After cooled to room temperature, the reaction mixture was filtered through a pad of Celite, The filtrate was concentrated in vacuo. The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as the internal standard. For $3 \mathrm{a}, \mathrm{y}=0.742 \mathrm{x}+6.431, \mathrm{R}^{2}=0.9963 ; 3 \mathrm{a}-\mathrm{d}_{3}, \mathrm{y}=0.275 \mathrm{x}+1.901, \mathrm{R}^{2}=0.9987$. KIE value (2.7) was determined by comparing the relative initial rates.

2.5.3 H-D Exchange Studies

To a 25 ml Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $\mathbf{1 a}(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{mmol})$, $\mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$, $\mathrm{AcOD}(1 \mathrm{mmol})$ and dry DME (2 ml) under N_{2} atmosphere. The tube was capped, and the reaction mixture was submerged into a pre-heated $100^{\circ} \mathrm{C}$ heating mantle for 1 h . After cooled to room temperature, the reaction mixture was filtered through a pad of Celite, no deuterated substrate or product was detected.

2.5.4 The Effect of $\mathrm{Ac}_{2} \mathrm{O}$ on the Reaction

To a 25 ml Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $(0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, with and without $\mathrm{Ac}_{2} \mathrm{O}$ $(0.2 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 0.45 \mathrm{mmol})$ and dry DME $(2.0 \mathrm{ml})$ under N_{2} atmosphere. The tube was capped, and then submerged into a pre-heated $100^{\circ} \mathrm{C}$ heating mantle for the indicated time. Each data point was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5$ trimethoxybenzene as the internal standard.

Figure S2 The effect of $\mathrm{Ac}_{2} \mathrm{O}$ on the rate profile

3. References

1. Li, Y.; Li, B. J.; Wang, W. H.; Huang, W. P.; Zhang, X. S.; Chen, K.; Shi, Z. J. Angew. Chem., Int. Ed. 2011, 50, 2115-2119.
2. O' Murchu C. Synthesis 1989, 11, 880-882.
3. Suggs, J. W.; Pearson, G. D. N. J. Org. Chem. 1980, 45, 1514-1515.
4. Evans, P.; Hogg, P.; Grigg, R.; Nurnabi, M.; Hinsley, J.; Sridharan, V.; Suganthan, S.; Korn, S.; Collard, S.; Muir, J. E. Tetrahedron 2005, 61, 9696-9704.
5. Liu, B.; Zhou, T.; Li, B.; Xu, S.; Song, H.; Wang, B. Angew. Chem. Int. Ed. 2014, 53, 41914195.
6. SAINT, Program for Data Extraction and Reduction, Bruker AXS, Inc., Madison, WI, 2001.
7. G.M. Sheldrick, SADABS, University of Göttingen, Göttingen, Germany.

4. Characterization of Substrate 11 and Acetoxylation Products

7-iodo-8-methylquinoline (11): white solid, petroleum ether/ethyl acetate (10/1)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91\left(\mathrm{dd}, J_{l}=4.3, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.09\left(\mathrm{dd}, J_{I}=8.2, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.91(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{dd}, J_{l}=8.2, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,147.0,141.2,136.6,136.3,127.8,126.7,121.2,102.8,23.4$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{INNa}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 291.9594$, found 291.9592

quinolin-8-ylmethyl acetate (3a): white solid (20.8 mg, 93\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{I}=7 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45\left(\mathrm{dd}, J_{I}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,149.9,146.1,136.4,134.1,128.9,128.2$, 128.2, 126.2, 121.3, 62.8, 21.2. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 224.0682$, found 224.0683.

(7-(trifluoromethyl)quinolin-8-yl)methyl acetate (3b): light yellow solid ($21.5 \mathrm{mg}, 80 \%$) petroleum ether/ethyl acetate (4/1)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.30\left(\mathrm{dd}, J_{1}=2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.98$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56\left(\mathrm{dd}, J_{l}=4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,151.5,146.8,136.1,133.5(J=2.5 \mathrm{~Hz}), 130.9(J=30 \mathrm{~Hz}), 129.7,129.5,125.1$, 123.0, $122.6(\mathrm{q}, ~ J=5 \mathrm{~Hz}), 57.8(J=1.3 \mathrm{~Hz}), 20.9$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 292.0556, found 292.0557 .

(7-fluoroquinolin-8-yl)methyl acetate (3c): white solid (19.9 mg, 91\%)
petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01\left(\mathrm{dd}, J_{1}=2 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18\left(\mathrm{dd}, J_{1}=2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.86$ $\left(\mathrm{dd}, J_{1}=6 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43\left(\mathrm{dd}, J_{1}=4 \mathrm{~Hz}, J_{2}=8.3,1 \mathrm{H}\right), 7.39(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,161.9(J=251.3 \mathrm{~Hz}), 151.1,136.4,130.6(J=11.3 \mathrm{~Hz}), 125.3,120.6$, 120.6, $118.3(J=13.8 \mathrm{~Hz}), 117.0(J=26.3 \mathrm{~Hz}), 55.5(J=5 \mathrm{~Hz}), 21.0$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.0768$, found 220.0770 .

(6-fluoroquinolin-8-yl)methyl acetate (3d): white solid ($18.0 \mathrm{mg}, 82 \%$) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.12\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{1}=4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39\left(\mathrm{dd}, J_{1}=3 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.86(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.77,160.18(J=247.5 \mathrm{~Hz}), 148.7,148.7,136.4,136.3,129.0,122.1,118.7\left(J_{C-}\right.$ $\left.{ }_{F}=27.5 \mathrm{~Hz}\right), 110.5\left(J_{C-F}=21.3 \mathrm{~Hz}\right), 62.2,21.1$. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.0768$, found 220.0771 .

(5-fluoroquinolin-8-yl)methyl acetate (3e): white solid (16.9 mg, 77\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.45\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.73$ $\left(\mathrm{dd}, J_{I}=6 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50\left(\mathrm{dd}, J_{I}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21\left(\mathrm{dd}, J_{1}=8 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78$ $(\mathrm{s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,157.8\left(J_{C-F}=255 \mathrm{~Hz}\right), 150.8,146.7,130.3\left(J_{C-F}=3.8\right.$ $\mathrm{Hz}), 129.5\left(J_{C-F}=5 \mathrm{~Hz}\right), 129.0\left(J_{C-F}=8.8 \mathrm{~Hz}\right), 121.4\left(J_{C-F}=2.5 \mathrm{~Hz}\right), 119.0\left(J_{C-F}=16.3 \mathrm{~Hz}\right), 109.7\left(J_{C-F}=18.8 \mathrm{~Hz}\right)$, 62.4, 21.2. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.0768$, found 220.0770 .

(7-chloroquinolin-8-yl)methyl acetate (3f): white solid (19.3 mg, 82\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99\left(\mathrm{dd}, J_{l}=1 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.16\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.79(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{l}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,151.1,147.5,137.2,136.2,131.3,129.7,128.2,126.9,121.4,59.1,20.9$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.0473$, found 236.0474.

(6-chloroquinolin-8-yl)methyl acetate (3g): white solid (20.7 mg, 88\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.12\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.79$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72\left(\mathrm{dd}, J_{1}=1 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49\left(\mathrm{dd}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84(\mathrm{~s}, 2 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,149.8,143.9,136.3,135.8,132.3,129.2,128.9,126.4,122.2$, 62.1, 21.1. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.0473$, found 236.0474.

(5-chloroquinolin-8-yl)methyl acetate (3h): white solid (18.3 mg, 78\%)
petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.59\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.69$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.81(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,150.5,146.6,133.6,133.1,131.4,128.4,126.2,126.2,122.1,62.5,21.1$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0292$, found 258.0295.

(7-bromoquinolin-8-yl)methyl acetate (3i): white solid ($23.7 \mathrm{mg}, 85 \%$) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.15\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.98(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,151.0,147.6,136.2,133.4,131.0,129.8,127.8,127.3,121.6,61.6,20.9$. HRMS (EITOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 279.9968$, found 279.9970.

(6-bromoquinolin-8-yl)methyl acetate (3j): white solid ($25.1 \mathrm{mg}, 90 \%$) petroleum ether/ethyl acetate $(5 / 1)$ ${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.95(\mathrm{~d}$, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82\left(\mathrm{dd}, J_{I}=1 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,150.1,144.6,136.6,135.2,131.4,129.7,129.3,122.2,120.2,62.0,21.1$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNNaO}_{2}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 301.9787$, found 301.9791.

(5-bromoquinolin-8-yl)methyl acetate (3k): white solid ($22.9 \mathrm{mg}, 82 \%$) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.55\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.82$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54\left(\mathrm{dd}, J_{l}=4.5 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,150.5,146.7,135.7,134.4,130.0,128.8,127.5,122.4,122.0,62.5,21.1$. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 279.9968$, found 279.9970.

(7-iodoquinolin-8-yl)methyl acetate (3I): white solid (28.4 mg, 87\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04\left(\mathrm{dd}, J_{I}=1.5\right.$ $\left.\mathrm{Hz}, J_{2}=8.3,1 \mathrm{H}\right), 7.98(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,150.3,145.0,136.7,136.6,136.3,135.0,129.7,122.0,91.8,61.9,21.1$. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{INNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 349.9648$, found 349.9652

(6-iodoquinolin-8-yl)methyl acetate (3m): white solid ($27.8 \mathrm{mg}, 85 \%$) petroleum ether/ethyl acetate (5/1) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.14\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.00$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,150.8,147.1,137.3,137.0,136.2,129.8,127.9,121.8,104.1,66.0,21.0$. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{INNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 349.9648$, found 349.9651.

(5-iodoquinolin-8-yl)methyl acetate (3n): white solid ($26.8 \mathrm{mg}, 82 \%$) petroleum ether/ethyl acetate (5/1)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.39\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.11$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,150.6,146.4$, 140.5, 137.4, 135.5, 129.9, 129.4, 122.9, 98.5, 62.5, 21.1. HRMS (EI-TOF): m/z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{INNaO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 349.9648$, found 349.9650 .

(7-methylquinolin-8-yl)methyl acetate (30): white solid (18.9 mg, 88\%) petroleum ether/ethyl acetate (5/1)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97\left(\mathrm{dd}, J_{I}=2 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.15\left(\mathrm{dd}, J_{l}=2 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39\left(\mathrm{dd}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.08$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.3,150.0,146.9,140.5,136.4,130.6,129.9,128.4,126.7,120.5,58.9$, 21.1, 19.9. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 238.0838$, found 238.0839.

(6-methylquinolin-8-yl)methyl acetate (3p): white solid (19.6 mg, 91\%) petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.89\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.08\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60$ $(\mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{l}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,149.0,144.7,136.1,135.7,133.7,131.3,128.4,127.0,121.3,62.8,21.7,21.2$. HRMS (EITOF): m/z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 238.0838$, found 238.0840.

(5-methylquinolin-8-yl)methyl acetate (3q): white solid (21.1 mg, 98\%)
petroleum ether/ethyl acetate (5/1)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.33\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.65$ $(\mathrm{d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{l}=4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,149.5,146.5,135.1,132.6,132.2,128.8,127.6,126.6,120.9,63.0,21.2$, 18.7. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 238.0838$, found 238.0843 .

$3 r$
(7-methoxyquinolin-8-yl)methyl acetate (3r): white solid (19.4 mg,

84\%) petroleum ether/ethyl acetate (4/1)

${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,159.8,149.8,138.4,138.4,130.6,123.5,119.0,117.3,114.3,56.7,56.4,21.3$. HRMS (EI-TOF): m / z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 254.0788$, found 254.0789.

(5-methylquinolin-8-yl)methyl acetate (3s): white solid ($18.9 \mathrm{mg}, 82 \%$) petroleum ether/ethyl acetate (4/1):
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.65\left(\mathrm{dd}, J_{I}=1.5 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.73(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{I}=4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,155.6,149.9,146.2,131.9,131.0,125.4,121.0,120.4,103.9,62.8,55.9,21.3$. HRMS (EITOF): m / z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 254.0788$, found 254.0793.

5. NMR Spectra for Substrate 11 and Acetoxylation Products

3b
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3j
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{\sim}{90} & \begin{array}{c}80 \\ \text { f1 } \\ (\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1(\end{array}$

3p
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

