SUPPLEMENTARY DATA

A two-way interaction between methotrexate and the gut microbiota of male Sprague Dawley rats

Marine P. M. Letertre^{1,*}, Nyasha Munjoma², Kate Wolfer¹, Alexandros

Pechlivanis^{1,3,4}, Julie A. K. McDonald¹, Rhiannon N. Hardwick⁵, Nathan J.

Cherrington⁵, Muireann Coen^{1,6}, Jeremy K. Nicholson⁷, Lesley Hoyles^{1,8}, Jonathan

R. Swann¹, Ian D. Wilson¹.

^{1.} Imperial College, London, SW7 2AZ, UK

^{2.} Waters Corporation, Wilmslow, SK9 4AX, UK.

^{3.} Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.

^{4.} Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece ^{5.} Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, Arizona, USA.

Oncology Safety, Clinical Pharmacology & Safety Sciences, R&D, Astra

Zeneca, Cambridge.

^{7.} Australian National Phenome Centre, Health Futures Institute, Murdoch

University, Murdoch, WA6150, Australia.

^{8.} Department of Biosciences, Nottingham Trent University, Nottingham, NG11

8NS, UK.

Corresponding authors*E-mail: marine.letertre@biogenouest.org *E-mail:

i.wilson@imperial.ac.uk

Contents

R Script for feature removal

Figure S1. Screenshot of TargetLynx V4.1 showing the three calibration curves for MTX,

DAMPA and 7-OH-MTX used during the faecal sample analysis.

Figure S2. PCA score plots of the urine metabolic profile, plotted according the dose of MTX administrated.

Figure S3. CA-PLS-R (covariate-adjusted projection to latent structures regression) analysis performed on the urine samples over the time points 0, 12, 24 and 48h for each of the MTX dose- groups.

Figure S4. Skyline significance of the CA-PLS-Regression models, performed on the urine samples for each of the MTX dose groups (0, 10, 40 and 100 mg/kg), representing the number of features having a q-value less than 0.05 and which significantly increased (red colour) or decreased (blue colour) over time (0, 12, 24 and 48h).

Figure S5. PCA score plots of the faecal metabolic profiles plotted according the dose of MTX administered.

Figure S6. CA-PLS-R (covariate-adjusted projection to latent structures regression) analysis performed over time (0, 12 and 48h) on the faecal samples of each of the MTX dose groups.

Figure S7. Skyline significance of the CA-PLS-Regression models, performed on faecal samples for each of the MTX dose groups (0, 10, 40 and 100 mg/kg), representing the number of features having a q-value lower than 0.05 and which significantly increased (red colour) or decreased (blue colour) over time (0, 12 and 48h).

Figure S8. β diversity represented using PCoA of Bray-Curtis distance, displaying the similarity between the samples.

Figure S9. Correlogram integrating the putatively annotated endogenous compounds excreted in urine and feces samples of the animals pre-MTX treatment with MTX concentration measured in urine at 6-12 h and in feces at 36-48 h, as well as the quantity of DAMPA excreted in feces samples at 36-48 h.

Table S1. Number of reads per samples after 16S rRNA gene sequencing pre-processing and prior importation into phyloseq for data investigation.

S-3

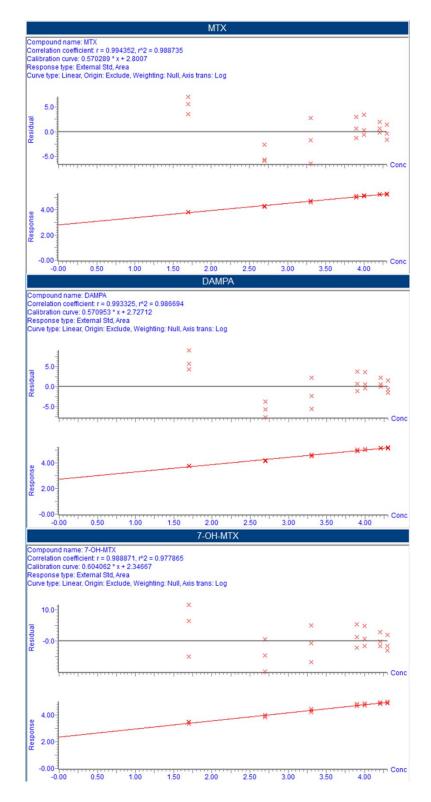
Table S2. Putative annotations for metabolites detected in the urine samples.

Table S3. Putative annotations for metabolites detected in the faecal samples.

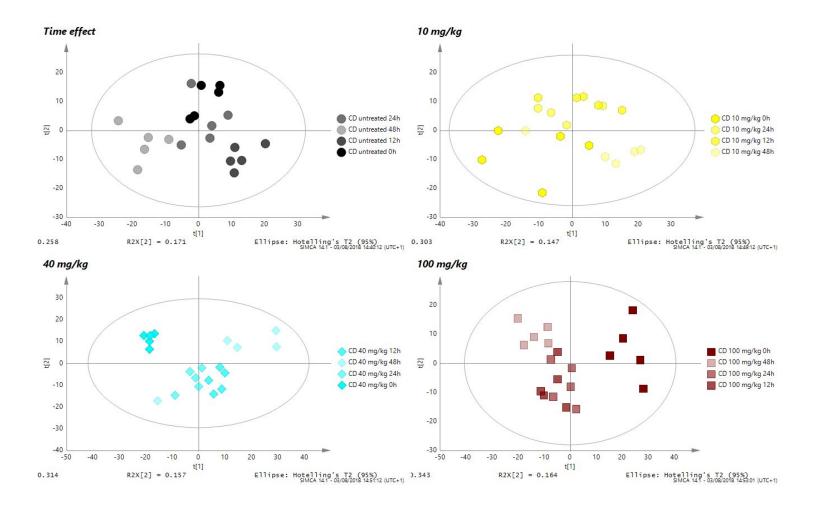
Table S4. α diversity values representing the microbial richness of each of the faecal

samples of the animals according the MTX dose groups over time.

R script for Feature Removal:


The following script was used to remove LC-MS-detected features that were found by multivariate statistical analysis to be significantly changed overtime in the control groups, and therefore unrelated to MTX exposure, from the significant features changed in the MTX-dosed groups.

setwd("...")


X <- read.csv("Matrice.csv", header = TRUE)

X.2 <- X[!X\$m.z %in% X\$m.z[X\$Group == "Control"],]

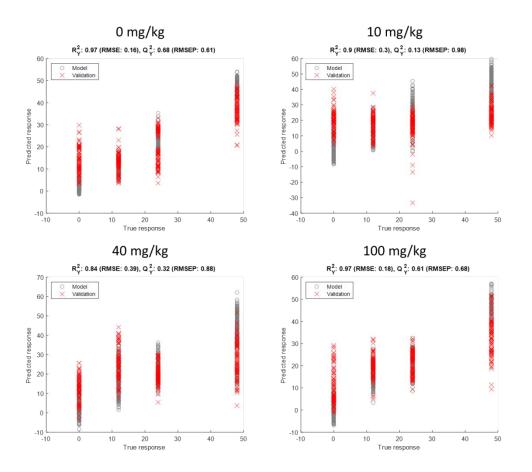

write.csv(X.2, file= "Matrice_minus_control.csv")

Figure S1. Screenshot of TargetLynx V4.1 showing the three calibration curves for MTX, DAMPA and 7-OH-MTX used during the faecal sample analysis. Linear curve with log axis was used, all the R² for each of the standards for both the urine and the faecal samples were superior to 0.97.

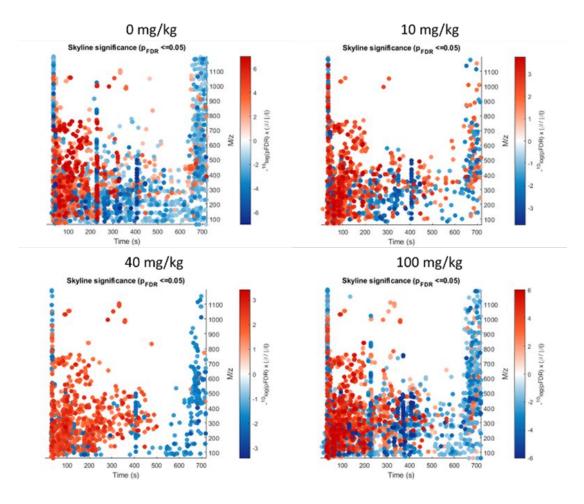
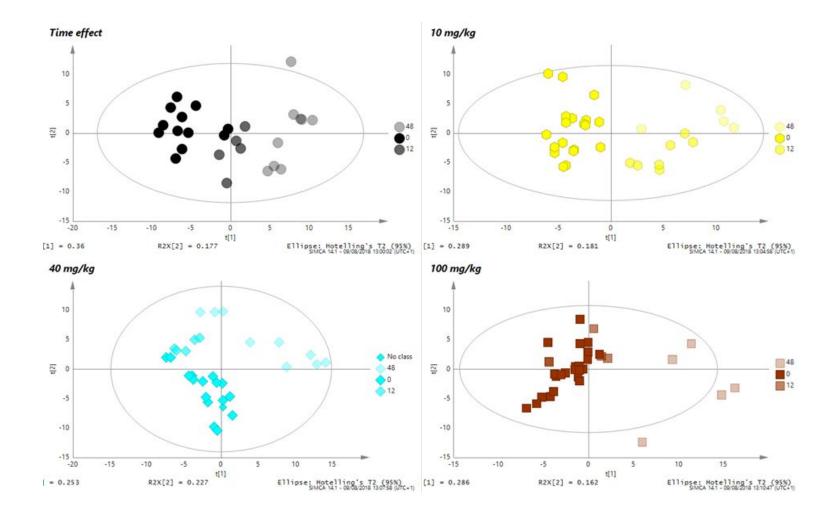
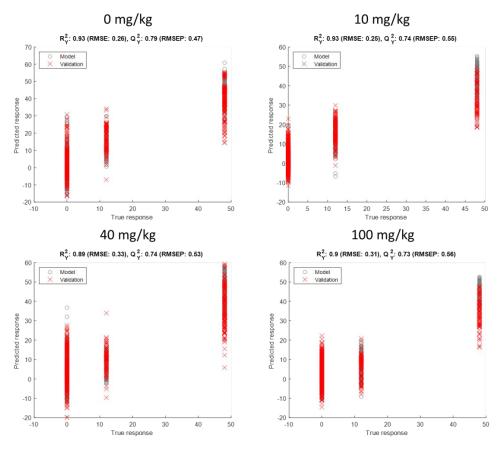


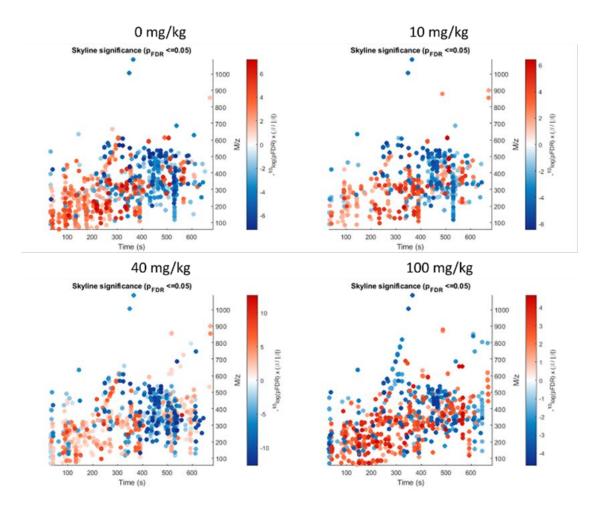
Figure S2. PCA score plots of the urine metabolic profile, plotted according the dose of MTX administrated. Control are indicated by black/grey circles and 10, 40 or 100 mg/kg are indicated by yellow hexagons, blue diamonds, dark red boxes respectively. A colour intensity gradation for each colour indicates the different time-periods as indicated in the key.

Figure S3. CA-PLS-R (covariate-adjusted projection to latent structures regression) analysis performed on the urine samples over the time points 0, 12, 24 and 48h for each of the MTX dose- groups. R2Y indicates the goodness of fit for the model of the data, the

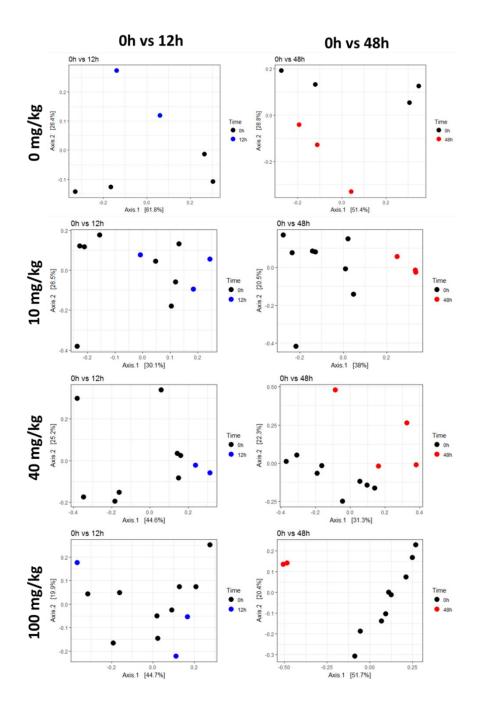
Q2Y how well the model predicts the data. RMSE and RMSEP represent the root mean squared error and the root mean squared error of the prediction respectively. The model set is represented by grey circles and the predicted ones by red crosses.

Figure S4. Skyline significance of the CA-PLS-Regression models, performed on the urine samples for each of the MTX dose groups (0, 10, 40 and 100 mg/kg), representing the number of features having a q-value less than 0.05 and which significantly increased (red colour) or decreased (blue colour) over time (0, 12, 24 and 48h).


Figure S5. PCA score plots of the faecal metabolic profiles plotted according the dose of MTX administered. The undosed controls are indicated by black/grey circles and the animal groups treated with 10, 40 or 100 mg/kg are indicated by yellow hexagons, blue

diamonds, dark red boxes respectively. A colour intensity gradation for each colour indicates the different time-periods as indicated in the key.



S-14

Figure S6. CA-PLS-R (covariate-adjusted projection to latent structures regression) analysis performed over time (0, 12 and 48h) on the faecal samples of each of the MTX dose groups. R2Y indicate how well the model fits the data, the Q2Y how well the model predicts the data. RMSE and RMSEP represent the root mean squared error and the root mean squared error of the prediction respectively. The model set is represented by grey circles and the predictions by red crosses.

Figure S7. Skyline significance of the CA-PLS-Regression models, performed on faecal samples for each of the MTX dose groups (0, 10, 40 and 100 mg/kg), representing the number of features having a q-value lower than 0.05 and which significantly increased (red colour) or decreased (blue colour) over time (0, 12 and 48h).

Figure S8. β diversity represented using PCoA of Bray-Curtis distance, displaying the similarity between the samples. For the untreated animals, N = 4 at 0 h, N = 2 at 12 h and N = 3 at 48 h; for the animals which received a dose of 10 mg/kg, N = 8 at 0 h, N = 3 at 12 h and N = 3 at 48 h; for the animals which received a dose of 40 mg/kg, N = 8 at 0 h, N = 8 at 0 h, N = 2 at 12 h and N = 4 at 48 h; for the animals which received a dose of 40 mg/kg, N = 8 at 0 h, N = 2 at 12 h and N = 4 at 48 h; for the animals which received a dose of 100 mg/kg, N = 9 at 0 h, N = 3 at 12 h and N = 2 at 48 h.

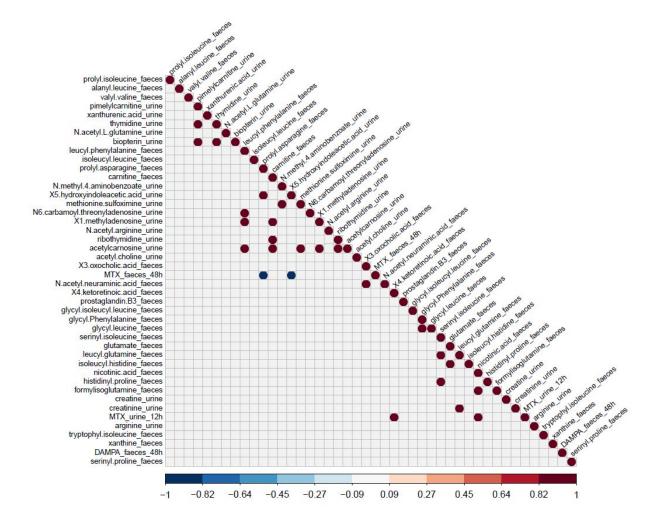


Figure S9. Correlogram integrating the putatively annotated endogenous compounds excreted in urine and feces samples of the animals pre-MTX treatment with MTX concentration measured in urine at 6-12 h and in feces at 36-48 h, as well as the quantity of DAMPA excreted in feces samples at 36-48 h. Represents the significant correlations only (p < 0.05) showing negative correlations for 5-hydroxyindole acetic acid in urine samples of the animals pre-MTX treatment with MTX excretion in feces at 48h. N = 3 animals.

Table S1. Number of reads per samplesafter 16S rRNA gene sequencing pre-processing and prior importation intophyloseq for data investigation.

SAMPLE ID	READS COUNT
10_C_01	13189
10_C_02	13680
11_C_01	13129
11_C_02	6182
11_C_04	15638
11_C_08	12801
12_C_01	16269
13_D_04	15603
14_D_01	17043
14_D_02	17909
14_D_08	14648
15_D_02	16451
16_D_02	15168
16_D_08	11959

17_E_01	12937
17_E_02	19481
17_E_08	10813
18_E_01	15943
18_E_08	14209
19_E_01	15241
19_E_08	16935
1_A_08	15753
20_E_01	19037
20_E_02	14600
21_F_01	16923
21_F_02	18220
22_F_01	18429
22_F_08	17227
23_F_01	18852
23_F_02	18097
23_F_08	18209
24_F_01	17406
24_F_02	4406
25_G_01	15517
25_G_02	16624

25_G_04	17014	33_I_08	18292
25_G_08	6745	34_I_01	18632
26_G_01	18234	34_1_02	14898
26_G_02	18370	35_I_01	11371
27_G_01	11336	35_I_02	12434
27_G_04	13117	35_I_04	17798
28_G_01	17482	35_1_08	16482
28_G_02	15805	36_I_01	13159
29_H_01	12397	36_I_02	14176
29_H_04	14809	36_I_08	17722
29_H_08	11919	37_I_01	10524
2_A_02	18056	37_I_02	13151
2_A_08	15282	38_I_01	14775
30_U_01	16765	38_I_02	13278
30_U_02	21982	39_J_02	10433
31_H_01	15485	3_A_02	11592
31_H_08	12619	40_J_01	17328
32_H_01	13381	40_J_02	15795
32_H_02	12724	41_J_01	12942
33_1_02	14062	41_J_02	14064
33_I_04	13899	42_J_01	17428

42_J_02	18626	7_B_02	15476
42_J_08	19071	8_B_01	17688
43_J_01	12622	8_B_02	12730
43_J_04	11234	8_B_08	21445
44_J_01	24371	9_C_01	11312
44_J_02	14249	9_C_04	10702
4_A_01	17464	9_C_08	15240
4_A_02	13804	BLANK-P1 181	53
5_B_01	12107	BLANK-P2 257	71
5_B_02	15130	BLANK-P3-V1 248	80
5_B_04	14601	BLANK-P3-V2 324	23
5_B_08	15550	POSITIVE-CONTROL	23749
6_B_01	18907	30404	

Table S2. Putative annotations for metabolites detected in the urine samples. The database reference number of each putative annotation is indicated, as well as if the matching was done with as spectra coming from real measurements or in silico calculation, and finally if validation of the annotation by MS/MS or DDA is reported as well as matches with the NPC database. Confidence of annotation are indicated in ID level. Frag = fragment; theo = theoretical; obs = observed.

putative ID	Adduct	formula	ID leve I	m/z	Calculate d mass	frag 1 theo	frag 2 theo	frag 3 theo	frag 4 theo	frag 1 obs	frag 2 obs	frag 3 obs	frag 4 obs	RT (mins)	Database	In silico or exp	MS/M S or DDA	NPC DB
arginine	[M+H]+	C6H14N4O2	2a	175.082 8	175.1187	158.093	130.098	116.071	112.087	158.057	130.053	/	112.056	0.61	Metlin 13	ESI Q- TOF	Yes	Yes
creatinine	[M+Na] +	C4H7N3O	2a	136.050 4	136.0481	114.069	86.0741	/	/	114.068	86.0722	/	/	0.65	Metlin 8	ESI Q- TOF	/	Yes
creatine	[M+H]+	C4H9N3O2	2a	132.078 6	132.0768	114.066	90.0555	87.0557	/	114.068	90.0568	87.0566	/	0.67	Metlin 7	ESI Q- TOF	Yes	Yes
acetyl choline	[M+H]+	C7H15NO2	2a	146.12	146.118	87.0448	64.0165	60.0818	/	87.0459	1	60.0826	/	0.69	Metlin 57	ESI Q- TOF	/	Yes
ribothymidine	[M+Na] +	C10H14N2O 6	2b	281.075 3	281.0744	259.093	133.048	127.05	110.023	259.094	133.052	127.052	/	0.95	Metlin 85160	ESI Q- TOF	Yes	/
N-acetyl-L-glutamine	[M+Na] +	C7H12N2O4	2a	211.071 1	211.0689	189.087	172.06	130.05	84.0444	189.089	172.061	130.052	84.045	1.07	Metlin 58344	ESI Q- TOF	Yes	Yes
acetylcarnosine	[M+Na] +	C11H16N4O 4	2b	291.107 0	291.1064	269.124	251.114	209.058	156.077	269.126	251.115	209.058	156.077	1.08	HMDB001288 1	In silico	Yes	/
N-acetyl-arginine	[M+H]+	C8H16N4O3	2b	217.132 0	217.1298	200.103	175.117	158.083	/	200.105	175.12	158.084	/	1.08	Metlin 58241	ESI Q- TOF	Yes	/
1-methyladenosine	[M+H]+	C11H15N5O 4	2b	282.121 6	282.1200	264.109	206.067	150.077	/	/	206.019	150.08	/	1.40	Metlin 6888	ESI Q- TOF	Yes	/
biopterin	[M+Na] +	C9H11N5O3	2b	260.078	260.075	238.094	220.083	194.068	178.073	238.096	220.085	194.069	178.073	1.58	Metlin 247	ESI Q- TOF	Yes	/
thymidine	[M+H]+	C10H14N2O 5	2a	265.083 0	265.0795	243.114	127.05	117.055	99.0439	243.056	127.054	117.057	/	2.25	Metlin 3375	ESI Q- TOF	/	Yes
xanthurenic acid	[M+H]+	C10H7NO4	2b	206.048	206.044	188.034	178.046	160.038	132.044	188.074	178.053	160.042	132.082	2.97	Metlin 5841	ESI Q- TOF	Yes	/
N6-carbamoyl-L- threonyladenosine	[M+Na] +	C15H20N6O 8	2b	435.125 5	435.1235	413.142	281.099	136.062	102.016	413.143	281.101	136.064	102.055	3.14	Metlin 95993	In silico	Yes	/
pimelylcarnitine	[M+H]+	C14H25NO6	2b	304.178	304.176	286.165	268.154	258.17	240.159	286.174	268.11	258.18	239.997	3.15	HMDB001332 8	In silico	Yes	/
methionine sulfoximine	[M+H]+	C5H12N2O3 S	2b	181.063 0	181.0640	163.038	135.059	118.032	102.055	163.052	135.058	118.066	102.016	3.20	Metlin 65992	ESI Q- TOF	Yes	/
5-Hydroxyindoleacetic acid	[M+H]+	C10H9NO3	2b	192.067 6	192.0637	146.06	110.009	/	/	146.063	110.011	/	/	3.54	Metlin 2975	ESI Q- TOF	Yes	/
N-Methyl-4-aminobenzoate	[M+H]+	C8H9NO2	2b	152.072 0	152.0710	134.060 0	108.081 0	106.065 0	104.049 0	134.061 6	108.082 3	106.065 3	104.010 0	3.66	Metlin 65994	In silico	Yes	/

Table S3. Putative annotations for metabolites detected in the faecal samples. The database reference number of each putative annotation is indicated, as well as if the matching was done with as spectra coming from real measurements or in silico calculation, and finally if validation of the annotation by MS/MS or DDA is reported as well as matches with the NPC database. Confidence of annotation are indicated in ID level. Frag = fragment; theo = theoretical; obs = observed

putative ID	adduct	formula	ID leve I	mlz	Calculate d mass	frag 1 theo	frag 2 theo	frag 3 theo	frag 4 theo	frag 1 obs	frag 2 obs	frag 3 obs	frag 4 obs	RT (mins)	Database	In silico or exp	MS/M S or DDA	NP C DB
carnitine	[M+H]⁺	C ₇ H ₁₅ NO ₃	2a	162.11 3	162.113	103.04	102.09 2	85.029 1	60.082 1	103.04	102.05 5	85.048	60.081	0.62	Metlin 52	ESI Qtof	Yes	Yes
prolyl-asparagine	[M+H]+	C ₉ H ₁₅ N ₃ O 4	2b	230.11 3	230.114	213.08 7	195.07 6	133.06 1	98.06	213.08 9	195.07 8	133.06 1	98.060 2	0.65	Metlin 85910	In sillic o	Yes	/
N-acetyl-neuraminic acid	[M+H]⁺	C ₁₁ H ₁₉ NO 9	2a	310.12	310.12	292.10 6	274.09 3	232.08 3	108.04 4	292.10 2	274.09 1	232.08 3	108.04 9	0.66	Metlin 24101	ESI Qtof	Yes	Yes
formylisoglutamine	[M+H]⁺	C ₆ H ₁₀ N ₂ O 4	2b	175.07 3	175.071	157.06 1	147.07 6	139.05	130.05	157.06 2	147.07 7	139.05 7	130.05 1	0.66	Metlin 63495	In sillic o	Yes	1
histidinyl-proline	[M+H]+	C ₁₁ H ₁₆ N ₄ O ₃	2b	253.12 8	253.13	235.11 9	138.06 6	116.07 1	110.07 1	235.11 8	138.05 6	116.07 1	110.07 5	0.67	Metlin 85799	In sillic o	Yes	/
serinyl-proline	[M+H]+	C ₈ H ₁₄ N ₂ O 4	2b	203.09 9	203.103	185.09 2	171.07 6	157.09 7	116.07 1	185.08 8	171.07 6	157.09 2	116.07 2	1.05	Metlin 85940	In sillic o	Yes	/
nicotinic acid	[M+H]⁺	C ₆ H ₅ NO ₂	2b	124.04	124.039	106.02 9	80.050 1	78.034 4	/	106.04 8	80.05	78.034	1	1.11	Metlin 240	ESI Qtof	Yes	/
xanthine	[M+H]+	$C_5H_4N_4O_2$	2b	153.04 1	153.04	136.01 3	110.03 5	82.040 2	1	136.01 5	110.03 5	82.041	1	1.45	Metlin 82	ESI Qtof	Yes	/

isoleucyl-histidine	[M+H]+	C ₁₂ H ₂₀ N ₄ O ₃	2b	269.15 9	269.161	251.15	223.15 5	156.07 7	114.09 1	251.14 6	223.15 7	156.07 6	/	1.47	Metlin 85815	In sillic o	Yes	/
leucyl-glutamine	[M+H]+	C ₁₁ H ₂₁ N ₃ O ₄	2b	260.16	260.16	243.13 4	147.07 7	130.05	86.096 4	243.13 3	147.07 6	130.05	86.096 3	1.61	Metlin 85831	In sillic o	Yes	/
glutamate	[M+H]+	C ₅ H ₉ NO ₄	2b	148.06	148.061	130.05	105.95 4	102.05 5	84.044 6	130.04	105.94 7	102.05 3	84.044 5	1.77	Metlin 19	ESI Qtof	Yes	/
valyl-valine	[M+H]⁺	$C_{10}H_{20}N_2$ O_3	2a	217.15 5	217.155	199.14 4	171.14 9	118.08 6	100.07 6	199.14 4	171.14 9	118.08 6	1	2.09	Metlin 86032	In sillic o	Yes	Yes
alanyl-leucine	[M+H]⁺	C ₉ H ₁₈ N ₂ O 3	2a	203.13 9	203.142	185.13 1	157.13 6	132.10 4	86.097 9	185.12 8	157.13 4	132.10 2	86.096 6	2.3	Metlin 442668	ESI Qtof	Yes	Yes
serinyl-isoleucine	[M+H]+	C ₉ H ₁₈ N ₂ O 4	2b	219.13 4	219.134	201.12 3	173.12 8	132.10 2	60.044 4	201.12 4	173.12 9	132.10 2	60.044 7	2.35	Metlin 85935	In sillic o	Yes	/
glycyl-leucine	[M+H]+	C ₈ H ₁₆ N ₂ O 3	2b	189.12 5	189.123	171.11 3	143.11 8	132.10 2	86.096 4	171.11 3	143.11 9	132.10 3	86.097 3	2.5	Metlin 5727	In sillic o	Yes	/
prolyl-isoleucine	[M+H]⁺	$C_{11}H_{20}N_2$ O_3	2b	229.15 1	229.152	183.14 7	70.064 5	1	1	183.14 3	1	1	1	2.78	Metlin 23879	ESI Qtof	Yes	/
glycyl-Phenylalanine	[M+H]+	C ₁₁ H ₁₄ N ₂ O ₃	2b	223.10 3	223.108	177.10 2	166.08 6	120.08 1	103.05 4	177.1	106.08 1	120.07 7	103.05 3	2.9	Metlin 85758	In sillic o	Yes	/
isoleucyl-leucine	[M+H]+	C ₁₂ H ₂₄ N ₂ O ₃	2b	245.18 6	245.186	227.17 5	199.18	132.10 2	114.09 1	227.17 6	199.18	132.10 2	114.09 7	3.45	Metlin 85817	In sillic o	Yes	/
glycyl-isoleucyl- leucine	[M+H]⁺	C ₁₄ H ₂₇ N ₃ O ₄	2b	302.20 5	302.204	171.10 9	143.11 4	132.09 9	1	171.10 7	143.11 3	132.09 5	/	3.76	Metlin 23190	ESI Qtof	Yes	1
leucyl-phenylalanine	[M+H]+	C ₁₅ H ₂₂ N ₂ O ₃	2b	279.17 0	279.17	233.16 5	132.10 2	120.08 1	103.05 4	233.15 5	132.10 2	120.08 1	103.05 5	4.12	Metlin 85839	In sillic o	Yes	1

tryptophyl-isoleucine	[M+H]⁺	C ₁₇ H ₂₃ N ₃ O ₃	2b	318.18 2	318.181	301.15 5	272.17 6	159.09 2	132.10 2	301.15 6	272.18 2	159.09 3	132.10 3	5.02	Metlin 85979	In sillic o	Yes	/
prostaglandin B3	[M+H]⁺	$C_{20}H_{28}O_4$	2b	333.20 2	333.205	315.19 5	197.18 4	171.11 2	157.09 9	315.19 8	297.17 6	171.11 2	157.1	6.81	Metlin 36190	ESI Qtof	Yes	/
4-ketoretinoic acid	[M+H]+	$C_{20}H_{26}O_3$	2b	315.19 7	315.196	297.18 5	269.19 1	251.18	149.09 7	297.18 3	269.19	251.17 9	/	8.36	HMDB000628 5	In sillic o	Yes	/
3-oxocholic acid	[M+H]+	$C_{24}H_{38}O_5$	2b	407.28 1	407.279	389.26 9	371.25 8	347.25 8	343.26 3	389.26 9	371.26	/	343.26 4	8.62	Metlin 57908	In sillic o	Yes	/

Table S4. α diversity values representing the microbial richness of each of the faecal samples of the animals according the MTX dose groups over time. The diversity is assessed using the Inverse Simpson index. Low numbers of samples due to diarrhoea and other limitations due to study design do not allow statistical tests between the α diversity of the different groups to be performed.

			Time po	oint	
		MTX dose	0h	12h	48h
		0	14.94	14.47	15.39
		10	15.63	19.36	10.56
		40	12.30	9.66	11.18
		100	11.08	7.53	4.94
		0	4	2	2
rof	S	10	5	3	2
Number of	samples	40	7	1	3
Nur	san	100	6	2	2