
Bayesian Active Learning for Optimization and
Uncertainty Quantification in Protein Docking

(Supporting Information)

Yue Cao and Yang Shen
Department of Electrical and Computer Engineering

Texas A&M University
College Station, TX 77843-3128, US

1 Theory
We first theoretically and empirically compare our Bayesian active learning (BAL) to [Ortega et al., 2012]
(NCPD for Nonparametric Conjugate Prior Distribution) that also models the posterior of the global opti-
mum directly. During the comparison, we establish BAL’s advantages in theory, namely (1) the annealing
schedule balancing exploration and exploitation is aware of the global uncertainty and dependent on dimen-
sionality of the search space; and (2) the Kriging regressor is consistent and unbiased. We also establish
BAL’s advantage in practice through empirical comparison over test functions.

1.1 Unlike NCPD, BAL’s annealing schedule is global uncertainty-aware and
dimension-dependent

In Nonparametric Conjugate Prior Distribution, the temperature constant ρ was estimated proportional to
the effective number of data points:

ρNCPD = ρ0(ξ + n ·
∑

i K(xi, xi)∑
i

∑
j K(xi, xj)

)

where ρ0 is the initial value for ρ, and ξ is the effective number of data points in the prior distribution and n

is the number of data points, which is penalized by
∑

i K(xi,xi)∑
i

∑
j K(xi,xj)

to become the effective number of sample
points. The rational is that the effective number of samples somehow measures the uncertainty in the system.

However, as our problem has a constraint for the search space, only considering the pairwise distance between
samples is obviously insufficient. The location of samples in the search space also contributes to the global
uncertainty in the system. Considering the two cases in Fig. S1a and Fig. S1b. Here we have three data
points which have the exact same pairwise distance between each other. The figure shows the standard
deviation within the square search space. Obviously, the second situation has more uncertainties than the
first one because the points in the second figure are closer to the boundary, which makes the large region of
the right bottom untouched and high variance. But the ρ used in NPCD remains the same for both cases.
In contrast, the ρ in our BAL is defined as

ρBAL = ρ0 · exp((h(t−1)
p )−1n

1
d
t )

Here we use h
(t−1)
p , the continuous entropy for the latest posterior distribution p, which is a global measure

of uncertainty. In other words, we consider not only the internal structure between the samples but also the
location of samples within the search space. Obviously our ρ for the case in Fig. S1a is bigger than that for
Fig. S1b, which makes much more sense.
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Figure S1: (a): The contour plot for the standard deviation within [-2.5,2.5]×[-2.5,2.5] with three data points
at [-1,0], [1,0], [0,1]. (b) The contour plot for the standard deviation within [-2.5,2.5]×[-2.5,2.5] with three
data points at [-2,0], [-2,2], [-1,1]. (c) The ρ keeps unchanged for NCPD(red line) as dimension goes higher,
while it decreases quickly in BAL (blue line).

Moreover, a good temperature constant should be generalizable for different dimensions. However, NCPD
is bad-generalized for different dimensions. For instance, we remain the same pairwise distance between any
two samples as shown Fig. S1a and then we extends the dimension from 2 to 8. It could be seen in Fig. S1c.
The ρ in NCPD remains the same while in BAL it decreases rapidly as the dimension goes larger. For the
same set of data, as the dimension goes higher, the uncertainty of the system must decrease, which means ρ
must decrease at the same time. Therefore, compared to NCPD our BAL matches the rationale and could
be generalizable for various dimensions.

Lastly, we found that the ρ in NCPD decreases as the number of samples increases in some situations. This
is totally controversial to our rational for ρ. As we are getting more samples, our knowledge about the
system is increasing (not dropping the old samples). In adaptive simulated annealing, this means our system
is getting cooler and cooler as the annealing procedure goes forward. Therefore, there is a monotonous-
positive relationship between ρ and the number of samples. However, considering the simple example below,
we have two data points x1 = [1, 0] and x2 = [−1, 0]. We considered a kernel that K(x1,x2) ≈ 0 and
K(xi,xi) = 1(e.g. RBF kernel with bandwith l << 1). The effective number of location for the sample is

t2 = 2 ·
∑

i K(xi, xi)∑
i

∑
j K(xi, xj)

= 2 · 2
2
= 2

Then we add the third sample x3 = [−1, 0 + ϵ], where ϵ is a tiny positive number, so that K(x1,x3) ≈ 0
and K(x1,x2) ≈ 1. Then the effective number of location will become:

t3 = 3 ·
∑

i K(xi, xi)∑
i

∑
j K(xi, xj)

= 3 · 3
5
= 1.8

We have t3 < t2! That means when collecting a new sample x3, the system’s uncertainty is becoming
larger. Although the new sample is located very closed to the old one, it is obviously controversial to our
understanding and rationale for ρ. The situation for ρ decreasing frequently happens when n becomes large,
resulting from the new samples having a large chance to be closed to the old ones. By contrast, in BAL,
our ρ is in positive relation to n and the negative relation to H, while n is getting larger and H is getting
smaller over iterations. Therefore, our ρ strictly increased when the system is getting more samples.

1.2 Unlike NCPD, BAL’s Kriging regressor is unbiased
In this section we prove the regressor used in NCPD is biased. Then we follow [Matheron, 1963] and briefly
derive our Kriging results.
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1.2.1 The regressor in NCPD is biased

We first consider the one-dimensional case, and then extend to multi-dimensional cases. Suppose we have two
groups of random variables Xi, Yi which are i.i.d. with joint pdf (probability distribution function) p(x, y).
The mean function f(x) = E[Y |X = x] is the true function that we want to predict. Suppose the marginal
pdf of X has the form

p(x) ∝ e
f(x)
β

The estimator in NCPD for f(x) is

f̂(x) =

∑n
i=1 K(x−xi

h )yi + k0(x) ∗ y0(x)∑n
i=1 K(x−xi

h ) + k0(x)

For a given xi, the random variable yi can be written as

yi = f(xi) + ϵi

where ϵi is a zero-mean noise. In our case, it could be regarded as the system error and the difference between
our supposed energy function and the true energy function.

Therefore, we have
n∑

i=1

K(
x− xi

h
)yi =

n∑
i=1

K(
x− xi

h
)f(xi) +

n∑
i=1

K(
x− xi

h
)ϵi

add prior function to both sides, and divide them by
∑n

i=1 K(x−xi

h ) + k0(x), we reach∑n
i=1 K(x−xi

h )yi + k0(x) ∗ y0(x)∑n
i=1 K(x−xi

h ) + k0(x)
=

∑n
i=1 K(x−xi

h )f(xi) +
∑n

i=1 K(x−xi

h )ϵi + k0(x) ∗ y0(x)∑n
i=1 K(x−xi

h ) + k0(x)

Note that the left side is just f̂(x). So we have

f̂(x)− f(x) =

∑n
i=1 K(x−xi

h )f(xi) +
∑n

i=1 K(x−xi

h )ϵi + k0(x) ∗ y0(x)∑n
i=1 K(x−xi

h ) + k0(x)
− f(x)

Multiply both the nominator and the denominator by 1
nh , we have

f̂(x)− f(x) =
1
nh

∑n
i=1 K(x−xi

h )f(xi) +
1
nh

∑n
i=1 K(x−xi

h )ϵi +
1
nhk0(x) ∗ y0(x)

1
nh

∑n
i=1 K(x−xi

h ) + 1
nhk0(x)

− f(x)

Note the the first term in the denominator is the kernel density estimator for p(x)

p̂(x) =
1

nh

n∑
i=1

K(
x− xi

h
)

We can rewrite the whole equation

f̂(x)− f(x) =
1
nh

∑n
i=1 K(x−xi

h )(f(xi)− f(x)) + 1
nh

∑n
i=1 K(x−xi

h )ϵi +
1
nhk0(x) ∗ (y0(x)− f(x))

p̂(x) + 1
nhk0(x)

Define

m1(x) =
1

nh

n∑
i=1

K(
x− xi

h
)(f(xi)− f(x))

m2(x) =
1

nh

n∑
i=1

K(
x− xi

h
)ϵi

We can simplify the equation above as
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f̂(x)− f(x) =
m1(x)

p̂(x) + 1
nhk0(x)

+
m2(x)

p̂(x) + 1
nhk0(x)

+
1

nh

k0(x) ∗ (y0(x)− f(x))

p̂(x) + 1
nhk0(x)

By fixing x, we start to analyze each term in the right side of the equation.

(1) We start with the simplest term among the three, the second term. We first calculate the expecta-
tion and variance of m2(x).
Since we know E[ϵi|Xi] = 0
Then

E[m2(x)] = Exi
[Eϵi|xi

[
1

nh

n∑
i=1

K(
x− xi

h
)ϵi]] = Exi

[0] = 0

Because (Xi, Yi) are i.i.d, we have

V ar[m2(x)] =
1

n2h2

n∑
i=1

V ar[K(
x− xi

h
)ϵi] =

1

nh2
E[K2(

x− xi

h
)ϵ2i ]

Define σ2(x) = E[ϵ2i |Xi]. We have

V ar[m2(x)] =
1

nh2
E[K2(

x− xi

h
)σ2(x)] =

1

nh2

∫
K2(

x− xi

h
)σ2(xi)p(xi)dxi

By setting u = xi−x
h , we have

V ar[m2(x)] =
1

nh

∫
K2(u)σ2(hu+ x)p(hu+ x)du

We use Taylor expansion for σ2(hu+ x) and p(hu+ x) up to o(h), and get

V ar[m2(x)] =
1

nh

∫
K2(u)σ2(x)p(x)du+ o(

1

n
)

Define µ =
∫
K2(u)du. We obtain

V ar[m2(x)] =
µσ2(x)p(x)

nh
+ o(

1

n
)

By applying Central Limit Theorem, we get the asymptotic result for m2(x)

lim
h→0

nh→∞

√
nhm2(x) −→d N(0, µσ2(x)p(x))

(2) Second, we work on the first term and calculate the expectation and variance of m1(x). Because Xis are
i.i.d, we have

E[m1(x)] =
1

h
E[K(

x− xi

h
)(f(xi)− f(x))] =

1

h

∫
K(

x− xi

h
)(f(xi)− f(x))p(xi)dxi

Let u = xi−x
h ,

E[m1(x)] =

∫
K(u)(f(hu+ x)− f(x))p(hu+ x)du

Similar to the work above, we expand (f(hu+ x)− f(x)) and p(hu+ x) up to o(h2), and obtain

4



E[m1(x)] =

∫
K(u)(huf

′
(x) +

h2u2

2
f

′′
(x))(p(x) + hup

′
(x))du+ o(h3)

= hf
′
(x)p(x)

∫
K(u)udu+ h2(f

′
(x)p

′
(x) +

1

2
f

′′
(x)p(x))

∫
K(u)u2du+ o(h3)

Let κ2 =
∫
K(u)u2du. Since

∫
K(u)udu = 0, we have

E[m1(x)] = h2κ2(f
′
(x)p

′
(x) +

1

2
f

′′
(x)p(x)) + o(h3)

The same method can obtain

V ar[m1(x)] = o(
h2

nh
)

Therefore, we have

lim
h→0

nh→∞

√
nh(m1(x)− h2κ2(f

′
(x)p

′
(x) +

1

2
f

′′
(x)p(x))) −→p 0

The kernel density estimator p̂(x) has the property

lim
h→0

nh→∞

p̂(x) −→p p(x)

By using Slutskys theorem, and let B(x) = f
′
(x)p

′
(x)p−1(x) + 1

2f
′′
(x), we get

lim
h→0

nh→∞

√
nh(

m1(x)

p̂(x) + 1
nhk0(x)

+
m2(x)

p̂(x) + 1
nhk0(x)

− h2κ2B(x)) = lim
h→0

nh→∞

√
nh(

m1(x) +m2(x)

p(x)
)

−→d N(0,
µσ2(x)

p(x)
)

(3) Third, we calculate the last term in f̂(x) − f(x). Note that p̂(x) is the only part including random
variables of 1

nh
k0(x)∗(y0(x)−f(x))

p(x)+ 1
nhk0(x)

. So we can easily conclude

lim
h→0

nh→∞

k0(x) ∗ (y0(x)− f(x))

p̂(x) + 1
nhk0(x)

−→p
k0(x) ∗ (y0(x)− f(x))

p(x)

so that

lim
h→0

nh→∞

√
nh(

1

nh

k0(x) ∗ (y0(x)− f(x))

p̂(x) + 1
nhk0(x)

) −→p 0

Therefore, in summary, we obtain

lim
h→0

nh→∞

√
nh(f̂(x)− f(x)− h2κ2B(x)) −→d N(0,

µσ2(x)

p(x)
)

It is easy to extend the result to multi-variable cases: For d dimensions, we have

lim
H→0

n|H|→∞

√
n|H|(f̂(x)− f(x)− κ2

i=d∑
i=1

h2
iBi(x)) −→d N(0,

µdσ2(x)
p(x)

)

where H is the bandwidth matrix. In the Gaussian kernel, it is the covariance matrix.

In total, we have proved that the regressor in NCPD is biased and converges to the normal distribution
with mean equal to κ2

∑i=d
i=1 h

2
iBi(x).
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1.2.2 Derivation of BAL’s Kriging regressor

We briefly derive the Kriging regressor following [Chilès and Delfiner, 2012]. Let F (x) be a random function
with mean equal to f(x), and {xi, yi}ni=1 be our observed data with a noise ϵ. We are trying to find an
unbiased linear estimator f̂(x) =

∑
i λi(x)yi for f(x) with the smallest variance:

Minimize V ar[(f̂(x)− F (x))2]

Subject to E[f̂(x)] = E[F (x)]

We define the covariance between f(x1) and f(x2) as cov(x1,x2) = k(x1,x2). Therefore, we have cov(y1, y2) =
k(x1,x2) + ϵ2. We then expand our objective function as

V ar[(f̂(x)− F (x))2] = κ(x,x) + λ(κ(x))T (K + ϵ2I)λ(x)− 2λ(x)Tk

where K is the covariance matrix with [Kn]ij = k(xi,xj); κ(x) is the covariance vector between x and
x1,x2, ...,xn, and λ(x) is the vector of λ1(x), λ2(x), ..., λn(x).
In [Matheron, 1963], it assumes that f(x) consists of a linear combination of finite low-degree functions:

f(x) =

l∑
i=1

βifi(x)

where the coefficient vector β is unknown. Then we could expand the unbiased constraint as:

l∑
i

n∑
j

βiλj(x)fi(xj) =

l∑
i

βifi(x)

Because the above equation should hold for any arbitrary β, we obtain:

l∑
j

λj(x)fi(xj) = fi(x) for all i

We write it into the matrix form: Gλ(x) = f , where Gl×n =

f1(x1) f1(x2) ...
f2(x1) f2(x2) ...
...

, and f is the vector of

f1(x), f2(x), ....
We let γ be the vector of the Lagrangian multiplier and write the Lagrangian formula:

L(λ(x),γ) = κ(x,x) + λ(x)T (K + ϵ2I)λ(x)− 2λ(x)Tκ(x) + 2γT (Gλ(x)− f)

We take the partial derivatives with respect to λ(x) and γ and let them equal to 0:

∂L

∂λ(x)
= 2(K + ϵ2I)λ(x)− 2κ(x) + 2GTγ = 0

∂L

∂γ
= 2(Gλ(x)− f) = 0

The above two equations form the general linear system for Kriging. In practice, we usually assume a prior
estimator f0(x) for f(x). We thus shift the mean away to consider a zero-mean case:

P (x) = F (x)− f(x) ≈ F (x)− f0(x)

We solve the linear system for P (x). As the mean of P (x) equal to 0, the matrix G is a zero matrix. It is
straightforward to get: λ(x) = (K+ ϵ2I)−1κ(x). Remember the observed yi for P (x) should be also shifted
by f0(xi). Therefore, we get the estimator for E[P (x)]:

p̂(x) = κ(x)
T
(K + ϵ2I)−1(y − f0)
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NCPD BAL
Dimension 2 6 12 2 6 12
Rastrigin 1.04(0.36) 1.96(0.34) 5.35(1.23) 0.84(0.05) 1.83(0.11) 3.58(0.87)
Rosenbrock 0.78(0.73) 1.96(0.86) 4.00(0.56) 0.23(0.19) 1.43(0.75) 2.25(0.21)
Griewank 2.73(0.51) 4.45(1.05) 6.01(2.24) 1.65(1.42) 4.35(1.01) 4.11(1.28)
Ackley 0.33(0.31) 0.91(0.25) 2.63(0.31) 0.26(0.14) 0.69(0.23) 1.69(0.11)

Table S1: The means and the standard deviations (in the parenthesis) of ||x̂− x∗||2 for four test functions
on three dimensions.

NCPD BAL
Dim d por T d por T

2

Rastrigin 1.84(1.03) 0.78 0.78(0.23) 1.37(1.18) 0.91 0.54(0.13)
Rosenbrock 1.31(0.32) 0.89 0.57(0.15) 0.63(0.14) 0.98 0.55(0.06)
Griewank 3.91(1.88) 0.80 0.65(0.22) 2.85(1.45) 0.86 0.62(0.20)
Ackley 0.51(0.17) 0.99 0.53(0.21) 0.41(0.20) 0.99 0.43(0.02)

6

Rastrigin 2.68(1.54) 0.72 0.33(0.12) 2.25(1.02) 0.91 0.22(0.11)
Rosenbrock 3.04(1.98) 0.90 0.51(0.16) 2.16(1.43) 0.92 0.50(0.25)
Griewank 5.21(0.87) 0.68 0.14(0.03) 4.53(0.78) 0.76 0.04(0.02)
Ackley 1.13(0.22) 0.89 0.33(0.30) 0.77(0.34) 0.96 0.20(0.08)

12

Rastrigin 6.53(1.98) 0.70 0.23(0.11) 3.62(0.36) 0.73 0.01(0.01)
Rosenbrock 4.50(1.30) 0.83 0.12(0.10) 2.22(1.18) 0.87 0.03(0.01)
Griewank 7.05(2.23) 0.67 0.11(0.03) 4.25(1.01) 0.63 0.05(0.03)
Ackley 4.89(1.64) 0.95 0.88(0.69) 2.89(0.49) 0.93 0.66(0.23)

Table S2: Uncertainty Quantification for the test functions.

where y and f0 are the vector of y1, y2, ..., yn and f0(x1), f0(x2), ..., f0(xn), respectively. We finally add the
prior back to the equation, and get our final estimator for f(x):

f̂(x) = κ(x)
T
(K + ϵ2I)−1(y − f0) + f0(x)

So far we have proved the regressor used in NCPD is biased and then derived our Kriging regressor. The
unbiased property of Kriging regressor could let the estimated function capture the location of the optimal
funnel more accurate. Moreover, if the variogram is known, the expected square error of the kriging regressor
is no greater than that of the NPR estimator [Yakowitz and Szidarovszky, 1985]. Lastly, NCPD regressor
suffers mostly from its high biasness at the boundary of the search space, because of the asymmetry of the
kernel weights in such regions. This will cause the posterior may still remain a high probability value at the
boundary, while the probability values of the outside regions are regarded as 0.

1.3 Empirical Comparison
In order to be more rigorous, we put the empirical comparison between the NCPD and BAL here. We
use the same testing functions as in the main text and the same method for posterior analysis to get the
optimization and uncertainty quantification results. For the optimization, in Table S1, our BAL outperforms
NCPD for every test function with every tested dimensionality. For UQ, in Table S2, the tightness of BAL
is much lower then NCPD. At the same time, in majority of the cases, the portion of BAL is closer to 0.9.
This means we have more tighter confidence interval but the accuracy of the interval is increasing at the
same time. This is because our ρ captured the global uncertainty in the system and is also dimensional
independent, and we use a mini-batch sampling which could not only explore more on the search space, but
also make the data more i.i.d. which will benefit the convergence of the regressor.
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1.4 Summary
We compare the posteriors of NCPD and our BAL from both theoretical and empirical prospectives. We
claim three drawbacks of the ρ in NCPD and how our BAL overcomes it. We shows the regressor we used
is the best linear unbiased regressor. The empirical results show our method outperforms theirs in both
optimization and uncertainty quantification.

2 Methods

2.1 Fast RMSD calculation
We describe how we calculate the interface RMSD (iRMSD) between two sample structures in O(1) instead
of O(N), where N is the number of interfacial atoms. We will also show this method is generalizable for the
calculation of any kind of RMSD and the case that the rigid-body motion and the flexibility are considered
separately.

Assume C int
1 and C int

2 are the vectors of the coordinates of interfacial atoms of two docking complexes,
respectively:

C int
1 = C int

0 +

d∑
i=1

riµ
int
i

C int
2 = C int

0 +

d∑
i=1

r′iµ
int
i

(1)

where d is the dimension of search space and C0 is the vector of the coordinates of interfacial atoms of
the starting structure. ri and r′i are the scaling factors of normal mode i for the two sample structures,
respectively, and µi is the interface-specific subvector of complex normal mode i.

The iRMSD between these two structures is:

iRMSD =

√
||C int

1 −C int
2 ||2

N
=

√
||
∑d

i=1(ri − r′i)µ
int
i ||2

N

=

√∑d
i=1

∑d
j=1(ri − r′i)(rj − r′j)µ

int
i · µint

j

N

(2)

Let U int be the matrix of [U int]ij = µint
i · µint

j , and ∆r be the row vector of all [r]i = (ri − r′i), then the
iRMSD could be rewritten as:

iRMSD =

√
∆rTU∆r

N
(3)

Because U is a d× d matrix, we could calculate the iRMSD in O(d2) = O(1).

It is straightforward to extend this equation for other kinds of RMSD. For the case that rigid-body motion
is separated from the flexibility, we suppose the rotation matrix for one atom is:

w =

w1 w2 w3

w4 w5 w6

w7 w8 w9

 (4)

We extend it to all-atom case:
W = [w,w, ...,w︸ ︷︷ ︸

N

] (5)
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More generally, We consider C1 and C2 as the vector of atoms for two sample structures (perturbations of
C0):

C1 = Ccenter +

3∑
i=1

tiTi +W (C0 −Ccenter) +

d∑
i=1

riµi

C2 = Ccenter +

3∑
i=1

t′iTi +W ′(C0 −Ccenter) +

d∑
i=1

r′iµi

(6)

where Ccenter is the rotation center of the starting structure C0, W ’s are rotational matrices, ti’s are the
translational coefficients, and T1 is the 1 vector for the x axis:

T1 = [1 0 0 1 0 0...︸ ︷︷ ︸
3N

]T

T2 and T3 are in the same manner for the y and z axis, respectively.

It is easy to rewrite the rotation part in the way as:

C1 = Ccenter +

3∑
i=1

tiTi +

i=9∑
i=1

wici +

d∑
i=1

riµi

C2 = Ccenter +

3∑
i=1

t′iTi +

i=9∑
i=1

w′
ici +

d∑
i=1

r′iµi

(7)

where, if we let C0 −Ccenter = [C1x, C1y, C1z, C2x...CNx, CNy, CNz], then

c1 = [C1x, 0, 0, ..., CNx, 0, 0], c2 = [C1y, 0, 0, ..., CNy, 0, 0], c3 = [C1z, 0, 0, ..., CNz, 0, 0],

c4 = [0, C1x, 0, ..., 0, CNx, 0], c5 = [0, C1y, 0, ..., 0, CNy, 0], c6 = [0, C1z, 0, ..., 0, CNz, 0],

c7 = [0, 0, C1x, ..., 0, 0, CNx], c8 = [0, 0, C1y, ..., 0, 0, CNy], c9 = [0, 0, C1z, ..., 0, 0, CNz],

(8)

Similar to the previous discussion, the RMSD between C1 and C2 could be calculated in O((3 + 9 + d) ×
(3 + 9 + d)) = O(d2) = O(1).

2.2 Distribution of the ratio between predicted and actual extents of confor-
mational changes for the receptor

We describe the distribution in this section for range reduction in the reduced conformational space. In
our previous work [Chen et al., 2017], we predicted the extent of conformational changes of receptor for an
encounter complex as ̂RMSDR. We then calculate RMSDR/ ̂RMSDR for the 500 models in the training set
and fit it into a truncated Gaussian distribution, which is shown in Fig. S2.
This distribution, multiplying ̂RMSDR, will be later used as the prior distribution of τR for sampling initial
30 structures.

2.3 Feasibility of the search space for sampling
We consider the feasibility of the search space here. For samples generated from the updated posterior, they
have only one constraint which is √

1

NL

∥∥∥∥∥∥
∑
j∈B

rj
s√
λj

·µµµL
j

∥∥∥∥∥∥ ⩽ ∆L (9)

If we replace rj · s with our parameterization xj , it is obvious to see the search space is within a ellipsoid
ball.
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Gaussian �t

Figure S2: The histogram of the ratio. The fit Gaussian distribution has mean and standard
deviation equal to 0.99 and 0.31, respectively.

For samples generated from the prior, besides the aforementioned constraint, its another inequality constraint
is given by: √

1

NR

∥∥∥∥∥∥
∑
j∈B

rj
s√
λj

·µµµR
j

∥∥∥∥∥∥ ⩽ 2.5 · R̂MSDR (10)

where 2.5 is from the upper bound of our truncated normal distribution (see Fig. S2). Therefore, the search
space is the intersection of the aforementioned two inequality constraints. It is obvious that the origin is
a feasible point. The above constraints hereby have feasible solutions. Lastly, just for the consideration of
running time, during the prior sampling, the R̂MSDR will be reduced until the acceptance rate of the reject
sampling is found to be no less than a threshold (0.001%).

2.4 Putative interface
We briefly introduce how to get the putative interface for each starting structure (the starting representative
of each region). Specifically, each starting complex structure (initial model) is perturbed based on the prior
distribution of x∗ for 50 times. The interface residues are chosen for each perturbed complex with inter-
molecular atomic distance cutoff equal to 10Å. And then the union of 50 interface sets is regarded as the
putative interface for this model.

2.5 List of protein complexes used in the study

Difficulty Index PDB ID Index PDB ID

Rigid

1 1N8O 19 1EAW
2 7CEI 20 2JEL
3 1DFJ 21 1ML0
4 1AVX 22 1BJ1
5 1AY7 23 1KXQ
6 1BVN 24 1EWY
7 1IQD 25 1KAC
8 1CGI 26 1OPH
9 1MAH 27 2AJF
10 1EZU 28 1E6J
11 1JPS 29 2HLE
12 1PPE 30 1WEJ

10



13 1R0R 31 1A2K
14 1T6B 32 1RLB
15 2FD6 33 1GLA
16 2I25 34 1E6E
17 2B42 35 1J2J
18 1BUH

Medium

1 1XQS 5 1IJK
2 1BGX 6 2HRK
3 1KKL 7 1GP2
4 1M10 8 1GRN

Flexible

1 1IBR 5 1H1V
2 1BKD 6 1DE4
3 1Y64 7 1ATN
4 2C0L

Table S3: Protein complexes in the training set for scoring function and the extents of conformational
changes. Kd values are known.

Difficulty Index PDB ID Index PDB ID

Rigid

1 1AHW 44 1PVH
2† 1AK4 45† 1QA9
3† 1AKJ 46 1QFW
4† 1AZS 47 1RV6
5† 1B6C 48† 1S1Q
6 1BVK 49† 1SBB
7 1CLV 50 1TMQ
8 1D6R 51 1UDI
9 1DQJ 52 1US7
10† 1E96 53 1VFB
11† 1EFN 54 1WDW
12 1F34 55 1XD3
13 1F51 56 1XU1
14† 1FC2 57 1YVB
15 1FCC 58† 1Z0K
16 1FFW 59 1Z5Y
17 1FLE 60 1ZHH
18 1FQJ 61 1ZHI
19 1FSK 62 2A5T
20† 1GCQ 63 2A9K
21† 1GHQ 64 2ABZ
22 1GL1 65 2B4J
23† 1GPW 66† 2BTF
24 1GXD 67 2FJU
25 1H9D 68 2G77
26 1HCF 69† 2HQS
27 1HE1 70 2J0T
28 1HIA 71† 2MTA
29† 1I4D 72 2O8V
30 1I9R 73 2OOB
31 1JTG 74 2OOR
32 1JWH 75 2OUL
33 1K4C 76† 2PCC
34 1K74 77 2SIC
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35 1KLU 78 2SNI
36 1KTZ 79 2UUY
37 1KXP 80 2VDB
38 1MLC 81 2VIS
39 1NCA 82 3BP8
40 1NSN 83 3D5S
41 1OC0 84 3SGQ
42 1OFU 85 9QFW
43 1OYV 86 BOYV

Medium

1 1ACB 12 1SYX
2 1HE8 13† 1WQ1
3† 1I2M 14 2AYO
4† 1IB1 15 2CFH
5 1JIW 16 2H7V
6 1K5D 17 2J7P
7 1LFD 18 2NZ8
8 1MQ8 19 2OZA
9 1N2C 20 2Z0E
10† 1NW9 21 3CPH
11 1R6Q 22 4CPA

Flexible

1 1E4K 10 1PXV
2 1EER 11† 1R8S
3 1F6M 12 1ZLI
4† 1FAK 13 1ZM4
5 1FQ1 14 2HMI
6 1IRA 15 2I9B
7 1JK9 16 2IDO
8 1JMO 17 2O3B
9 1JZD 18† 2OT3

Table S4: Protein complexes in the test set for both scoring function and protein docking. †: Protein
complexes with known Kd values.

2.6 Energy Model Training
2.6.1 Training set

The whole dataset contains 10 encounter complex structures for each of the aforementioned 176 protein pairs
(Sec. 2.5 Tables S3 and S4) in the Protein Docking Benchmark Set 4.0 [Hwang et al., 2010]. They were
generated by ZDOCK as the top 10 cluster centers and kindly provided by the Weng group. 50 of 176 protein
pairs (See Table S3) have been chosen as the training set for training the scoring function, including 35(70%)
rigid cases, 8(16%) medium cases and 7(14%) flexible cases. The Kd values of these 50 targets are provided
by the Binding Affinity Benchmark Set [Kastritis and Bonvin, 2010]. Within all 500 models, 64 models are
near-native ones (iRMSD≤ 4

◦
A). In order to balance the ratio of near-native and non near-native models in

the training set to improve the performance for the near-native part, we use a strategy called oversampling
to balance the training data. Specifically, each of 436 non-near native models are perturbed for 15 times
and each of 64 near-native models are perturbed for 101 times. In all, we have 13,004 examples made up
of 6,540 non-near native examples and 6,464 near-native examples in the training set. Notice here, the way
to perturb each model is consistent with that in our docking. The rationale is that the sample distribution
in the training set needs to be consistent with the sample distribution in the docking process. Otherwise,
others need to do some transformed learning.
All the energy feature values were standardized before training. Random forest and Ridge regression with
linear and nonlinear radial basis function (RBF) kernel were performed with 4-fold cross validation over the
training set to determine hyperparameters and model parameters. Specifically, the hyperparameters were

12



Index PDB ID iRMSDC(Å)
1 2REX 1.107
2 2WPT 1.609
3 3BX1 1.100
4 3FM8 1.818
5 3Q87 3.739
6 4G9S 3.739
7 4JW2 2.929
8 4JW3 1.926
9 4OJK 1.832
10 4QKO 0.950
11 4QT8 1.451
12 4UEM 8.102
13 4UF5 16.890
14 4UHP 1.891
15 4XL5 3.223

Table S5: Protein complexes in CAPRI test set for protein docking. iRMSDC here is the interface RMSD
after superimposing unbound receptor and ligand to the bound receptor and ligand separately. Higher
iRMSDC suggests more conformational changes upon protein-protein interactions and more challenges to
protein docking. Kd values are predicted from sequence alone.

determined by searching on discrete grids for the optimal values that minimize mean squared errors (MSE)
averaged over all 4 folds.

2.6.2 Hyperparameter Tuning

The internal hyperparameters of each machine learning model can be tuned through the cross-validation.
One technical issue here is that, for α and q which are made up of the label, it is not quite trivial to be tuned
through cross-validation because the labels are different for different sets of α and q, so that the traditional
scores like Mean Square Error(MSE) or Pearson’s r are not comparable across different sets of α and q. We
need to find a common assessment metric which is independent of α and q. To reach this goal, we used the
mean of Spearman correlation over the 50 training protein pairs between the labels and the iRMSDs. The
reason to use Spearman correlation is because, first, the monotonicity or the ranking ability is our goal for
training this scoring function. Secondly, Spearman correlation could be comparable across different sets of α
and q within each protein pair. The mean of the Spearman correlation could be hereby used as a universal
metric for optimizing α and q in the cross-validation. The optimal α and q after training are shown in Table
S10.

2.7 Performances of PSO and BAL over Test Functions
For particle swarm optimization (PSO), we have used the standard version with inertia correction [Xu et al.,
2007, Clerc and Kennedy, 2002, Bansal et al., 2011]. In order to be fair, the swarm size and the number of
iterations are the same for both algorithms, which are shown in Table S6. Either algorithm is run for 100
times for the statistical significance. The search regions are shown in Table S7.

Dimension 2 6 12
Swarm-size 10 15 20
Iterations 50 100 150
Total samples 500 1500 3000

Table S6: Parameters for BAL and PSO algorithms
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Rastrigin −8 ⩽ xi ⩽ 8, 1 ⩽ i ⩽ d
Rosenbrock −8 ⩽ xi ⩽ 8, 1 ⩽ i ⩽ d
Griewank −8 ⩽ xi ⩽ 8, 1 ⩽ i ⩽ d
Ackley −20 ⩽ xi ⩽ 20, 1 ⩽ i ⩽ d

Table S7: Search regions for test function.

3 Results

3.1 Performances on Test Functions

PSO BAL
Dimension d 2 6 12 2 6 12
Rastrigin 0.99 (0.56) 2.06 (0.15) 4.06 (1.01) 0.84 (0.05) 1.83 (0.11) 3.58 (0.87)
Rosenbrock 0.91 (0.64) 2.08 (0.86) 3.12 (0.33) 0.23 (0.19) 1.43 (0.75) 2.25 (0.21)
Griewank 3.63 (0.33) 5.42 (1.01) 5.51 (2.29) 1.65 (1.42) 4.35 (1.01) 4.11 (1.28)
Ackley 0.37 (0.21) 0.88 (0.26) 2.65 (0.38) 0.26 (0.14) 0.69 (0.23) 1.69 (0.11)

Table S8: Optimization performances of PSO and BAL over four non-convex test functions in various
dimensions based on means (and standard deviations in parentheses) of ||x̂−x∗||, the distance between the
predicted and the actual global optima.

Dimension d Function r90 η P̂

2

Rastrigin 1.37 (1.18) 0.54 (0.13) 0.91
Rosenbrock 0.40 (0.24) 0.55 (0.06) 0.98
Griewank 2.85 (1.45) 0.62 (0.20) 0.86
Ackley 0.41 (0.20) 0.43 (0.02) 0.99

6

Rastrigin 2.25 (1.02) 0.22 (0.11) 0.91
Rosenbrock 2.16 (1.43) 0.50 (0.25) 0.92
Griewank 4.53 (0.78) 0.04 (0.02) 0.76
Ackley 0.77 (0.34) 0.20 (0.08) 0.96

12

Rastrigin 3.62 (0.36) 0.01 (0.01) 0.73
Rosenbrock 2.22 (1.18) 0.03 (0.01) 0.87
Griewank 4.25 (1.01) 0.05 (0.03) 0.63
Ackley 2.89 (0.49) 0.66 (0.23) 0.93

Table S9: Uncertainty quantification performances of BAL over test functions based on r90 , the estimated
upper bound of ||x̂ − x∗|| at a 90% confidence level; η, the relative error in r90; and P̂ , the portion of
confidence intervals from 100 runs encompassing the global optima. For r90 and η, means (and standard
deviations in parentheses) are reported.
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3.2 Energy Model for Protein Docking

Models α q
Ridge 6.70 0.75
Ridge with RBF 12.0 0.50
Random Forest 8.72 0.50

Table S10: Optimal α and q for different machine learning models after training.

Ridge Ridge with RBF Random Forest
Training 8.32(0.25) 5.45(0.67) 2.45(0.79)
Test 12.34(0.26) 10.34(0.67) 4.78(0.75)

Table S11: Performance on training and test native sets based on RMSE (and Pearson correlation in
parentheses) between predicted y(x) and real y(x). The unit of RMSE is Kcal/mol.

3.3 Protein docking
3.3.1 Comparison between PSO and BAL on energy scores (y)
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Figure S3: Head to head comparison between BAL and PSO predictions x̂ in (random forest) energy scores
y(x̂i) for training (a), test (b) and CAPRI (c) sets.

3.3.2 Comparison between PSO and BAL on solution quality (iRMSD)
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Figure S4: Box plots for the improvement in RMSD after PSO and BAL refinements for the training (a),
test (b) and CAPRI (c) sets. Also reported are the percentages of BAL (solid bars) and PSO (dashed bars)
refinement results with iRMSD improvement or with significant iRMSD improvement over 0.5Å(the darker
portions) for the training (d), test (e) and CAPRI (f) sets.

3.3.3 Percentage improvement
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Figure S5: The relative percentage improvement against the starting structure of BAL and PSO for (a)
Rigid cases in the training set. (b) Medium cases in the training set. (c)Flexible cases in the training set.
(d) Rigid cases in the testing set. (e) Medium cases in the testing set. (f) Flexible cases in the testing set.
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3.4 Sampled Energy Landscapes
See Pages 19–20.

3.5 List of parameter values used in this study

Parameters ρ0 l0 ϵ
Values 1.0 2.0 2.1

Table S12: Parameters used for BAL Implementation

3.6 Running time for optimization
See Page 20.

4 Videos
We also attach with the supporting information videos for illustration (https://github.com/Shen-Lab/
BAL/tree/master/BAL_animation). Four videos show actual BAL optimization trajectories for protein
docking. And six more videos show the slowest complex normal modes of the same encounter complex that
blends flexible-body motions of both the receptor and the ligand as well as rigid-body motions of the ligand.
In particular, these six normal modes include 3 dominated by ligand motions and 3 by receptor motions.
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Figure S6: The estimated energy landscapes along the first and the second principal components (PC) for
near-native and medium or difficult models in the benchmark set (training set and test set). All the black
dots are the samples. The grey triangle is the estimated end structure and the grey star is the true native
structure. The starting structure is a thicker black dot at the origin. All the energy values are re-centered
to let the lowest energy value equal to 0 within each model.19
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Figure S7: The estimated energy landscapes along the first and the second principal components (PC) for
near-native and medium or difficult models in the CAPRI set. All the black dots are the samples. The grey
triangle is the estimated end structure and the grey star is the true native structure. The starting structure
is a thicker black dot at the origin. All the energy values are re-centered to let the lowest energy value equal
to 0 within each model.
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Figure S8: Running time (core hours) for BAL optimization for each 630-sample refinement on Intel Xeon
2.5GHz E5-2670. Post-optimization UQ takes 0.5 to 1 additional core hour each.
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