Supporting Information

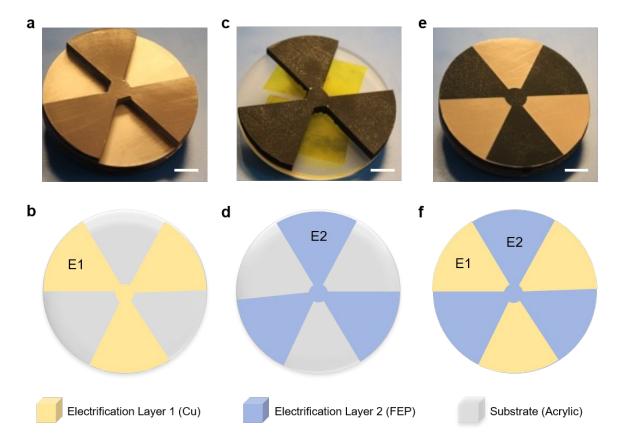
A Ternary Electrification Layered Architecture for High Performance Triboelectric Nanogenerators

Weili Deng,^{†,‡} Yihao Zhou,^{†,‡} Xun Zhao,^{†,‡} Songlin Zhang,[†] Yongjiu Zou,[†] Jing Xu,[†]

Min-Hsin Yeh,^{¶,*} Hengyu Guo,^{§,*} Jun Chen,^{†,*}

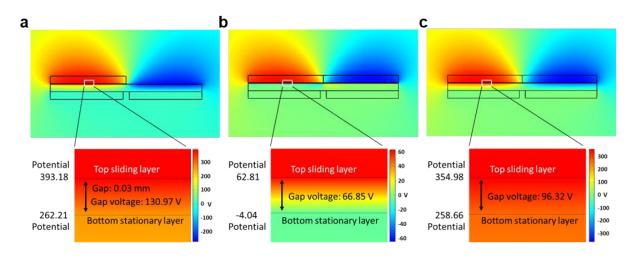
[†]Department of Bioengineering, University of California, Los Angeles, Los Angeles,

California 90095, USA

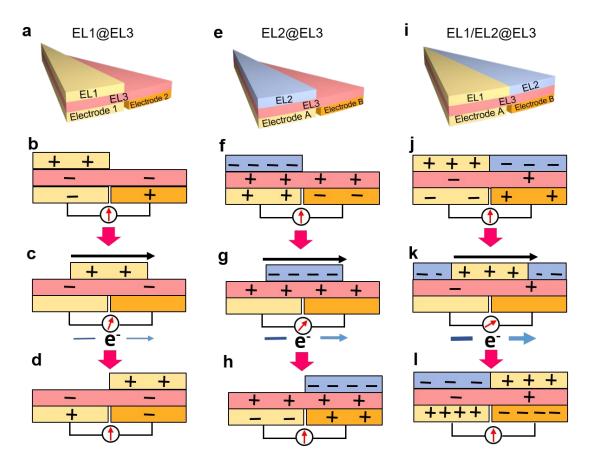

[§] Department of Applied Physics, Chongqing University, Chongqing 400044, China

[¶] Department of Chemical Engineering, National Taiwan University of Science and

Technology, Taipei 10607, Taiwan


[‡]These authors contributed equally to this work.

*Correspondence to: jun.chen@ucla.edu (J.C.); ghyphysics@cqu.edu.cn (H.G.); mhyeh@mail.ntust.edu.tw (M-H. Y.)



Supporting Figures:

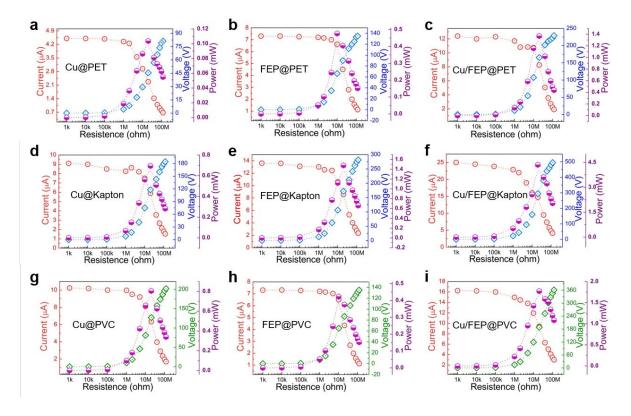

Figure S1. Schematic illustration of rotator with (a-b) Cu as electrification layer (EL1), (c-d) FEP as electrification layer, and (e-f) Cu/FEP as electrification layer (EL1/EL2). (The scale bars are 2 cm)

Figure S2. The simulation results of potential distribution between the two electrodes when the air gap is 0.03 mm. (a) EL1@EL3 based BEL-TENG, (b) The initial state of EL1/EL2@EL3 based TEL-TENG and (c) the saturated state of EL1/EL2@EL3 based TEL-TENG.

Figure S3. The operating principle of (a-d) EL1@EL3 based BEL-TENG, (e-h) EL2@EL3 based BEL-TENG and (i-l) EL1/EL2@EL3 based TEL-TENG.

Figure S4. The output performance of BEL-TENG and the TEL-TENG with different intermediate electrification materials under variable external load resistances. (a-c) The performance of output power for the BEL-TENG and the TEL-TENG with PET as the intermediate material. (d-f) The performance of output power for the BEL-TENG and the TEL-TENG and the TEL-TENG with Kapton as the intermediate material. (g-i) The performance of output power for the BEL-TENG and the TEL-TENG and the TEL-TENG with PVC as the intermediate material. The unit center angle of 60° was used and the rotating speed of 600 rpm was fixed.

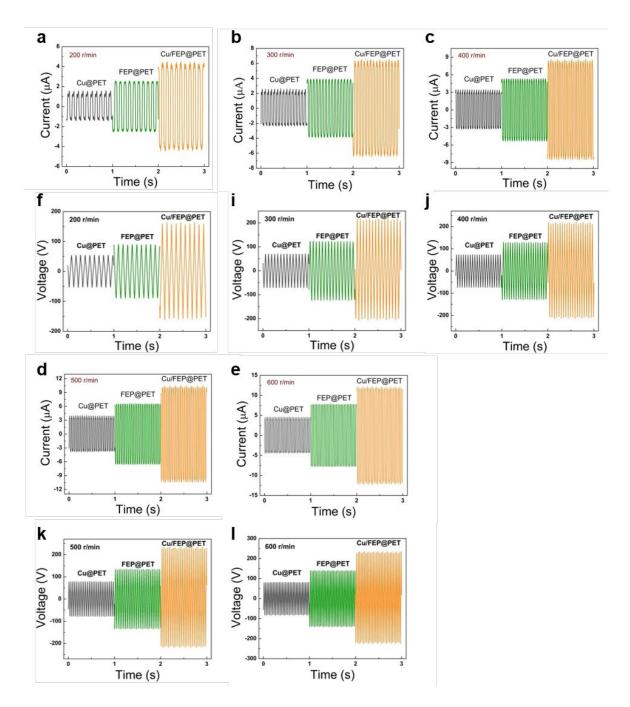
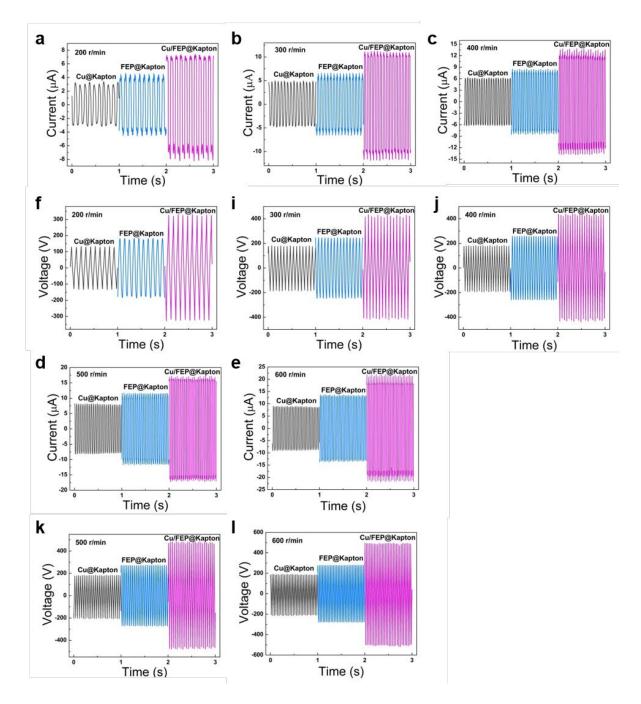



Figure S5. The electric output performance of short-circuit current (a-e) and voltage (f-l) for the BEL-TENG and the TEL-TENG with PET as the intermediate material. All of electric signals were measured at an external load resistance of 120 M Ω with a rotating speed of 600 rpm.

Figure S6. The electric output performance of short-circuit current (a-e) and voltage (f-l) for the BEL-TENG and the TEL-TENG with Kapton as the intermediate material. All of electric signals were measured at an external load resistance of 120 M Ω with a rotating speed of 600 rpm.

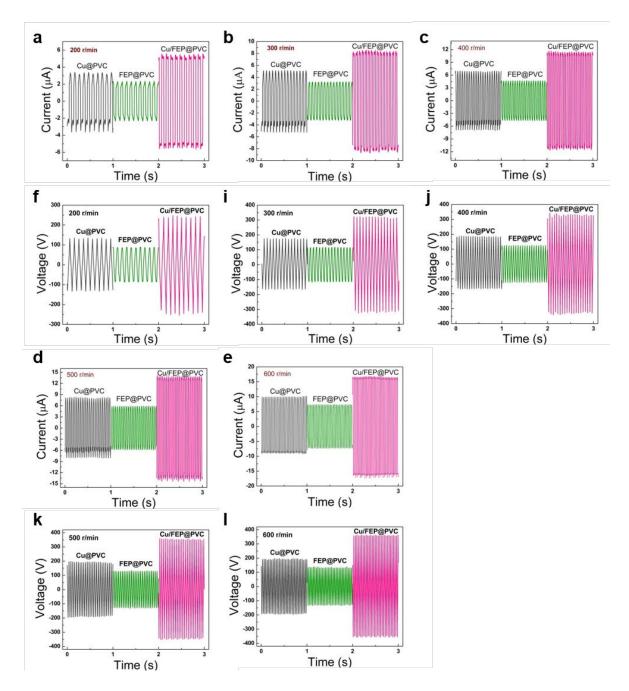
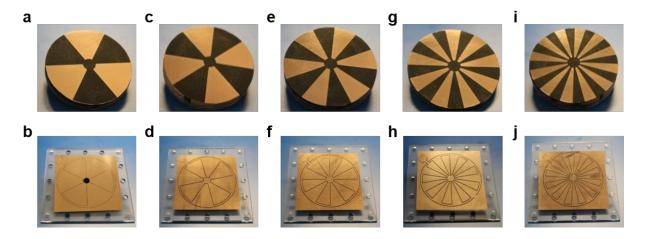



Figure S7. The electric output performance of short-circuit current (a-e) and voltage (f-l) for the BEL-TENG and the TEL-TENG with PVC as the intermediate material. All of electric signals were measured at an external load resistance of 120 M Ω with a rotating speed of 600 rpm.

Figure S8. Corresponding photographs of stator and rotator with various unit center angles of (a-b) 60°, (c-d) 45°, (e-f) 30°, (g-h) 20°, and (i-j) 15°.

Supporting Note 1:

We assume the gap between electrodes are ignored. The rotation disc was separated into 2*N* parts (*N* is the number of blocks of each material). Then the signals should be periodically with period of $2\pi/N$. After contacting with interlayer, the rotation materials take charge density of $2\sigma_1$ and $-2\sigma_2$ ($2\sigma_1$ and $2\sigma_2$ are the charge density of each piece of the triboelectric material on the rotator, both σ_1 , $\sigma_2 \ge 0$), respectively. Therefore, the interlayer will totally take the charge density of $2(\sigma_2-\sigma_1) = (-(2\sigma_1-2\sigma_2))$ to balance the total charge. Then the corresponding interlayer will take charge density of ($\sigma_2-\sigma_1$), respectively. The electric potential distributions are depicted in Figure 4. Firstly, we can set MACRS (Minimum achievable reference charge state)¹ as the state in Figure 4j. So at that time, the rotation angle $\alpha = 0$, $V_{OC}(0) = 0$, and $Q_{SC}(0) = 0$. For the two other extreme status in Figure 4i and k, it has been reported the capacitance between the two electrodes can be considered as identical,¹⁻³ and we can assume it as C_p . When the radius of the rotator is R, therefore, the open-circuit voltages can be calculated by the short-circuit charge transfers over C_p :

The state of Figure 4i:
$$\alpha = -\frac{\pi}{2N} \text{ or } \frac{3\pi}{2N}, Q_{\text{SC}} = -(\sigma_1 + \sigma_2)\frac{\pi R^2}{2}, V_{\text{OC}} = -(\sigma_1 + \sigma_2)\frac{\pi R^2}{2C_p}$$

The state of Figure 4k: $\alpha = -\frac{3\pi}{2N} \text{ or } \frac{\pi}{2N}, Q_{\text{SC}} = (\sigma_1 + \sigma_2)\frac{\pi R^2}{2}, V_{\text{OC}} = (\sigma_1 + \sigma_2)\frac{\pi R^2}{2C_p}$

These V_{OC} are the maximum and minimum values.

For an arbitrary α , the short-circuit charge transfer ($\alpha_0 = \pi/N$):

$$Q_{\rm SC} = \begin{cases} \alpha(\sigma_1 + \sigma_2)NR^2, -\frac{\pi}{2N} < \alpha < \frac{\pi}{2N} \\ (\alpha_0 - \alpha)(\sigma_1 + \sigma_2)NR^2, \frac{\pi}{2N} < \alpha < \frac{3\pi}{2N} \end{cases}$$

Therefore, the short-circuit current:

$$I_{\rm SC} = \frac{\mathrm{d}Q_{\rm SC}}{\mathrm{d}t} = \begin{cases} \frac{\mathrm{d}\alpha}{\mathrm{d}t}(\sigma_1 + \sigma_2)NR^2, -\frac{\pi}{2N} < \alpha < \frac{\pi}{2N} \\ -\frac{\mathrm{d}\alpha}{\mathrm{d}t}(\sigma_1 + \sigma_2)NR^2, \frac{\pi}{2N} < \alpha < \frac{3\pi}{2N} \end{cases}$$

These I_{SC} are the maximum and minimum values.

For the TENG with only one material, we can get the corresponding V_{OC} and I_{SC} by simply setting the charge density of the other material as zero. Therefore, due to the proportional relations between V_{OC} or I_{SC} and $(\sigma_1 + \sigma_2)$, there will be: V_{OC} (two materials)_{max} = V_{OC} (material 1)_{max} + V_{OC} (material 2)_{max}

 $V_{\rm OC}$ (two materials)_{min} = $V_{\rm OC}$ (material 1)_{min} + $V_{\rm OC}$ (material 2)_{min}

 $I_{\rm SC}$ (two materials)_{max} = $I_{\rm SC}$ (material 1)_{max} + $I_{\rm SC}$ (material 2)_{max}

 $I_{\rm SC}$ (two materials)_{min} = $I_{\rm SC}$ (material 1)_{min} + $I_{\rm SC}$ (material 2)_{min}

Supporting References:

(1) Niu, S.; Liu, Y.; Chen, X.; Wang,S.; Zhou,Y. S.; Lin, L.; Xie, Y.; Wang, Z. L. Theory of Freestanding Triboelectric-Layer-Based Nanogenerators. *Nano Energy* **2015**, *12*, 760-774.

(2) Jiang, T.; Chen, X.; Han, C. B.; Tang, W.; Wang, Z. L. Theoretical Study of Rotary Freestanding Triboelectric Nanogenerators. *Adv. Funct. Mater.* **2015**, *25*, 2928-2938.

(3) Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z. L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-Contact Modes. *Adv. Mater.* **2014**, *26*, 2818-2824.

Supporting Table 1

Triboelectric table (tests were performed by Bill Lee (Ph.D., physics). ©2009 by AlphaLab, Inc. (TriField.com), which also manufactured the test equipment used. Column 1: Insulator name. Column 2: Charge affinity in nC/J. Column 3: Notes.

Polyurethane foam	+60	
Sorbothane	+58	Slightly conductive. (120 G ohm cm).
Box sealing tape (BOPP)	+55	More negative if sanded down to the BOPP film.
Hair, oily skin	+45	Skin is conductive. Cannot be charged by metal rubbing
Solid polyurethane, filled	+40	Slightly conductive. (8 T ohm cm).
Magnesium fluoride (MgF ₂)	+35	Anti-reflective optical coating.
Nylon, dry skin	+30	Skin is conductive. Cannot be charged by metal rubbing
Machine oil	+29	
Nylatron (nylon filled with MoS ₂)	+28	
Glass (soda)	+25	Slightly conductive. (Depends on humidity).
Paper (uncoated copy)	+10	Slightly conductive.
Wood (pine)	+7	
GE brand Silicone II (hardens in air)	+6	More positive than the other silicone chemistry.
Cotton	+5	Slightly conductive. (Depends on humidity).
Nitrile rubber	+3	
Wool	0	
Polycarbonate	-5	
ABS	-5	
Acrylic (polymethyl methacrylate)	-10	
Epoxy (circuit board)	-32	
Styrene-butadiene rubber (SBR, Buna S)	-35	Sometimes inaccurately called "neoprene" (see below).
Solvent-based spray paints	-38	May vary.
PET (mylar) cloth	-40	
PET (mylar) solid	-40	
EVA rubber for gaskets, filled	-55	Filled rubber will usually conduct.
Gum rubber	-60	Barely conductive. (500 T ohm cm).
Hot melt glue	-62	
Polystyrene	-70	
Polyimide	-70	
Silicones (air harden & thermoset, but <i>not</i> GE)	-72	
Vinyl: flexible (clear tubing)	-75	
Carton-sealing tape (BOPP)	-85	Raw surface is very +, but close to PP when sanded.
Olefins (alkenes): LDPE, HDPE, PP	-90	UHMWPE is below.
Cellulose nitrate	-93	
Office tape backing	-95	
UHMWPE	-95	
Neoprene (polychloroprene, not SBR)	-98	Slightly conductive if filled (1.5 T ohm cm).
PVC (rigid vinyl)	-100	
· · · · · · · · · · · · · · · · · · ·	-105	
·	-117	Slightly conductive. (40 T ohm cm).
	-118	Slightly conductive. (250 G ohm cm).
-	-120	
Hypalon rubber, filled	-130	Slightly conductive. (30 T ohm cm).
Latex (natural) rubber Viton, filled Epichlorohydrin rubber, filled Santoprene rubber Hypalon rubber, filled	-105 -117 -118 -120	Slightly conductive. (40 T ohm cm). Slightly conductive. (250 G ohm cm). Slightly conductive. (30 T ohm cm).

Butyl rubber, filled	-135	Conductive. (900 M ohm cm). Test was done fast.
EDPM rubber, filled	-140	Slightly conductive. (40 T ohm cm).
PTFE (Teflon)	-190	Surface is fluorine atoms very electronegative.