Supporting Information

Defect Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS₂ Heterostructure as High-Performance Water Splitting Electrocatalysts

Zuyun He¹, Qiuyu Liu¹, Yunmin Zhu¹, Tuo Tan¹, Liuxuan Cao^{2*}, Shijun Zhao³, Yan

Chen^{1*}

¹ School of Environment and Energy, State Key Laboratory of Pulp and Paper

Engineering, South China University of Technology, Guangzhou 510006, China

²College of Energy, Xiamen University, Xiamen 361005, China

³ Department of Mechanical Engineering, City University of Hong Kong, Hong Kong,

China

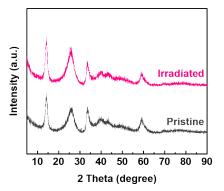


Figure S1. The XRD patterns of the pristine MoS₂ and irradiated MoS₂ nanosheets.

Based on the full width at half maximum (FWHM) value of the (002) diffraction peak, the thickness of MoS_2 nanosheets along the c axis can be calculated using

Scherrer equation: $D = \frac{K\gamma}{B\cos\theta}$

where K is the Scherrer constant, equaling to 0.89; γ is the wavelength of the X-ray, equaling to 0.154 nm; B is the FWHM value of the (002) diffraction peak; θ is the Bragg diffraction angle of (002) plane. The thickness of MoS₂ nanosheets was determined to be 7.1 nm, which corresponded to about 11 S-Mo-S layers

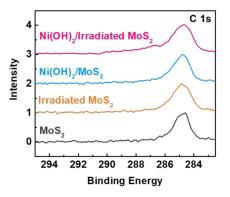


Figure S2. The C 1s XPS spectra of the pristine MoS₂, irradiated MoS₂, Ni(OH)₂/MoS₂ and Ni(OH)₂/irradiated MoS₂ heterostructure.