Spectroscopic and Theoretical Study of the Intramolecular π -Type Hydrogen Bonding and Conformations of 3-Cyclopentene-1-amine

Esther J. Ocola and Jaan Laane*

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA

Institute for Quantum Science and Engineering, College Station, TX 77843-3255, USA

SUPPORTING INFORMATION

(This file includes two tables and six figures in seven pages.)

Table of Contents

		Page
Table S1.	Structural parameters for all of the six conformers of 3CPAM from CCSD/cc-pVTZ computations	S2
Table S2.	Observed and calculated vibrational frequencies for the conformers of 3CPAM	S 4
Figure S1.	Vibrational spectra of the CH ₂ deformation vibrations (v_4 and v_{17}).	S5
Figure S2.	3CPAM vibrational spectra in the 2800 - 3100 cm ⁻¹ region.	S5
Figure S3.	3CPAM vibrational spectra in the 1180 - 1450 cm ⁻¹ region.	S 6
Figure S4.	3CPAM vibrational spectra in the 900 - 1150 cm ⁻¹ region.	S 6
Figure S5.	3CPAM vibrational spectra in the 630 - 880 cm ⁻¹ region.	S 7
Figure S6.	3CPAM vibrational spectra in the 185 - 600 cm ⁻¹ region.	S 7

Corresponding Author, Email address: laane@chem.tamu.edu, Phone: 979-845-3352

	3CPAM Conformer									
9 9	A1	A2	B1	B2	С	D				
Bond lengths (Å)										
$C_1 = C_2$	1.334	1.334	1.335	1.335	1.334	1.332				
$C_1 - C_5$	1.511	1.510	1.509	1.510	1.510	1.508				
$C_2 - C_3$	1.510	1.511	1.510	1.509	1.510	1.508				
$C_3 - C_4$	1.550	1.543	1.548	1.540	1.540	1.544				
$C_4 - C_5$	1.543	1.550	1.540	1.548	1.540	1.544				
C1-H6	1.081	1.081	1.081	1.081	1.081	1.081				
C ₂ -H ₇	1.081	1.081	1.081	1.081	1.081	1.081				
C ₃ -H ₈	1.092	1.090	1.096	1.096	1.094	1.092				
C ₃ -H ₉	1.095	1.093	1.091	1.090	1.091	1.094				
C ₄ -H ₁₀	1.089	1.089	1.092	1.092	1.097	1.094				
C5-H11	1.090	1.092	1.096	1.096	1.094	1.092				
C5-H12	1.093	1.095	1.090	1.091	1.091	1.094				
$C_4 - N_{13}$	1.466	1.466	1.458	1.458	1.463	1.468				
N ₁₃ -H ₁₄	1.014	1.013	1.013	1.012	1.013	1.013				
N 13-H15	1.013	1.014	1.012	1.013	1.013	1.013				
Angles (degrees)										
$C_1 = C_2 - C_3$	111.3	111.5	111.3	111.6	111.5	111.8				
$C_5-C_1=C_2$	111.5	111.3	111.6	111.3	111.5	111.8				
$C_2-C_3-C_4$	103.0	103.1	102.7	102.8	102.8	103.6				
$C_4-C_5-C_1$	103.1	103.0	102.8	102.7	102.8	103.6				
$C_3-C_4-C_5$	104.1	104.1	104.3	104.3	104.8	105.1				
$C_3-C_4-N_{13}$	114.0	108.5	118.0	112.1	112.1	108.6				
C5-C4-N 13	108.5	114.0	112.1	118.0	112.1	108.6				
$C_1 = C_2 - H_7$	125.1	125.1	125.0	125.0	125.1	125.1				
C1-C5-H11	113.8	113.5	110.7	110.6	110.9	112.8				
C1-C5-H12	110.4	110.3	114.0	113.6	113.3	110.8				
$C_2 = C_1 - H_6$	125.1	125.1	125.0	125.0	125.1	125.1				
$C_2-C_3-H_8$	113.5	113.8	110.6	110.7	110.9	112.8				
C2-C3-H9	110.3	110.4	113.6	114.0	113.3	110.8				
$C_3-C_2-H_7$	123.5	123.3	123.6	123.4	123.3	123.1				
$C_3-C_4-H_{10}$	111.5	111.6	107.4	107.4	107.3	110.9				
$C_{4}-C_{3}-H_{8}$	111.4	110.5	110.4	110.4	109.8	110.9				
$C_4-C_3-H_9$	111.5	111.6	112.4	112.1	112.5	111.6				
C ₄ -C ₅ -H ₁₁	110.5	111.4	110.4	110.4	109.8	110.9				

Table S1.	Structural Parameters for all of the Six Conformers of 3CPAM from CCSD/cc-pVTZ
computati	ons

Table S1. Continued

3CPAM Conformer

•						
-	A1	A2	B1	B2	С	D
Angles (degrees)						
$C_4-C_5-H_{12}$	111.6	111.5	112.1	112.4	112.5	111.6
C_4 - N_{13} - H_{14}	108.7	109.4	109.4	109.9	109.6	109.5
$C_4-N_{13}-H_{15}$	109.4	108.7	109.9	109.4	109.6	109.5
C5-C4-H10	111.6	111.5	107.4	107.4	107.3	110.9
$C_{5}-C_{1}-H_{6}$	123.3	123.5	123.4	123.6	123.3	123.1
$H_8-C_3-H_9$	107.1	107.5	107.1	106.9	107.6	107.3
H_{10} - C_4 - N_{13}	107.3	107.3	107.1	107.1	112.8	112.6
H ₁₁ -C ₅ -H ₁₂	107.5	107.1	106.9	107.1	107.6	107.3
Angles between bonds						
$C_1 = C_2 / N_{13} - H_{14}$	83.5	-2.9	93.2	-25.2	-158.9	-10.8
$C_1 = C_2 / N_{13} - H_{15}$	-177.8	85.4	-159.5	87.2	-26.1	-172.1
$C_1 = C_2 / C_3 - C_4$	16.4	16.1	-16.6	-16.4	-15.9	12.7
$C_2 = C_1 / C_5 - C_4$	-16.1	- 16.4	16.4	16.6	15.9	-12.7
C_3-C_2 / C_1-C_5	-0.3	0.3	0.1	-0.1	0.0	0.0
C_2-C_3 / C_4-C_5	-25.1	-25.0	25.6	25.5	24.6	-19.6
C_5-C_1 / C_3-C_4	16.5	16.7	-16.9	-17.0	-16.3	12.9
$C_3-C_4 / N_{13}-H_{14}$	-56.4	-174.0	-55.4	178.1	63.6	-179.0
$C_3-C_4 / N_{13}-H_{15}$	58.6	-59.0	60.7	-65.8	179.0	65.3
$C_5-C_4 / N_{13}-H_{14}$	59.0	-58.6	65.8	-60.7	-179.0	-65.3
$C_5-C_4 / N_{13}-H_{15}$	174.0	56.4	-178.1	55.4	-63.6	179.0
Selected distances (Å)						
C1-H14	2.906	3.690	3.830	4.165	4.351	3.714
C1-H15	3.953	2.948	4.383	3.846	4.097	3.993
C ₂ -H ₁₄	2.948	3.953	3.846	4.383	4.097	3.993
C ₂ -H ₁₅	3.690	2.906	4.164	3.830	4.351	3.714
$Mid(C_1=C_2)-H_{14}$	2.850	3.765	3.780	4.223	4.173	3.798
Mid(C ₁ =C ₂)-H ₁₅	3.765	2.850	4.223	3.780	4.173	3.798

Table S2. Observed and Calculated Vibrational Frequencies for the Conformers of 3CPAM

				0-030 0-030 0-030					- C.J.				
	01	1(00)	A	11		B	1 1 . 1	0.0	<u> </u>	1 1 . 1	0.0	<u>D</u>	1 1 . 1
F	Obsei	$(IR R)^b$	Erea a,c	(IR R) ^{b,c}		Λ ^c	(IR R) ^{b,c}			(IR R) ^{b,c}			(IR R) ^{b,c}
Ring - Pseudo C _{2v}	icq.	(11, 11)	Treq.	(IIX, IX)		4	(IIX, IX)		Δ	(III, II)	<u> </u>		(III, II)
Al													
$v_1 = C-H$ stretch	3072	(s, 141)	3075	(25,100)	0	-1	(18, 85)	8	1	(16, 86)	8	1	(15, 57)
v_2 CH ₂ symmetric stretch 2	2849	(s, 67)	2894	(43, 88)	-14	-15	(26, 100)	6	8	(12, 100)	13	8	(42, 100)
v_3 C=C stretch	1613	(m, 88)	1605 ^d	$(28, 46)^{d}$	4	5 ^d	(13, 26) ^b	4	5 ^d	(10, 28) ^b	16	18	$(3, 65)^{d}$
v_4 CH ₂ deformation	1452	(m, 17)	1447	(3, 77)	3	6	(2, 82)	3	9	(2, 81)	-4	-5	(2, 99)
v_5 CH ₂ wag	1296	(w, 10)	1283	(1, 15)	6	14	(3, 11)	-12	-15	(0.4, 21)	6	9	(2, 17)
$v_6 = C-H$ in plane wag	067	(W, 58)	1090	(0.1, 94)	0	2	(0.4, 100)	0	0	(2, 100)	0	4	(0.2, 100)
vi Ring stretch	907 804	(w, 100)	962 817	(1, 79)	28	3	(0.8, 76)	0 36	4	(0.3, 75) (12, 53)	21	12	(2, 91)
vo Ring angle bend	735	(3, +3) (w 9)	728	(02, 100)	-181	-180	(23, 31) (3, 27)	-161	-180	(12, 33) (0.8, 20)	-15	-8	(3, 87)
vy King angle bend	155	(**,))	720	(3, 3)	-101	-100	(3, 27)	-101	-100	(0.0, 20)	-15	-0	(30, 4)
A2													
<i>v</i> ₁₀ CH ₂ antisymmetric stretch	2929	(s, 59)	2951	(31, 48)	10	6	(27, 43)	10	8	(18, 43)	0	1	(6, 33)
v11 CH2 twist	1235	(w, 6)	1245	(10, 32)	-132	-135	(4, 4)	-122	-126	(2, 3)	15	21	(4, 1)
v_{12} =C-H out-of-plane wag	934	(m, 4)	934	(27, 4)	7	5	(22, 2)	0	0	(0.01, 3)	0	-2	(0.5, 4)
V13 CH ₂ rock	849	(m, 5)	870	(23, 9)	10	17	(11, 3)	24	21	(0.02, 2)	5	13	(2, 8)
v_{14} Ring C=C twist	358	(w, 22)	353	(9, 30)	41	38	(0.3, 15)	32	35	(0.7, 14)	-9	-10	(2, 23)
D1													
BI	2064	(a. 75)	2051	(5 44)	0	1	(4.26)	0	0	(4.27)	0	1	(4. 25)
V15 =C-fi Suetch	3004 2012	(8, 73)	2008	(3, 44)	24	-1 24	(4, 50)	7	10	(4, 57)	5	10	(4, 23)
V ₁₆ CH ₂ symmetric stretch 2	1/137	(8, 40) (m 4)	1/136	(30, 03) (10, 83)	-24	-24	(24, 22)	-/	-10	(29, 11) (2, 61)	-3	-10	(43, 10) (5, 66)
v_{12} = C-H in-plane wag	1353	(m, 4)	1343	(10, 83) (5, 10)	-5	-4	(2, 07)	10	-34	(2, 01) (0, 1, 8)	-4	-3	(3, 00)
$v_{18} = C + 11 \text{ in-plane wag}$ $v_{10} = C + 2 \text{ wag}$	1284	(m, 0) (w 4)	1268	(3, 10) (4 4)	-5	10	(6, 8)	29	-19	(0.1, 3) (4, 2)		23	(0, 1, 0, 2)
v ₂₀ Ring stretch	1026	(w, 3)	1023	(1, 1) (15, 30)	31	36	(12, 20)		-14	(1, 2) (1, 22)		-19	(2, 28)
v ₂₁ Ring stretch	926	(m, 2)	941	(48, 6)	0	-2	(0.2, 3)		-11	(1, 22) (10, 1)		-19	(5, 0.5)
v ₂₂ Ring angle bend	797	(w, 5)	757	(7, 8)	-12	-14	(0.5, 14)	-5	-7	(0.4, 11)	0	2	(1, 9)
							,						,
B2													
<i>v</i> ₂₃ CH ₂ antisymmetric stretch	2947	(s, 80)	2972	(20, 43)	0	1	(19, 47)	-8	-12	(21, 36)	-27	-20	(6, 33)
v ₂₄ CH ₂ twist	1122	(w, 2)	1143	(2, 30)	117	102	(3, 18)		43	(3, 18)		56	(5, 49)
v ₂₅ CH ₂ rock	934	(m, 4)	934	(24, 4)	50	51	(4, 16)		97	(2, 27)	59	56	(8, 6)
v_{26} =C-H out-of-plane wag	671	(s, 11)	668	(66, 29)	9	16	(41, 27)	15	22	(27, 30)	-10	-4	(15, 27)
v ₂₇ Ring puckering		(,)	143	(1, 11)		-12	(0.3, 5)		-23	(0.7, 3)		-22	(0.6, 13)
C H vibrations													
$\frac{C-11}{VOIAUOIIS}$	2030	(\$ 67)	2050	(56,75)	-37	-37	(18, 25)	-97	-106	(36, 54)	-82	-70	(29, 19)
$\omega_{\rm CH}$ C-H wag (up and down)	1379	(3, 07) (m 7)	1371	(9, 38)	-37	-57	(10, 23) (11, 34)	-19	-18	(30, 54) (24, 46)	-02	-75	(29, 19) (18, 45)
$\omega'_{\rm CH}$ C-H wag (sideways)	1244	(m, 7) (w. 5)	1214	(17, 19)	-48	31	(3.8)	95	9	(24, 40) (1, 2)	-39	-39	(0.9, 43)
		(, -)		(,,			(-,-,		-	(-, _)		• /	(0.0, 10)
NH ₂ vibrations													
$v_{a^-NH_2}$ NH ₂ antisymmetric stretch	3391	(vw, 7)	3406	(2, 28)	12	13	(1, 25)	3	8	(2, 30)	5	11	(0.9, 19)
$v_{s=NH_2}$ NH ₂ symmetric stretch	3329	(w, 32)	3313	(0.4, 53)	6	13	(0.3, 50)	6	13	(0.05, 65)	6	12	(0.1, 40)
$\delta_{\rm NH_2}$ NH ₂ deformation	1623	(m, 27)	1612 ^d	(16, 58) ^d	0	O^d	(13, 73) ^d	6	6 ^d	(13, 65) ^d	-6	-2	(23, 29)
$t_{\rm NH_2}$ NH ₂ twist	1109	(w, 58)	1119	(7, 12)	122	122	(0.7, 18)	115	104	(0.1, 24)	8	8	(0.9, 0.2)
$\omega_{\rm NH_2}$ NH ₂ wag	849	(m, 4)	891	(100, 13)	-36	-36	(100, 6)	-18	-19	(100, 9)	-40	-41	(100, 24)
$\tau_{\rm NH_2}$ NH ₂ torsion	264	(m, 1)	279	(54, 11)	-7	-14	(32, 8)	13	22 ^e	(21, 6)	-10	-14 ^e	(27, 9)
1112													/
<u>C-N vibrations</u>													
$v_{\rm CN}$ C-N stretch	1086	(vw, 2)	1068	(2, 34)	44	54	(10, 30)	36	34	(7, 22)	0	0	(1, 44)
ω _{CN} C-N wag	448	(vw, 6)	429	(14, 2)	11	4	(1, 9)	44	19	(10, 5)	-19	-19	(2, 0.9)
ω' _{CN} C-N wag	366	(w, 8)	379	(5, 6)	-38	-34	(13, 12)	-12	-18	(8, 3)	8	6	(6, 4)

^aObserved frequencies in cm⁻¹. ^bRelative infrared (IR) and Raman (R) intensities.

^cFrom MP2/cc-pVTZ computations unless indicated.

^dC=C stretch and NH₂ deformation vibrations are coupled.

^eApproximate shifts calculated from torsional PEFs from eq. 3.

Figure S1. Vibrational spectra of the CH₂ deformation vibrations (v_4 and v_{17}).

Figure S2. 3CPAM vibrational spectra in the $2800 - 3100 \text{ cm}^{-1}$ region.

Figure S3. 3CPAM vibrational spectra in the 1180 - 1450 cm⁻¹ region.

Figure S4. 3CPAM vibrational spectra in the 900 - 1150 cm⁻¹ region.

Figure S5. 3CPAM vibrational spectra in the 630 - 880 cm⁻¹ region.

Figure S6. 3CPAM vibrational spectra in the 185 - 600 cm⁻¹ region.