Supporting Information

Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency

Jingwen Song,[†] Xiaofang Jia,^{*,‡} Kosuke Minami,^{‡§,⊥} Jonathan P. Hill,[‡] Jun Nakanishi,[‡] Lok Kumar Shrestha,[‡] Katsuhiko Ariga^{*,†,‡}

[†]Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.

[†]International Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

[§]International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

[⊥]Center for Functional Sensor and Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

Corresponding Author

*E-mail: JIA.Xiaofang@nims.go.jp

*E-mail: ARIGA.Katsuhiko@nims.go.jp

Materials	Carbon	Polyethylene	Polycaprolactone	Elastin-like	Fullerene
	nanotube	glycol		protein	
Works	ACS Appl.				
	Mater.	Science 2010,	Nat. Mater. 2011,	Nat. Mater.	This work
	Interfaces	329, 1078	10,637	2017, 16,1233	
	2014,6, 2598				
Method	Deposited	Elastic	Electron beam	Degradable	LB
		substrate	lithography	substrate	
Nanotopography	\checkmark	×	\checkmark	×	\checkmark
Large area	\checkmark	×	×	×	\checkmark
Cell shape control	×	×	\checkmark	×	\checkmark
High Proliferation	×	\checkmark	\checkmark	×	\checkmark
Simple preparation	\checkmark	×	×	×	\checkmark
Low cost	\checkmark	×	×	×	\checkmark
Biocompatibility	×	\checkmark	\checkmark	\checkmark	\checkmark

 Table S1. Representative stem cell expansion using different strategies.

Figure S1. Photomicrographs of FNWs prepared using different concentrations of C_{60} dissolved in m-xylene. Concentration of C_{60} solutions in m-xylene was selected (1 mg/mL, 2 mg/mL and 3 mg/mL) for the regulation of the supramolecular assembly process. Scale bars: 20 µm. At higher concentrations of C_{60} solution (3 mg/mL), a greater number of nuclei were formed at the liquid–liquid interface resulting in shorter FNWs with a highly uniform morphology. At lower concentration of C_{60} solution (1 mg/mL), fewer nuclei were formed at liquid–liquid interface leading to longer FNWs with lower uniformity of morphology. To obtain long FNWs with uniform morphology, a static liquid–liquid interfacial precipitation method using 2 mg/mL C_{60} stock solution was used for supramolecular assembly.

Figure S2. Experimental method (at right) with micrographs and size distributions of low-aspect-ratio and high-aspect-ratio FNWs. (a) SEM image of low-aspect-ratio FNWs. Scale bar: 2 μ m. (b) Histograms for lengths and diameters of low-aspect-ratio FNWs. (c) Photomicrograph of high-aspect-ratio FNWs. Scale bar: 50 μ m. (d) Histograms for lengths and diameters of high-aspect-ratio FNWs.

Figure S3. Schematic illustration of the guided assembly of FNWs using the LB approach. (a) High-aspect-ratio FNWs and (b) low-aspect-ratio FNWs floating at a water surface form high density FNWs monolayer under compression.

Figure S4. FNWs coated on a glass substrate by drop-casting. SEM images (a) corresponding orientation-color-coded images (b) and angular distribution (c) of low-aspect-ratio FNWs (left), high-aspect-ratio FNWs (right) and a composite with the weight ratio of low- and high- aspect-ratio FNWs of 3 (middle). Inset in the left panel of (b) shows the color code for orientation (different colors indicate different orientation directions). Scale bar: 40 µm.

Figure S5. Wettability analysis of low-, medium-, and high-aFNWs nanopatterned scaffolds. Contact angle images and values for water droplet on different aFNWs patterned scaffolds. n = 5, mean \pm s.d.

Figure S6. Root-mean-squared (rms) surface roughness of low-, medium-, and high-aFNWs nanopatterned scaffolds. n = 15, mean \pm s.d.

Figure S7. Schematic illustration of protein adsorption on hydrophobic aFNWs nanopatterned scaffold. (a) Cassie model of hydrophobic nanopatterned surface. Surface roughness or topography has a significant influence on the surface energy. Hydrophobic nanopatterned surfaces having water-repellent properties prevent water from contacting the entire surface. (b) aFNWs scaffold promotes formation of a protein pattern on the ridges of aFNWs.

Figure S8. Protein adsorption on glass. Fluorescence image of bare glass soaked in 0.1 mg/mL fluorescent labelled fibronectin solution in PBS for 1 h. Scale bar: 25 μ m.

Figure S9. hMSCs viability on aFNWs scaffolds and glass. LIVE/DEAD assay of hMSCs cultured on low-, medium-, and high-aFNWs scaffolds after 24 h and 1 week. hMSCs cultured on bare glass surface as control (panels at left). Live hMSCs labeled with calcein AM (green) and dead hMSCs labeled with EthD-1(red). White arrow indicates the pattern direction. Scale bar: 200 μ m.

Figure S10. qRT-PCR analysis of the expression of hMSCs stemness markers after 1 week. *OCT4* (a), *SOX2* (b) and *NANOG* (c) expression of hMSCs cultured on low-, medium-, and high-aFNWs nanopatterned scaffolds. hMSCs cultured on glass surface as control. Normalized gene expression to control group. n = 3, mean \pm s.d.

Figure S11. qRT-PCR analysis of stemness markers *OCT4*, *SOX2* and *NANOG* after 2 weeks. hMSCs (bone marrow, Lonza) were cultured in standard growth medium (Lonza). *OCT4* and *NANOG* gene expression is normalized against cells cultured on glass. The relative expression of *SOX2* was compared with *GAPDH*. n = 3, mean \pm s.d., n.d.: not detected, *P < 0.05 vs. control, $^{\#}P < 0.05$, two-tailed Student's *t*-test.

Figure S12. Morphologies of hMSCs cultured on aFNWs scaffolds after 2 weeks. Representative fluorescence images of hMSCs cultured on the surface of low-, medium- and high-aFNWs nanopatterned scaffolds (F-actin in red, nucleus in blue). Lower panels also show bright field in gray. Panels at left show hMSCs cultured on bare glass surface as control.

Figure S13. Percentage of hMSCs with vinculin patches on low-, medium- and high-aFNWs nanopatterned scaffolds. n = 10-13 cells.