Supporting Information

3D-Printed Column with Porous Monolithic Packing for Online Solid-Phase Extraction of Multiple Trace Metals in Environmental Water Samples

Cheng-Kuan Su* and Jou-Yu Lin

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan R.O.C.

Corresponding Author

*E-mail: <u>cksu@nchu.edu.tw</u> (C. K. Su)

Table of Content

Page S4	Figure S1. Detailed dimensions of the SPE column designed with the inner packing stacked by interlacing cuboids. Units: mm.
Page S5 - S6	Figure S2. Schematic step-by-step representations of the operating sequence for the automatic sample pretreatment system using the 3D-printed SPE column featuring porous monolithic packing. (A) Step 1 (BAA): The conditioned sample (pH 8) was loaded into the column for extraction of the tested metal ions. (B) Step 2 (AAA): Residual sample matrices were evacuated, and the column was rinsed with pure water. (C) Step 3 (ABA): The extracted metal ions were eluted with 0.5% HNO ₃ and delivered to the ICP-MS system. (D) Step 4 (ABB): The residual eluent in the column was replaced with pure water prior to loading of the next sample.
Page S7	Figure S3. SEM images of the surfaces of the inner packings fabricated using (A) ABS, (B) Lay-Fomm 40, (C) Lay-Fomm 60, (D) Gel-Lay, and (E) Lay-Felt filament, recorded using a Hitachi HT7700 scanning electron microscope. All of these fabricated columns had been washed with a pure water stream for 24 h to remove their water-soluble components. Scale bar: 50 µm.
Page S8	Figure S4 . Signal intensities of the extracted metal ions, plotted with respect to (A) the sample volume, (B) the elution volume, and (C) the HNO ₃ concentrations in the eluent. Data in (A) are normalized to their respective maxima; data in (B) and (C) are expressed as the extraction recoveries of these metal ions (10 μ g L ⁻¹). Error bars represent standard deviations ($n = 5$). The sample loading flow rate and elution flow rate were 1.0 mL min ⁻¹ ; the rinsing flow rate was 0.5 mL min ⁻¹ .
Page S9	Figure S5. Relative signal intensities of the extracted metal ions, plotted with respect to the co-existing matrix ions [K ⁺ (1000 mg L ⁻¹ ; added as KCl), Ca ²⁺ (1000 mg L ⁻¹ ; added as CaCl ₂), Mg ²⁺ (1000 mg L ⁻¹ ; added as MgCl ₂), HCO ₃ ⁻ (500 mg L ⁻¹ ; added as NaHCO ₃), SO ₄ ²⁻ (2000 mg L ⁻¹ ; added as Na ₂ SO ₄), and Br ⁻

	(500 mg L ⁻¹ ; added as NaBr)]. All data are expressed as the extraction recoveries			
	of these metal ions (10 μ g L ⁻¹). Error bars represent standard deviations (<i>n</i>			
	The sample loading flow rate and elution flow rate were 1.0 mL min ⁻¹ ; the rinsing			
	flow rate was 0.5 mL min ⁻¹ .			
D (10	Figure S6. The fluctuations of the daily calibration slopes for these tested metal			
Page S10	ions within 46 days.			
	Figure S7. Elution profiles of these tested metal ions in (A) a standard solution			
Page S11	(5 μ g L ⁻¹) and (B) a seawater sample (Keelung) with its spike analysis from			
	the automatic sample pretreatment system incorporating the 3D-printed SPE			
	column featuring porous monolithic packing.			
	Figure S8. Temporal response of the proposed automatic sample pretreatment			
Dago S12	system incorporating the 3D-printed SPE column with porous monolithic			
Page S12	packing for switching samples from the blank to the standard (10 $\mu g \ L^{-1})$ and			
	then from the standard back to the blank. Sampling frequency: 12 h^{-1} .			
Page S13	Table S1. Operating sequence of the automatic sample pretreatment system			
Page S14	Table S2. Specific surface area (BET), pore volume, and pore diameter of these			
	monolithic packings after removal of water-soluble component			
Page S15	Table S3. Optimized conditions for the automatic sample pretreatment system			
Page S16	Table S4. Analytical characteristics of the sample pretreatment systems			
	respectively incorporating the column packed with the polyurethane filaments			
	and the column packed with the polyurethane foam			

Figure S1. Detailed dimensions of the SPE column designed with the inner packing stacked by interlacing cuboids. Units: mm.

Figure S2. Schematic step-by-step representations of the operating sequence for the automatic sample pretreatment system using the 3D-printed SPE column featuring porous monolithic packing. (A) Step 1 (BAA): The conditioned sample (pH 8) was loaded into the column for extraction of the tested metal ions. (B) Step 2 (AAA): Residual sample matrices were evacuated, and the column was rinsed with pure water. (C) Step 3 (ABA): The extracted metal ions were eluted with 0.5% HNO₃ and delivered to the ICP-MS system. (D) Step 4 (ABB): The residual eluent in the column was replaced with pure water prior to loading of the next sample.

Figure S3. SEM images of the surfaces of the inner packings fabricated using (A) ABS, (B) Lay-Fomm 40, (C) Lay-Fomm 60, (D) Gel-Lay, and (E) Lay-Felt filament, recorded using a Hitachi HT7700 scanning electron microscope. All of these fabricated columns had been washed with a pure water stream for 24 h to remove their water-soluble components. Scale bar: 50 μm.

Figure S4. Signal intensities of the extracted metal ions, plotted with respect to (A) the sample volume, (B) the elution volume, and (C) the HNO₃ concentrations in the eluent. Data in (A) are normalized to their respective maxima; data in (B) and (C) are expressed as the extraction recoveries of these metal ions (10 μ g L⁻¹). Error bars represent standard deviations (*n* = 5). The sample loading flow rate and elution flow rate were 1.0 mL min⁻¹; the rinsing flow rate was 0.5 mL min⁻¹.

Figure S5. Relative signal intensities of the extracted metal ions, plotted with respect to the coexisting matrix ions [K⁺ (1000 mg L⁻¹; added as KCl), Ca²⁺ (1000 mg L⁻¹; added as CaCl₂), Mg²⁺ (1000 mg L⁻¹; added as MgCl₂), HCO₃⁻ (500 mg L⁻¹; added as NaHCO₃), SO₄²⁻ (2000 mg L⁻¹; added as Na₂SO₄), and Br (500 mg L⁻¹; added as NaBr)]. All data are expressed as the extraction recoveries of these metal ions (10 µg L⁻¹). Error bars represent standard deviations (n = 5). The sample loading flow rate and elution flow rate were 1.0 mL min⁻¹; the rinsing flow rate was 0.5 mL min⁻¹.

Figure S6. The fluctuations of the daily calibration slopes for these tested metal ions within 46 days.

Figure S7. Elution profiles of these tested metal ions in (A) a standard solution (5 μ g L⁻¹) and (B) a seawater sample (Keelung) with its spike analysis from the automatic sample pretreatment system incorporating the 3D-printed SPE column featuring porous monolithic packing.

Figure S8. Temporal response of the proposed automatic sample pretreatment system incorporating the 3D-printed SPE column with porous monolithic packing for switching samples from the blank to the standard (10 μ g L⁻¹) and then from the standard back to the blank. Sampling frequency: 12 h⁻¹.

Step	Valve position $(1 \rightarrow 3)$	Time interval	Function
1 (Fig. S2A)	BAA	0:00-1:00	loading of the conditioned sample into the column
2 (Fig. S2B)	AAA	1:00-3:00	evacuating sample matrices and rinsing the column with pure water
3 (Fig. S2C)	ABA	3:00-4:30	eluting these extracted metal ions with 0.5% HNO ₃ and delivering to the ICP-MS system
4 (Fig. S2D)	ABB	4:30-5:00	replacing the residual eluent with pure water

 Table S1. Operating sequence of the automatic sample pretreatment system

	Specific surface area, m ² g ⁻¹	Pore volume, cm ³ g ⁻¹	Average pore diameter, nm
Lay-Fomm 40	5.7	0.008	8.4
Lay-Fomm 60	3.7	0.008	7.6
Lay-Felt	4.5	0.007	5.9
Gel-Lay	4.5	0.008	6.7

Table S2. Specific surface area (BET), pore volume, and pore diameter of these monolithic

 packings after removal of water-soluble component

 Table S3. Optimized conditions for the automatic sample pretreatment system

3D-Printed SPE column with porous monolithic packing

Porous composite

Interlacing cuboids

Lay-Fomm 40

40 layers

Sample pretreatment using the 3D-printed SPE column		
Sample loading flow rate and volume	1.0 mL min ⁻¹ , 1.0 mL	
Rinsing medium	H_2O	
Rinsing flow rate and volume	0.25 mL min ⁻¹ , 0.5 mL	
Eluent	0.5% HNO ₃	
Elution flow rate and volume	1.0 mL min ⁻¹ , 1.5 mL	

ICP-MS		
ICP mass spectrometer	Agilent 7700x	
Plasma forward power	1500 W	
Ar gas flow rate		
Plasma gas	15 L min ⁻¹	
Auxiliary gas	0.9 L min ⁻¹	
Carrier gas	0.95 L min ⁻¹	
Makeup gas	0.20 L min ⁻¹	
Sampling cone	Pt, 1-mm orifice	
Skimmer cone	Pt, 0.4-mm orifice	
Analysis mode	Time-resolved analysis	
Integration time	50 ms	
Isotopes monitored	⁵⁵ Mn, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁵ Cu, ⁶⁶ Zn, ¹¹⁴ Cd, ²⁰⁸ Pb	

Table S4. Analytical characteristics of the sample pretreatment systems respectively incorporating

 the column packed with the polyurethane filaments and the column packed with the polyurethane

 foam

	Polyurethane filament-packed column		Polyurethane foam-packed column	
	Extraction efficiency, %	MDL, ng L ⁻¹	Extraction efficiency, %	MDL, ng L ⁻¹
⁵⁵ Mn	98.3	24.4	15.8	61.2
⁵⁹ Co	98.6	6.1	18.0	11.4
⁶⁰ Ni	98.3	31.0	15.3	30.8
⁶⁵ Cu	98.8	72.7	37.5	84.5
⁶⁶ Zn	98.8	40.1	35.2	58.9
¹¹⁴ Cd	98.3	4.4	12.6	17.4
²⁰⁸ Pb	98.2	2.7	37.1	4.2