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SI Methods 

 

Optical Experiments. Circular dichroism (CD) spectra were recorded on a Jasco J-810 

spectropolarimeter (Easton, MD) with a 1 mm cuvette using 5 µM Mb between 20 °C and 96 °C. 

Unfolding profiles were generated by monitoring the CD signal at 222 nm which is characteristic 

of -helical secondary structure.1 These CD222 profiles were analyzed by using2, 3 
 

𝐶𝐷ଶଶଶ ൌ
ሺ௬ಿା௠ಿ்ሻାሺ௬ೆା௠ೆ்ሻୣ୶୮ ሺି∆ீ೒೗೚್/ோ்ሻ

ଵାୣ୶୮ ሺି∆ீ೒೗೚್/ோ்ሻ
  

 

where (yN + mNT) and (yU + mUT) are the sloped pre- and post-transition baselines, respectively, 

with Gglob = Hglob(1 – T/Tm). 

 

Discussion of Global Fitting Strategy. Global fitting generally improves the robustness and 

accuracy of parameters compared to single-curve analyses. At the same time, the number of 

parameters required for describing the whole data set is reduced.4-8 The procedure used in our 

work involved 22 peptides that were dissected into 44 segments, for a total of 44  3 = 132 fitting 

parameters. One can contrast this to traditional HDX-MS strategies that use expressions such as  
 

%D = a0 + a1( 1-exp[-kapp_1  t] ) + a2( 1-exp[-kapp_2  t] ) 
 

with five parameters per peptide (or more, when using additional exponentials).9, 10 For 22 

peptides and two temperatures that traditional method would require a minimum of 22  2  5 = 

220 parameters. Here we probed the HDX properties of Mb at eleven (not two) temperatures. In 

other words, the number of fitting parameters in our global analysis is low, compared to 

traditionally used approaches. More importantly, the parameters obtained here (GopU, Hloc, and 

Sloc) directly report on first-principle protein properties. This is in contrast to the ai and kapp_i 

values of the equation above, which are difficult to interpret in a structural/thermodynamic 

context. 
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Figure S1. Temperature dependence of a global two-state N  U equilibrium for different values 
of Cp.

2, 3, 11, 12 (A) Free energy of unfolding; (B) Fraction of unfolded protein. The three data sets 
share the same Tm = 356 K and H(Tm) = 453 kJ mol-1. The red solid lines apply to Mb under the 
conditions of this work (Cp = 8 kJ mol K-1, as in Figure 1). Cold unfolding only occurs for larger 
Cp values (e.g., 11 kJ mol K-1, green dashed lines). For temperatures above ~ 290 K the three 
unfolding profiles in (B) are indistinguishable. (C) Enthalpy of unfolding H(T), and (D) entropy 
of unfolding S(T) for Mb under the conditions of this work. 
 

 Free energy profiles in panel A were calculated from eqs. 3 and 4 (main text) according to 
G(T)  = H(T) – T  S(T)  

= H(Tm) + Cp (T - Tm) – T [S(Tm) + Cp ln(T/ Tm)] 
  = H(Tm) – T S(Tm)  + Cp (T - Tm) – T Cp ln(T/ Tm) 

= H(Tm) – T S(Tm)  + Cp [(T - Tm) – T ln(T/ Tm)] 
= H(Tm) (1 – T/Tm)  + Cp [(T - Tm) – T ln(T/ Tm)] 

 

In the last line we used H(Tm) = Tm S(Tm) such that S(Tm) = H(Tm)/Tm. 
 

 Unfolding curves in panel B were calculated using the Boltzmann expression 
Fraction Unfolded = exp(-G/RT) / [1 + exp(-G/RT)], where G = G(T) from panel A. 
 

 On this page we skipped the subscript glob to simplify the notation. 
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Figure S2. Peptic digestion map, showing the HDX sequence coverage (image generated by 
Waters DynamX). 
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Figure S3. HDX-MS isotope distributions of selected peptic peptides. (A) Data acquired after 
different labeling time intervals t at a constant temperature of T = 296 K (23 C). (B) Same as in 
panel A, but for T = 333 K (60 C). (C) Data acquired at different temperatures T for a constant 
labeling time of t = 30 s. Vertical dashed lines indicate centroid m/z values.  

T = 296 K

t = 30 s

510 512 514

T = 296 K

t = 600 s

T = 296 K

t = 6000 s

462 464 466 602 604 606 465 467 469

m/zm/z m/z m/z

21-292+12-202+ 70-863+ 138-1534+

A

T = 333 K

t = 30 s

510 512 514

T = 333 K

t = 600 s

T = 333 K

t = 6000 s

462 464 466 602 604 606 466 467 468 469

510 512 514 462 464 466 602 604 606

 

T = 348 K

t = 30 s

T = 353 K

t = 30 s

T = 273 K

t = 30 s

465 467 469

m/z m/z m/z m/z

B

C



 S7

 
 
Figure S4. kch,i values for backbone NH sites along the Mb sequence, for pD 7.6 and 298 K. These 
values were calculated using Excel files from the Englander Laboratory 
(http://hx2.med.upenn.edu/download.html).13  
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Figure S5. (A) Temperature dependence of kch, calculated using the simple Arrhenius expression  
of eq. 6a (main text), and by explicitly taking into account how [OD-] changes with T (eq. 6b). All 
calculations are based on pD = const.= 7.6, keeping in mind that the phosphate-buffered solutions 
used of the current work are stable against T-induced changes.14 The data shown here are for poly-
alanine with kch(298 K) = 15 s-1.13, 15 
 
(B) Concentration of OD- vs. temperature, calculated as follows: 
The ionization constant of D2O is   KD2O(T) = [D+]  [OD-](T) 
such that      pOD(T) = -log(KD2O(T)) – pD 
or      pOD(T) = -log(g(T)/RT) – pD 
The OD- concentration (M) is thus given by [OD-](T) = 10-pOD(T) 
 
(C) g(T) is the free energy change associated with the D2O  D+ + OD- equilibrium.16 g(T) is 
required for calculating [OD-](T). 
      g(T) = h(T) - Ts(T) 
with the enthalpy     h(T) = h(298 K) + cp (T - 298 K)  
and the entropy    s(T) = s(298 K) + cp ln(T/298 K)   
where h(298 K) = 59.8 kJ mol-1, s(298 K) = -85.5 J mol-1 K-1, and cp = -229.3 J mol-1 K-1. 
These parameters imply that kB_298 = 3.45  108 in eq. 6b, to ensure that kch(298 K) = 15 s-1. 
 
Here we use lower case symbols for solvent-related thermodynamic parameters, whereas upper 
case symbols in the main text refer to the protein.  
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Figure S6: Temperature dependence of backbone amide H-bond opening/closing, and its 
relationship to the temperature dependence of kch. (A) Transition state theory model of the  
NHclosed  NHopen equilibrium.2, 17 G#

op and G#
cl are the activation barrier heights for opening 

and closing, respectively. The corresponding rate constants are 
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(k = Boltzmann constant, h = Planck constant, R = gas constant, T = temperature, and  = 
transmission coefficient). The activation free energies can be dissected into enthalpic and entropic 
contributions according to G# = H# - TS#, such that 
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Figure S6 Caption (continued): 
 
When expressed in this way, it becomes clear that the temperature dependence of kop and kcl is 
governed by the activation enthalpies H#

op and H#
cl, while the entropy terms can be 

incorporated into the T-independent prefactor. Heat is required to dissociate H-bonds (Hop > 0). 
This implies H#

op > H#
cl as illustrated in (B), causing kop to depend more strongly on 

temperature than kcl. 
 
Panel (C) illustrates how kop and kcl change with temperature. The numerical parameters were 
chosen to resemble the global Mb unfolding data of Figure 1, i.e., Hop = 453 kJ mol-1 and H#

cl = 
100 kJ mol-1 (estimated from literature data18, 19) such that H#

op = 553 kJ mol-1. Ccl was arbitrarily 
chosen as 1018 s-1 K-1 to ensure EX2 conditions with kcl = 20 s-1 at 273 K. This determines the 
value of Cop = 3  1084 s-1 K-1 to ensure that kop = kcl at Tm = 356 K. 
 
Also included in (C) is a temperature-dependent kch profile, calculated using the Arrhenius 
parameters of ref.15 for poly-alanine at pD = 7.6 (eq. 7a). 
 
Key conclusion from the data presented in this Figure: A protein that exhibits EX2 behavior (kcl 
>> kch) at low temperature is likely to remain in the EX2 regime when the temperature is 
raised. This is illustrated by in panel (C), where kcl remains at least two orders of magnitude above 
kch throughout the entire range from 273 K to 373 K. 
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Figure S7. Overlapping peptides (red) used for global fitting, illustrating Layer 6 of the modeling 
strategy developed here. Blue vertical segments share the same GopU, Hloc, and Sloc across 
different peptides; the residue range for each segment is indicated. The first two residues of each 
peptide (gray) were not considered due to back exchange. Preliminary segment boundaries were 
first determined by analyzing one peptide at a time. If treating a peptide as a single segment did 
not yield an acceptable fit, it was divided into two, then three segments, etc. For global fitting 
these preliminary boundaries  had to be slightly adjusted to ensure consistency across overlapping 
peptides (vertical lines in the figure above).  
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Figure S8. 
Complete set of 
temperature-
dependent G 
profiles calculated 
from the GopU, 
Hloc, and Sloc 
parameters of Figure 
4 (main text) .  
[G*glob = Gglob + 
GopU] profiles are 
shown as pink solid 
lines, Gloc profiles 
are shown as black 
dashed lines for 44 
segments along the 
Mb sequence. The 
residues 
corresponding to 
each segment are 
indicated in the 
individual panels. 
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SI Appendix (continued on the following pages): Complete experimental HDX-MS data set 
(colored dots), with fits (black lines) based on eq. 9 obtained by global analysis of overlapping 
peptides.  
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